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Abstract

Background: MicroRNAs (miRNAs) are a family of short, non-coding RNAs that have been linked to critical cellular
activities, most notably regulation of gene expression. The identification of miRNA is a cross-disciplinary approach
that requires both computational identification methods and wet-lab validation experiments, making it a resource-
intensive procedure. While numerous machine learning methods have been developed to increase classification
accuracy and thus reduce validation costs, most methods use supervised learning and thus require large labeled
training data sets, often not feasible for less-sequenced species. On the other hand, there is now an abundance of
unlabeled RNA sequence data due to the emergence of high-throughput wet-lab experimental procedures, such as
next-generation sequencing.

Results: This paper explores the application of semi-supervised machine learning for miRNA classification in order
to maximize the utility of both labeled and unlabeled data. We here present the novel combination of two semi-
supervised approaches: active learning and multi-view co-training. Results across six diverse species show that this
multi-stage semi-supervised approach is able to improve classification performance using very small numbers of
labeled instances, effectively leveraging the available unlabeled data.

Conclusions: The proposed semi-supervised miRNA classification pipeline holds the potential to identify novel
miRNA with high recall and precision while requiring very small numbers of previously known miRNA. Such a
method could be highly beneficial when studying miRNA in newly sequenced genomes of niche species with few
known examples of miRNA.

Keywords: Machine learning, Semi-supervised learning, Active learning, Co-training, miRNA prediction, Next-generation
sequencing

Background
MicroRNAs (miRNAs) are short (~ 18–25 nt), non-cod-
ing RNA (ribonucleic acid) sequences involved in cell
regulation at both the post-transcriptional and transla-
tional levels. Regulation is achieved through inhibition
of translation at the ribosome or targeting messenger
RNA (mRNA) for degradation prior to translation. Stud-
ies have suggested that the majority of mRNA may be
targeted by one or more miRNA [1], thereby implicating
miRNA in cell cycle control [2], biological development
[3, 4], differentiation [5], cancer biology [6–9] and other

disease pathogenesis [10], stress response [11–13], and
adaptation to environmental stresses [14, 15].
Clearly, the ability to identify miRNA within genomes

is an important first step in understanding their func-
tion. Computational approaches to identifying miRNA
are complementary to costly and resource-intensive wet-
lab validation experiments such as northern blotting
[16], RT-PCR [9] and microarrays [17].
A wide range of computational methods have been de-

veloped for the identification of miRNA directly from
genomic sequence (i.e., de novo methods) or from next-
generation sequencing data (i.e., NGS methods) [18, 19].
These techniques search the input data for pre-miRNA
sequences forming miRNA-like hairpins and classify
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them based on computed sequence- or expression-based
features. This task is made difficult by the high preva-
lence of pseudo-miRNA sequences within the genome
that appear to fold into miRNA-like structures but do
not lead to actual miRNA. This leads to significant class
imbalance, where the number of true positives sequences
is dwarfed by the number of negative (pseudo-miRNA)
sequences. This is particularly true for de novo predic-
tion methods, since they must consider all candidate
pre-miRNA sequences and are not restricted to consid-
ering only those sub-sequences that are expressed in the
cell, as is the case with NGS-based methods. However,
de novo methods are more widely applicable since they
do not require NGS transcriptomic data, only genomic
sequence data.
Existing methods of miRNA identification rely on

supervised machine learning (ML). In this paradigm,
decision logic is learned directly from labeled training ex-
amples of both known miRNA and pseudo-miRNA. Ef-
fective classifiers require large quantities of labeled
training data. However, for many species, there is a paucity
of known miRNA, effectively limiting the accuracy of any
supervised learning approach. For example, miRBase [20]
contains experimentally validated miRNA sequences for
less than 300 species. Furthermore, for approximately one
third of such species, only 15 or fewer known miRNA se-
quences are available. Taken together, we conclude that
there are insufficient training exemplars available for most
species from which to train a miRNA classifier. While it is
possible to train a miRNA classifier using data from a spe-
cies that differs from the target species, we have previously
shown that classification accuracy is reduced as the evolu-
tionary distance between training and testing species in-
creases [21].
Semi-supervised ML presents an opportunity to create

