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Pan‑cancer illumination of TRIM gene family 
reveals immunology regulation and potential 
therapeutic implications
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Abstract 

Background:  The tripartite motif (TRIM) proteins function as important regulators in innate immunity, tumorigenesis, 
cell differentiation and ontogenetic development. However, we still lack knowledge about the genetic and transcrip-
tome alterations landscape of TRIM proteins across cancer types.

Methods:  We comprehensively reviewed and characterized the perturbations of TRIM genes across > 10,000 samples 
across 33 cancer types. Genetic mutations and transcriptome of TRIM genes were analyzed by diverse computational 
methods. A TRIMs score index was calculated based on the expression of TRIM genes. The correlation between TRIMs 
scores and clinical associations, immune cell infiltrations and immunotherapy response were analyzed by correlation 
coefficients and gene set enrichment analysis.

Results:  Alterations in TRIM genes and protein levels frequently emerge in a wide range of tumors and affect expres-
sion of TRIM genes. In particular, mutations located in domains are likely to be deleterious mutations. Perturbations 
of TRIM genes are correlated with expressions of immune checkpoints and immune cell infiltrations, which further 
regulated the cancer- and immune-related pathways. Moreover, we proposed a TRIMs score index, which can accu-
rately predict the clinical outcome of cancer patients. TRIMs scores of patients are correlated with clinical survival and 
immune therapy response across cancer types. Identifying the TRIM genes with genetic and transcriptome alterations 
will directly contribute to cancer therapy in the context of predictive, preventive, and personalized medicine.

Conclusions:  Our study provided a comprehensive analysis and resource for guiding both mechanistic and thera-
peutic analyses of the roles of TRIM genes in cancer.
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Background
Tripartite motif (TRIM) family proteins, most of which 
have E3 ubiquitin ligase activities, have various func-
tions in cellular processes including apoptosis, innate 
immunity, autophagy, and carcinogenesis [1]. The 
structure of TRIM proteins is highly conserved, and 
N-terminal mainly includes RING-finger domain, zinc-
finger domain named B box (B1/B2 box) and coiled coil 
region [1, 2]. Perturbations of ubiquitylation events 
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induced by TRIM proteins have been involved in can-
cer progression and metastasis.

TRIM proteins have been demonstrated to play an 
important role in various cancer-related processes. 
They are participated in biological processes such as 
viral immunity, inflammatory response, autophagy 
and tumor growth, and regulate cytokines related to 
immune diseases [3, 4]. TRIM proteins may regulate 
many oncogenes and tumor suppressors by changing 
the stability of ubiquitin ligase, thus affecting the pro-
gression of cancer [5]. For example, TRIM proteins can 
interact with P53 and promote its ubiquitination and 
degradation, and then affect the activity of P53 related 
genes and pathways [6–8]. Moreover, mutations or 
deletions of TRIM proteins may also be associated with 
a variety of cancers. For instance, the lack of TRIM72 
could increase the invasive of cancers and lead to the 
increased level of some oncogenes [9]. Mutations in 
TRIM26 also resulted in decreased immune response, 
which in turn increased the risk of proliferation and 
metastasis of cancer [10]. Although these results sug-
gest the genetic alterations of TRIM proteins across 
cancer types, the genetic and transcriptome landscapes 
of TRIM proteins are unknown in cancer.

The innate immune system is the first line of host 
defense against microbial infection, and protein post-
translational modifications (PTMs) are important 
mechanisms to activate immune signaling pathways. 
Therefore, TRIM protein with ubiquitin ligase activity 
may play an important role in regulating innate immu-
nity [11, 12]. Previous studies have indicated that TRIM 
proteins may regulate nuclear factor κB (NF-κB) and 
IFN regulatory factor (IRF) families of transcription 
factors via regulating innate immune signals in defense 
against pathogens and immune-related diseases [4, 
13]. TRIM60, TRIM41 and TRIM38 have been dem-
onstrated to regulate innate immune and inflammatory 
pathways [14, 15]. Furthermore, several TRIM proteins 
are abnormally expressed in many cancers and may be 
involved in the regulatory process of cancer. The up-
regulation of TRIM59 promotes the ubiquitination and 
degradation of P53, inhibits the expression of down-
stream molecules, and leads to the inactivation of p53 
signaling pathway, which may promote the proliferation 
and metastasis of gastric cancer [6]. In the mouse xeno-
geneic model with TRIM59 knockout, down-regulation 
of cyclin was found. TRIM59 may promote the prolif-
eration and metastasis of non-small cell lung cancer, 
hepatocellular carcinoma and prostate cancer by regu-
lating cyclin related proteins [16–18]. It was also found 
that down-regulation of TRIM59 enhanced the chemo-
sensitivity of esophageal cancer to cisplatin [19]. How-
ever, we still lack a comprehensive knowledge about 