more effective miRNA classifiers, in the face of limited
labeled training data. Emerging high-throughput tech-
niques, such as NGS, are able to produce vast quantities
of data describing expressed RNA sequences. The diffi-
culty in using these data to develop miRNA classifiers
lies in the fact that they are unlabeled: we do not know
if these expressed sequences represent true miRNA or if
they come from other sources, such as mRNA degrad-
ation or processing. Semi-supervised ML is able to learn
from both the small amount of available labeled training
data and also from the much larger volume of unlabeled
data. This study examines two such approaches: multi-
view co-training and active learning.
The problem of miRNA prediction can be examined

from two separate views, sequence-based or expression-
based, resulting in two independent feature sets describing
the same classification problem. Recent methods, such as
miPIE [22] and mirnovo [23], have examined the use of in-
tegrated feature sets, that include both expression- and

sequence-based features, and achieved substantial improve-
ments in accuracy. However, the availability of two inde-
pendent views of the problem enables the application of
multi-view co-training (MVCT) approaches to semi-super-
vised ML [24]. In this approach, the available training data
are used to create miRNA classifiers for each view separ-
ately. The classifiers are then applied to all available
unlabeled data, and the highest confidence predictions are
added to the training set of the alternate view. In this way,
each view strengthens the classifier of the other view. This
has been shown to be an effective way to avoid simply re-
inforcing the bias of a single classifier. Applications of
MVCT within bioinformatics have been focused on the
prediction of protein function [25], prediction of breast
cancer survivability [26], detection of mis-localized proteins
in human cancers [27], gene expression classification [28],
cancer sample classification [29], and phenotype prediction
[30]. We have recently investigated the use of MVCT for
increasing the accuracy of miRNA classifiers [31]. In that
study, classifiers were trained for each view independently.
A consensus prediction is then achieved by confidence-
weighted voting among the two views. In the present paper,
we instead investigate the use of MVCT for augmenting
the starting labeled training set for a second stage of semi-
supervised learning using an integrated feature set.
While MVCT seeks to expand the available training

data without any costly wet-lab validation, active learn-
ing seeks to identify those unlabeled samples that would
be most beneficial to label, assuming that a limited
budget is available for wet-lab validation experiments.
Active learning is an iterative approach that begins by
training a classifier using all available training data. The
classifier is then applied to all unlabeled data and those
points falling closest to the decision boundary are identi-
fied as candidates for subsequent experimental valid-
ation. By focusing on the points for which the classifier
is most uncertain of their true class, maximal informa-
tion can be gleaned for the classifier while minimizing
wet-lab validation experiments. We have previously
demonstrated the potential for active learning in miRNA
classification [32]. In other areas of bioinformatics, ac-
tive learning has been applied to drug discovery [33, 34],
gene expression profiling of cancer biopsies [35] and
histopathological images [36, 37], protein-protein inter-
action prediction [38, 39], and the identification of novel
substrates for enzymes [40].
While both of these methods of semi-supervised ML

have been shown to be effective in isolation, to our know-
ledge, they have not been explored in combination. The
fact that MVCT focuses on adding unlabeled points to the
training set for which the classifier is most confident,
while active learning focuses on those unlabeled points for
which the classifier is least confident, we hypothesize that
these two methods are complementary. We hereby
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propose a novel semi-supervised approach for the classifi-
cation of miRNA where a combination of active learning
and multi-view co-training is used for increased classifica-
tion performance.
We here conduct repeated cross-validation experi-

ments to demonstrate that our proposed dual-stage
semi-supervised approach reduces the number of labeled
instances required in the training process thereby
minimizing the overall cost of developing a miRNA pre-
dictor. Features are extracted from six diverse species to
train and test predictors. The learning process consists
of two stages, with an initial MVCT step followed by ac-
tive learning. The individual contributions of each stage
are quantified for each species and the combined pipe-
line is shown to be more effective than either MVCT or
active learning applied separately. Final classification
performance of the integrated semi-supervised pipeline,
when constrained to using only 32 labeled training ex-
emplars, is shown to surpass that of a state-of-the-art
classifier trained with an unconstrained dataset.
This study represents the first published combination

of MVCT and active learning into an integrated semi-su-
pervised ML framework. While it is shown to be highly
effective for miRNA classification, it is likely to be more
broadly applicable. Source code is freely available on
GitHub.

Results
Stage 1—Augmenting the labeled set using MVCT
The first stage of the integrated semi-supervised miRNA
classification pipeline applies MVCT to the available
training data. This is illustrated in the upper half of
Fig. 1. The purpose of this step is to maximally augment
the datasets representing the two views of the problem
without conducting any costly wet-lab experiments. For
each of the six test species (see the “Methods” section),
we assess the effectiveness of applying MVCT for
miRNA classification. Although the goal of stage 1 is to
augment the training set for stage 2, we evaluate the per-
formance of both the sequence and expression-based
views at each iteration of learning, as an indication of
the increasing value of the growing training dataset.
Here, and throughout the study, performance is mea-
sured using the area under the precision-recall curve
(AUPRC) over a hold-out test set (see the “Methods”
section). Results are presented in Table 1, representing
the mean performance of each view’s classifier averaged
over 100 experiments with randomly selected seed train-
ing sets of five positive and five negative training exem-
plars. During each iteration of MVCT, the most
confident positive and negative predictions are added to
the alternate view’s training set.
As it can be observed from Table 1, the AUPRC for both

views of each species undergoes significant improvement

after the 11 iterations of learning are completed. The
human (hsa) and cow (bta) data sets exhibit the greatest
increases in performance. For example, the human se-
quence-based classifier sees a 121% increase in AUPRC.
MVCT appears to be least effective for the chicken (gga)
and horse (eca) datasets. It should be noted that the initial
classifiers for these two species were highly effective
(AUPRC > 0.87) prior to application of MVCT, leaving little
room for improvement. The increase in classifier perform-
ance is non-monotonic, although the trend is positive for
all species. This indicates that the samples added to the
training set during MVCT were correctly labeled in most
instances.
The MVCT stage was run for 11 iterations for each

species. Although dynamic stopping criteria are de-
scribed in the literature, this choice was based on our
previous analysis in [31] that showed that MVCT
performance tends to asymptote after 11 iterations in
human. This is here confirmed for cow (bta) using a
learning curve in Fig. 2, where performance is plotted
for 15 iterations of MVCT. Results represent the mean
AUPRC over 100 repetitions, where a different seed
training set (5+/5− exemplars) is selected for each repe-
tition. Performance asymptotes for both views after 11
iterations, justifying this parameter choice.

Stage 2—Active learning
In the second step, active learning was applied to the
augmented labeled set resulting from MVCT in stage 1.
The augmented training set is formed by the union of
the training sets from each view from stage 1. By doing
so, active learning was applied to an initial training set
containing at most 54 labeled instances (seed set of 5+/5
− exemplars, plus 11 positive and 11 negative exemplars
added to each view during MVCT). Eleven iterations of
uncertainty-based active learning were applied and the
AUPRC results for each iteration are presented in
Table 2. These results represent 100 repetitions of stage
1 and stage 2, where the starting dataset of stage 1
(MVCT) is drawn randomly in each repetition. As can
be observed from Table 2, all six experiments show an
increase in performance as active learning is applied,
when compared to the initial round. Statistical signifi-
cance (t test, α < 0.05) was established for all species ex-
cept for chicken (gga), which was the second smallest
dataset. The most significant performance increase is
observed in the human species where, after 11 iterations
of active learning, a 15.9% increase is observed in per-
formance compared to the initial classifier. Both cow
and fruit fly miRNA classifiers also substantially
improved in performance, undergoing 9.6% and 2.2% in-
creases in performance, respectively.
Figure 3 illustrates learning curves for two semi-super-

vised approaches on human: active learning alone
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Fig. 1 Illustration of proposed two-stage integrated semi-supervised ML classification pipeline comprising both multi-view co-training (upper) and
active learning (lower)
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(starting with five positive and five negative labeled
training exemplars) and active learning applied to an
MVCT-augmented version of the same initial training
sets. As can be seen, not only does MVCT provide for
an initial boost in classification accuracy, but active
learning performance reaches near-optimal levels after
only a small number of iterations. This illustrates the
value of augmenting the starting seed training using
MVCT prior to initiating the more costly active learning
stage. In fact, when averaged across all six species, per-
formance exceeding 11 iterations of active learning alone
is achieved after only six iterations, effectively halving
the cost of achieving the same miRNA classification
performance.
Figure 4 illustrates the incremental value of each stage

of the proposed integrated semi-supervised ML pipeline.