the regulation of TRIM proteins on tumor immune 
microenvironments.

To addresses these gaps of TRIM proteins in cancer, we 
comprehensively reviewed and characterized the pertur-
bations of TRIM genes across > 10,000 samples across 33 
cancer types in this study. We found that somatic muta-
tions in TRIM genes and protein levels frequently emerge 
in a wide range of tumors and greatly affect the expres-
sion of TRIM genes in cancer. In particular, we found that 
somatic mutations located in TRIM protein domains are 
likely to be deleterious mutations. Perturbations of TRIM 
genes are correlated with expressions of immune check-
points and immune cell infiltrations. The genes correlated 
with TRIM genes are significantly enriched in the cancer- 
and immune-related pathways. Moreover, we proposed 
a TRIMs score index based on the expression of TRIM 
genes. We found that TRIMs scores can accurately predict 
the clinical outcome of cancer patients. TRIMs scores of 
patients are correlated with clinical survival and immune 
therapy response across cancer types. All the results pro-
vided a comprehensive review and resource for guiding 
both mechanistic and therapeutic analyses of the roles of 
TRIM genes in cancer.

Methods
Collection of TRIM genes
We collected the TRIM family proteins, most of which 
contain RING-finger domains, from one recent study [1]. 
In total, 77 members in TRIM family were obtained in this 
study and genes were further classified into sub-families 
based on gene annotations. In addition, we obtained the 
domain coordinates in TRIMs proteins from UniProt [20] 
(https://​www.​unipr​ot.​org/) and Pfam (http://​pfam.​xfam.​
org/) [21].

Somatic mutations across cancer types
Genome-wide somatic mutation datasets across 33 cancers 
were obtained from The Cancer Genome Atlas (TCGA, 
https://​portal.​gdc.​cancer.​gov/). We explored the mutation 
frequency of TRIM proteins in 33 cancer types. Based on 
the domains of TRIM proteins, all members of TRIM fam-
ily were classified into 12 subtypes.

Mutational effects of TRIMs
We first calculated the mutation frequency of each TRIM 
subtype i in cancer j as follows:

where m
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TRIM subtype i mutated in cancer j. N (i) is the num-
ber of all members of TRIM subtype i. The mutation 
frequency not only takes into account the number of 
mutated samples in each cancer, but also the number of 
members in TRIM subtypes.

Based on the mutations and domains of TRIM pro-
teins, we next calculated the frequency of mutations 
occurring in domains as follows:

where d(a,j) refers to the number of mutated samples in 
domain a in cancer j, N

(

j
)

 is the number of mutated sam-
ples in cancer j.

In addition, we investigated the functional impacts of 
somatic mutations by ANNOVAR [22]. SIFT [23], Poly-
Phen-2 [24], CADD [25] and conservation scores were 
used to evaluate the mutational impacts on the struc-
ture and function of proteins. Wilcoxon rank-sum test 
was used to evaluate the differences between the muta-
tions located in domain and other regions of TRIM 
genes.