All results in this figure represent the performance of a
decision forest classifier using an integrated feature set,
as used in miPIE [22]. Within each stacked bar chart,
the baseline represents a classifier trained on a seed
training set of only five positive and five negative exem-
plars. The second bar represents an equivalent classifier
trained on a dataset augmented by MVCT (i.e., stage 1),
while the final bar represents the same classifier after
completing 11 iterations of active learning (stage 2).
From the results illustrated in Fig. 4 and reported in

Table 2, it is clear that active learning has increased
classification performance over all six data sets. This
performance increase, however, is clearly not consistent
across all data sets. The reason for this variance in per-
formance increase can be noted in the starting perform-
ance of each data set. The initial performance reported

Table 1 MVCT performance results for all six data sets over 11 iterations of learning. Results demonstrate average area under the
precision-recall curves. Standard deviations were in the range of 0.001 to 0.003 for all experiments and are omitted from the table
for clarity

Iteration hsa exp-
based

hsa seq-
based

mmu exp-
based

mmu seq-
based

dme exp-
based

dme seq-
based

bta exp-
based

bta seq-
based

gga exp-
based

gga seq-
based

eca exp-
based

eca seq-
based

– 0.596 0.344 0.714 0.822 0.810 0.864 0.778 0.357 0.925 0.893 0.921 0.875

1 0.681 0.448 0.795 0.881 0.854 0.920 0.866 0.478 0.932 0.909 0.918 0.881

2 0.705 0.568 0.797 0.906 0.884 0.920 0.860 0.566 0.930 0.905 0.926 0.893

3 0.721 0.678 0.813 0.903 0.893 0.920 0.865 0.585 0.927 0.909 0.934 0.886

4 0.752 0.735 0.872 0.912 0.893 0.919 0.850 0.778 0.920 0.912 0.939 0.941

5 0.748 0.734 0.879 0.911 0.886 0.925 0.863 0.726 0.931 0.917 0.952 0.946

6 0.781 0.739 0.921 0.920 0.883 0.912 0.849 0.783 0.923 0.915 0.947 0.947

7 0.771 0.747 0.917 0.910 0.887 0.922 0.871 0.773 0.930 0.911 0.954 0.952

8 0.791 0.744 0.937 0.912 0.882 0.920 0.855 0.734 0.951 0.916 0.943 0.949

9 0.772 0.738 0.928 0.911 0.920 0.932 0.860 0.744 0.957 0.918 0.956 0.955

10 0.773 0.761 0.941 0.908 0.903 0.923 0.865 0.765 0.961 0.917 0.952 0.961

11 0.779 0.761 0.955 0.912 0.901 0.921 0.865 0.809 0.964 0.927 0.959 0.961

Fig. 2 Learning curve for MVCT for Bos taurus (bta) showing the AUPRC for the expression- and sequence-based views over 15 iterations. Results
represent the mean AUPRC observed in 100 repetitions with randomized seed training sets (5 positive and 5 negative exemplars). Performance
assymptotes after 11 iterations, justifying selection of this parameter

Page 5 of 12Sheikh Hassani and Green Human Genomics 2019, 13(Suppl 1):43



for each data set represents the final co-training classi-
fier after 11 iterations of MVCT. For several species, the
co-trained classifier has already achieved very high
AUPRC, thus leaving little room for improvement
through active learning. For example, for the chicken
and horse species, which are the datasets with the least
increase in performance after active learning, the average
AUPRC after co-training and prior to active learning is
already at 0.964 and 0.961, respectively. Comparing
these numbers to that of the human and cow species at
0.779 and 0.865 respectively, this inconsistency in
performance increase due to active learning can be
clearly attributed to the performance achieved through

MVCT in stage 1. Active learning is shown to be highly
complementary here; it is most effective when MVCT
was least effective.
We next compared the effectiveness of our dual-stage

semi-supervised method relative to two state-of-the-art
miRNA classification tools: the miPIE [22] tool and the
solo active learning method [32]. We here constrain
these methods to 32 training exemplars in order to dedi-
cate the same labeling budget to all methods to achieve
a fair comparison. All tests on the two methods were
repeated 100 times, with re-randomized data selection.
Additionally, a comparison was performed against the
well-known miRNA classification tool miRDeep2 [41].
miRDeep2 has previously been independently evaluated
on seven data sets and shown to be one of the most
effective state-of-the-art methods [42]. Since miRDeep2
has been previously trained on unrestricted training sets,
we could not constrain its training data; thus, miRDeep2
represents a conservative benchmark. The results of
these comparisons can be observed in Table 3. The
mean and standard deviation is given for each method
except miRDeep2 since it was pre-trained.
As observed from Table 3, the dual-stage semi-su-

pervised pipeline substantially outperforms all three
benchmark methods for all species tested. When com-
pared to the miPIE and miRDeep2 miRNA classifica-
tion tools, our method demonstrates an increased
AUPRC of 4.2% and 8.3%, respectively, averaged over
all six data sets. Also, when compared to a simple
active learning approach without the benefit of a prior
MVCT stage to augment its starting training dataset,
our combination of co-training and active learning
demonstrates an average increase of 1.5% in AUPRC.
Although this increase in performance may seem rela-
tively small, it must be considered that this is occur-
ring at a very high-performance threshold.

Table 2 Active learning performance results for all six data sets
over 11 iterations of learning using the labeled set obtained
from co-training. Results demonstrate average area under the
precision-recall curves. Standard deviations were in the range
of 0.001 to 0.003 for all experiments and are omitted from the
table for clarity purposes

Iteration hsa mmu dme bta gga eca

– 0.779 0.955 0.921 0.865 0.964 0.961

1 0.812 0.951 0.918 0.877 0.960 0.962

2 0.856 0.959 0.921 0.890 0.963 0.965

3 0.875 0.963 0.925 0.894 0.963 0.965

4 0.881 0.963 0.928 0.916 0.964 0.968

5 0.888 0.968 0.930 0.932 0.965 0.970

6 0.891 0.970 0.929 0.939 0.965 0.971

7 0.891 0.972 0.931 0.939 0.965 0.971

8 0.896 0.972 0.937 0.941 0.964 0.971

9 0.898 0.972 0.940 0.948 0.964 0.970

10 0.901 0.972 0.941 0.947 0.965 0.971

11 0.903 0.972 0.941 0.948 0.965 0.971

Fig. 3 Learning curves for the human (hsa) dataset for active learning alone (seed training set of 5 positive and 5 negative examplars) and active
learning applied to MVCT-augmented training set (i.e., proposed 2-stage integrated pipeline)
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Discussion
In our experiments, we have created a dual-stage semi-
supervised framework for miRNA classification with a
goal of minimizing the number of costly wet-lab annota-
tions required while maximizing classification perform-
ance. The benefit of combining both MVCT and active
learning into an integrated pipeline is illustrated in Fig. 4.
While we had previously examined the use of MVCT
alone for increasing miRNA classification accuracy, it is
used here instead to augment the training set for subse-
quent active learning. As illustrated in Fig. 3, the appli-
cation of MVCT prior to active learning reduces by half
the number of costly wet-lab annotations required to
reach an equivalent performance to a traditional active
learning approach. To the best of our knowledge, this
study represents the first combined use of two semi-su-
pervised ML approaches, MVCT and active learning,
into an integrated classification pipeline.
Random forest (RF) classifiers are used for both

MVCT and active learning classifiers in this study. This

choice is based on their strong performance in previous
miRNA prediction studies [18, 43]. To confirm the
suitability of RF classifiers for MVCT, we did a limited
comparison with a support vector machine (SVM) clas-
sifier using a linear kernel for both the expression- and
sequence-based views. RF was shown to outperform
SVM over each of six iterations of MVCT using human
data. Therefore, RF classifiers were used throughout this
study. However, we expect that these semi-supervised
methods will augment the performance of any under-
lying classification approach.
In Table 3, our semi-supervised approach is also com-

pared against two state-of-the-art miRNA classification
tools, miPIE and miRDeep2. This comparison was per-
formed in order to demonstrate the effectiveness of our
approach in producing highly effective classifiers despite
severe restrictions on the number of labeled samples re-
quired. Recall that our method does not require any
costly wet-lab sample labeling experiments during the
first MVCT stage, as all labels are derived from high-

Fig. 4 Stacked bar graphs for six test species showing relative contribution of the base classifier alone, the MVCT-augmented training set, and
active learning applied after MVCT (i.e., complete pipeline)

Table 3 Comparing average AUPRC for all six data sets over the following methods: miPIE classification tool (restricted to 32
training exemplars), miRDeep2, active learning alone, and dual stage semi-supervised pipeline. Means ± standard deviations are
shown, representing 100 repetitions of each experiment (except for miRDeep2)