Prioritization of domains enriched somatic mutations
We applied ROI-Driver for identification of TRIM 
genes which enriched somatic mutations in protein 
domain regions [26]. For each domain in TRIM pro-
teins, we assumed that the observed number of muta-
tions for a domain follows a binomial distribution 
[27]. The binomial is (N , pri) , in which N is the total 
number of mutations observed in one gene and pri is 
the expected mutation rate for the domain. We next 
calculated the p value, which is the probability of 
observing ≥ k mutations in the domain out of N total 
mutations observed in this gene:

where pri = Ldomain
Lg

 , and Ldomain represents the length of 
the domain and Lg is the length of gene. In addition, we 
calculated the enrichment ratio for each domain as 
follows:

The p values were adjusted, and domains with p 
adjusted < 0.05 and E > 2 were identified as significant 
domains. Only domains with three or more mutations 
were analyzed.
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Gene expression profiles across cancer types
The gene expression datasets of cancer patients were also 
downloaded from TCGA (https://​portal.​gdc.​cancer.​gov/). 
The expressions between different samples from the same 
patient are taken as the average. Gene expression was 
measured by Fragments Per Kilobase of exon model per 
Million mapped fragments (FPKM). Genes that were not 
expressed in more than 70% of samples are deleted. The 
expressions of genes were log-transformed.

Moreover, we downloaded the gene expression profiles 
of 11 cancer types from ArrayExpress (E-MTAB-6690, 
pancreatic cancer; E-MTAB-6691, ovarian cancer; 
E-MTAB-6692, renal cancer; E-MTAB-6693, gastric can-
cer; E-MTAB-6694, prostate cancer; E-MTAB-6695, liver 
cancer; E-MTAB-6696, bladder cancer; E-MTAB-6697, 
melanoma cancer; E-MTAB-6698, colorectal cancer; 
E-MTAB-6699, lung cancer; and E-MTAB-6703, breast 
cancer). All the gene expressions were RMA normalized, 
merged, and batch effected via Combat method. Another 
six gene expression profiles and corresponding clinical 
information were downloaded from Gene Expression 
Omnibus and PubMed under the accession numbers 
GSE176307 (urothelial cancer), GSE28735 (pancreatic 
ductal adenocarcinoma), GSE72970 (colorectal cancer), 
GSE76019 (adrenocortical tumors), GSE78220 (melano-
mas), and previous studies [28, 29].

Differential expression of TRIMs
Differential expression analysis was performed in 18 can-
cer types with five or more normal samples. Wilcoxon 
rank-sum test was used to evaluate the expression differ-
ences between normal and cancer samples. FDR method 
was used to adjust p values, and genes with FDR < 0.05 
were considered as differentially expressed genes.

Moreover, Spearman Correlation Coefficient (SCC) 
between TRIM gene expressions was calculated by ’rcorr’ 
function in the Hmisc R package. The difference of SCCs 
between the same subtypes and different subtypes was 
evaluated by Wilcoxon rank sum test.

Calculation of TRIMs score
We utilized single-sample gene set enrichment analy-
sis (ssGSEA) based on the gene set including TRIM 
genes to calculate TRIMs enrichment scores (TRIMs 
score) for each sample within the TCGA cohort. The 
ssGSEA algorithm firstly rank-normalized the gene 
expression value of a single sample S , and the genes are 
replaced by their ranks according their absolute expres-
sion L = r1, r2, . . . , rN . The list is then ordered from 
the highest rank N to the lowest 1. Then, it used a sum 

https://portal.gdc.cancer.gov/
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(integration) of the difference between a weighted Empir-
ical Cumulative Distribution Functions (ECDFs) of the 
TRIM gene signatures G ( Pw

G ) and the ECDF of other 
genes NG ( PNG ) to generate enrichment scores (ES):

where the exponent of this quantity (α) is set to 1/4 to add 
a modest weight to the rank. This calculation is repeated 
for each signature and each sample in TCGA cohort.

We employed the ssGSEA algorithm via R packages 
(GSVA) [30] to comprehensively and systematically 
assess the potential functional impacts of TRIMs tran-
scriptome alterations.

Functional analysis of TRIMs
To identify the potential functional pathways associated 
with TRIM genes, we first calculated the SCCs between 
TRIMs scores and expressions of all genes. Genes were 
ranked by SCC and subjected into gene set enrichment 
analysis (GSEA) using the GSEA function in clusterProfiler 
package [31, 32]. The cancer hallmark pathways used in the 
analysis were downloaded from MSigDB database [33].