Data set miPIE miRDeep2 Active learning alone Proposed dual-stage SS pipeline

hsa 0.844 (± 0.01) 0.736 0.875 (± 0.01) 0.903 (± 0.02)

mmu 0.966 (± 0.01) 0.915 0.972 (± 0.00) 0.972 (± 0.00)

dme 0.894 (± 0.01) 0.914 0.924 (± 0.01) 0.941 (± 0.01)

bta 0.905 (± 0.02) 0.869 0.935 (± 0.01) 0.948 (± 0.01)

gga 0.919 (± 0.01) 0.923 0.944 (± 0.01) 0.965 (± 0.00)

eca 0.919 (± 0.01) 0.843 0.971 (± 0.00) 0.971 (± 0.00)

Average 0.908 0.867 0.935 0.950
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confidence predictions from the co-training classifiers.
Thus, our entire labeling budget was limited to 32
labeled instances (10 from the initial co-training seed
and 22 from the 11 iterations of active learning). There-
fore, when comparing our method to the miPIE tool, we
also limited its training set to only 32 labeled exemplars.
Despite using the same number of labeled instances, it is
observed that our method exhibits a 4.2% performance
increase on average over all six data sets. When com-
pared to the miRDeep2 tool (the de facto standard for
miRNA prediction), our method outperforms this tool
by 8.3% averaged over the six species. This performance
increase is more impressive when one recalls that the
miRDeep2 tool was trained on an unconstrained training
set, whereas our method was limited to 32 labeled training
exemplars, meaning we used a fraction of the tools labeled
training set to obtain this improved performance. Overall,
the results in Table 3 suggest that our semi-supervised
pipeline approach is an effective way to train new miRNA
predictors in the face of limited training data.
In the co-training step of our method, we have used a

modified approach of the standard co-training model
originally published by Blum et al. [24]. The original
method maintains a single pool of labeled data, where
the newly labeled samples from each view would be
added to the single labeled pool at each iteration. In our
approach, we maintain two independent labeled sets,
one for each of the view, where after each iteration the
newly labeled instance for one view is added directly to
the other view’s labeled set. The slight variation we have
applied to our co-training method reduces the risk of
convergence between the two views. This is important
because convergence may lead to a rapid plateau of the
performance of the co-training classifier. By creating
non-overlapping labeled sets for each view, we ensure
that the classifiers from the two views are learning from
different and independent instances
In active learning, there are two widely used strategies

for query selection: certainty-based and uncertainty-
based active learning. During our active learning stage,
we implemented an uncertainty-based query approach,
where the samples for which the classifier is most uncer-
tain are selected for wet-lab labeling. This decision was
based on findings from [32], where it was demonstrated
that an uncertainty-based query approach results in
higher performance for miRNA classification.
During stage 1, separate classifiers are built for each

view using disjoint feature sets. However, in stage 2, a
single integrated feature set is used for all classifiers,
since this was demonstrated previously to be more
effective than either view in isolation [22, 32]. The
integrated feature set contains both sequence and ex-
pression-based features in order to leverage the predict-
ive ability of both sets of features.

The novel combination of multi-view co-training
and active learning methods proposed here offers a
number of advantages. By first applying co-training to
the labeled set, we are able to expand the labeled
training dataset without requiring any new wet-lab
annotations. Therefore, this initial growth in the
training set and commensurate improvement in classi-
fication accuracy comes at no cost, beyond compute
time. The only computationally expensive operations
in each iteration of semi-supervised ML are the
retraining of a decision forest classifier and applying
that classifier to a few hundred unlabeled sequences.
Neither of these operations takes more than a few
minutes on a standard workstation.
Another advantage of combining MVCT and uncer-

tainty-based active learning is that they are complemen-
tary in terms of which unlabeled data are added to the
training data. Initially, the MVCT classifier adds only the
high-confidence predictions from each view. Once co-
training is complete, these high-confidence predictions
form the seed training set for subsequent active learning,
where an uncertainty-based query strategy is used, label-
ing only the least-confident instances. This combination
of training examples allows for a wider range of evidence
to be included in the training set, leading to improved
classification performance.
The present study is the first reported combination of

MVCT and active learning in an integrated pipeline.
Other, more complex combinations of these two ap-
proaches to semi-supervised ML should be explored. For
example, MVCT could be applied between each iteration
of active learning to maximize the benefit derived from
each round of costly wet-lab validation experiments.
MVCT and active learning can also benefit from more
dynamic stopping criteria based on the rate of change of
the learning curve [31, 44].

Conclusion
In this study, we have proposed a novel dual-stage semi-
supervised ML approach for miRNA classification. Here,
MVCT is used to augment the initial labeled training set
for subsequent application of active learning. The results
of this approach are shown to out-perform the state-of-
the-art miRDeep2 and miPIE methods, where an
increase in performance of 8.3% and 4.2% is observed in
average AUPRC, respectively. A comparison is also per-
formed against a simple active learning approach. The
use of MVCT to first augment the training set is shown
to be highly effective, exceeding the performance of ac-
tive learning alone by 1.5%. Importantly, this increase in
performance required fewer than half of the costly wet-
lab validation experiments to label training data for
active learning alone. Therefore, evidence gathered in
this paper suggests that the proposed semi-supervised
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framework is a highly effective approach for reducing
miRNA classification costs while increasing perform-
ance. This method will be particularly effective when
studying newly sequenced genomes or non-model spe-
cies where few known miRNA are available for training
miRNA classifiers.
To our knowledge, this study represents the first pub-

lished combination of MVCT and active learning to
form an integrated dual-stage semi-supervised ML pipe-
line and we expect that such an approach will be effect-
ive for other applications within bioinformatics and
beyond.

Methods
Data set selection
Five data sources were utilized for the creation of testing
and training sets for each of the species in this paper:
NGS expression data, genomic data, known miRNAs,
known coding regions, and other known functional non-
coding RNA. Expression data were drawn from small
RNA NGS experiment datasets from the NCBI GEO
database [45]. Genomic sequences for all known “high
confidence” miRNA were downloaded from miRbase
(release 22) [20]. The full genome for each of the animal
species was downloaded from the UCSC genome
browser database [46]. Six different species were investi-
gated: human, mouse, fruit-fly, cow, horse, and chicken.
The data are summarized in Table 4.
The true class of each sample was determined as in

[32]. Briefly, miRDeep2’s “mapper.pl” preprocessing
script [41] mapped each read stack from the NGS data
to the reference genome of the species. This produces a
set of candidate pre-miRNA complete with their se-
quence, secondary structure, alignment to the reference
genome, and collection of NGS reads mapping to the
candidate pre-miRNA. Candidates that matched known
miRNA sequences from miRBase [20] annotated as true
positives. All the other candidate pre-miRNA formed

the candidate negative set. Candidate negative sequences
were confirmed to be negative if they matched exonic
sequences from known coding regions (obtained from
either Ensembl [47] or the NCBI GEO database [45]).
This definition of negative sequences was justified since
sequences that are known to be mRNA fragments are
unlikely to also form miRNA. A number of non-coding
RNA (from Rfam [48]), that had known function other
than miRNA, were added to the negative data set to en-
sure that the predictor would not simply learn to
recognize coding regions as negatives. The CD-HIT [49]
program was used with a 90% sequence identity thresh-
old to remove redundant and highly similar sequences
from both positive and negative datasets. Table 4 sum-
marizes the final data set composition for each of the
species. Finally, for each species, the data were split into
80% for a training set and 20% for a holdout test set.

Feature set selection
The feature set selection approach utilized for the
MVCT and active learning stages of our multi-stage
approach differ slightly. Sequence-based features are
obtained from HeteroMiRPred [50], including sequence-
based, secondary-structure-based, base-pair-based, triplet-se-
quence-structure-based, and structural-robustness-related
features. Eight expression-based features, derived by [22],
were also included in both learners, comprising the follow-
ing: (1) percentage of mature miRNA nts that are paired, (2)
number of paired nts in the lower stem, (3) the percentage
of RNA-seq reads in the pre-miRNA region (%reads) which
are inconsistent with Dicer processing, (4) %reads that map
to the loop region, (5) %reads that map to the mature
miRNA region, (6) %reads that map to the miRNA* region,
(7) %reads from precursor region that match Dicer process-
ing, and (8) the total number of reads in the precursor re-
gion, normalized to experiment size.
For the co-training classifier, all eight expression-based

features were used as the feature set of the expression-
based classifier. To create the sequence-based feature
set, the most informative sequence-based features from
HeteroMiRPred [50] were selected by applying the cor-
relation-based feature subset selection method in the
Weka package [51] using default parameters to all the
training data from the six animal species. Only the train-
ing portion of the data that were used for feature selec-
tion (representing 80% of the total data) from all six
species were used. This algorithm seeks to minimize the
correlation between selected features while maximizing
their predictive ability. This results in a vector of 32 se-
quenced-based features pertaining to minimum free en-
ergy derived features, sequence/structure triplet features,
dinucleotide sequence motifs, and structural robustness
features.

Table 4 NGS data sets examined in this study

Data set GEO
Accession

Organism Reads Labeled
samples

hsa GSM-
1820470

H. sapiens 38,210,937 509+/842−

mmu GSM-
1528810

M. musculus 54,947,527 367+/844−

dme GSM-
1123781

D. melanogaster 18,723,989 110+/97−

bta GSE-
74879

B. taurus 43,164,654 332+/650−

gga GSM-
2095817

G. gallus 27,937,224 193+/104−

eca GSE-
100852

E. caballus 42,178,766 364+/224−
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For the active learning classifier, an integrated feature
set was selected by applying Weka’s correlation-based
feature selection to all 223 features pooled across all six
species training data sets. The algorithm results in a
total of 19 features including 6 expression-based and 13
sequence-based features. The selected features are
MEF3, dH, Tm, Tm/loop, Sc x zG, SC/(1-dP), Probpair
1-4, 4 triplet motifs, CG, GA, #pb mature, % reads
mature and % reads miRNA*. Each feature is described
in detail in [22].

Classification pipeline
All classifiers in both the active learning and co-training
stages of this experiment were built using the SKLearn
random forest library [52]; all parameters were set to de-
fault values except for the number of trees which was
set to 500. Random forest classifiers have demonstrated
excellent performance compared to other classifiers for
the classification of miRNA [21, 43].
Since semi-supervised ML approaches require a small

labeled dataset and a larger unlabeled dataset, we simu-
lated this scenario in the training set by selecting a small
“seed” labeled training set of five positives and five nega-
tive samples. All remaining samples were considered to
be unlabeled. During the active learning stage, the oracle
simply examined the known withheld label, thereby re-
quiring no actual wet-lab validation experiments.
Our semi-supervised approach consists of two stages

of learning. The first step of our approach implements a
MVCT learning algorithm. Multi-view co-training makes
use of multiple views of a problem to create distinct
classifiers—one for each view. In the case of miRNA
classification, the two views are based on the features
typically used to identify miRNA: sequence-based de
novo prediction or expression-based NGS prediction.
Each of the sequence and expression-based classifiers is
initially trained on a small seed training set of five posi-
tive and five negative labeled samples. These classifiers
are then applied to the larger unlabeled data set. The
sample most confidently predicted to be positive and
negative from each of these views are added to the train-
ing set of the alternate view without experimental valid-
ation. Optionally, more samples could be added per
iteration which may expedite convergence. We limited
the MVCT algorithm to selecting only two samples in
each iteration to ensure that only high-confidence pre-
dictions were being included in subsequent training sets.
For each dataset, multiple learning iterations of co-train-
ing are applied in order to increase the size of the la-
beled set for that experiment, in order to then perform
active learning on a problem with a larger labeled set. In
this study, 11 iterations of MVCT are performed;
dynamic stopping criteria are also available [31, 44].

Therefore, the final labeled set for each view contained
32 labeled instances.
At the conclusion of the MVCT stage, the seed train-

ing set of the active learning classifier is created by
taking the union of the final labeled data sets from each
view. Thus, the seed training set contains 54 labeled
samples (10 from the seed, and 22 from each view of co-
training). The intersection of the two MVCT unlabeled
datasets forms the unlabeled dataset for subsequent
active learning.
In the active learning stage, an uncertainty-based

query strategy is used. Therefore, at each iteration, the
single least confident positive and negative predictions
will be selected for annotation by the oracle from among
the unlabeled data at each iteration of learning. These
will be the instances closest to the decision boundary.
Once the true classes of the samples are determined,
they are removed from the unlabeled set and are added
to the training set. This procedure is repeated through-
out the iterations. After each iteration, the model is re-
trained on the new training set and the performance of
the classifier is noted in the learning curve of the classi-
fier. As with the MVCT stage, 11 iterations of active
learning were completed. Performance at each iteration
is computed using the 20% holdout test set. The per-
formance of the active learning classifier represents the
final performance of our method. To compute standard
deviations of performance metrics, the entire dual-stage
pipeline was simulated 100 times, each time starting
with a different random selection for the seed training
set of five positive and five negative samples. A flowchart
of the described method is presented in Fig. 1.
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