Immune cell infiltrations in cancer
Immune cell infiltration levels of all TCGA samples cal-
culated by CIBERSORT [34] were downloaded from 
TIMER2.0 [35]. SCC between TRIMs scores and the pro-
portion of immune cell infiltration across cancer patients 
was calculated. The difference of immune infiltration lev-
els between TRIMs scores-high group and low group was 
compared by Wilcoxon rank-sum test.

TRIMs‑based classification of cancer and normal samples
We used the ‘roc’ function in the pROC package [36] 
to evaluate the diagnostic accuracy of TRIMs scores in 
determining the presence of disease, with the classifica-
tion data of normal or cancer and TRIMs score for each 
sample as input.

Survival analysis
We downloaded the clinical survival information of all 
cancers from TCGA, and calculated the hazard ratio 
(HR) value of TRIMs score for each cancer using survival 
package and survminer package. Based on the ‘surv_cut-
point’ function, the survival information and TRIMs 
scores, we divided the samples into high and low groups. 
If HR > 1 and p < 0.05, we considered TRIMs score was 
a risky factor, and if HR < 1 and p < 0.05, we considered 
TRIMs score as a protective factor in cancer.
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Results
Somatic mutations of TRIMs across cancer types
To comprehensively investigate the somatic mutations of 
TRIM genes in different cancer types, we obtained the 
somatic mutations in more than 10,000 patients from 33 
cancers in TCGA. In total, we collected 77 TRIM genes, 
which were divided into 12 sub-classes according to the 
domain annotations (Fig.  1A). The majority of TRIM 
genes were classified into C-IV sub-class (Fig.  1A). We 
next calculated the mutation frequency of genes in dif-
ferent sub-classes and found that genes in C-IV exhibited 
a higher mutation frequency across cancer types, while 
genes in C-IX and C-X exhibited lower mutation fre-
quency (Fig. 1B).

Protein domains are important regions for proteins to 
play their functions in various pathways [37]. We further 
calculated the mutation frequency of TRIM proteins in 
the domain levels. We found that the mutations in TRIM 
proteins mainly occurred in SPRY, coiled coil, and RING 
domains (Fig.  1C). In addition, we evaluated the func-
tional impacts of somatic mutations by SIFT, Polyphen-2, 
CADD and conservation scores. We found that somatic 
mutations in the domains had significantly higher func-
tional impact scores than mutations outside domains 
(Fig.  1D). These results suggested that cancer somatic 
mutations tend to occur inside protein domains and play 
deleterious functions in cancer.

We next prioritized protein domains enriched somatic 
mutations and identified seven genes (TRIM16, TRIM4, 
TRIM43, TRIM67, TRIM7, TRIM72 and TRIM73), as 
potential drivers (Fig. 1E–H and Additional file 1: Fig. S1). 
These genes were also predicted as potential driver genes 
by other computations methods [38–40]. Compared with 
mutations in other protein regions, TRIM16 and TRIM4 
were significantly enriched mutation in SRRY and coiled-
coil domains (Fig. 1E, G). There were significantly more 
mutations in SRRY domain of TRIM16, in which R456C 
and A542T were mutated in more than one cancer 
patient (Fig. 1E, F E = 2.94, p adjust = 1.68E−6). TRIM16 
has been demonstrated to orchestrate the SQSTM1-
KEAP1-NFE2L2 axis to mediate stress-induced biogen-
esis of protein aggregates, via interacting with NFE2L2 
and SQSTM1 through the SPRY domain, and mediat-
ing the K63-link ubiquitination of NFE2L2 to enhance 
its stability [41]. In addition, mutations in TRIM4 were 
significantly enriched in the coiled-coil domain, with 
more than one patient having T228M and K230N muta-
tions (Fig.  1G, H, E = 2.33, p adjust = 0.0441). Moreo-
ver, PRY was the domains enriching somatic mutations 
of TRIM7 and TRIM72 (Additional file  1: Fig. S1), and 
SPRY domain plays important roles in substrate recogni-
tion [12, 42]. Together, these results suggested there were 
widespread somatic mutations in TRIM gene family and 
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cancer mutations were significantly enriched in protein 
domains.

Widespread transcriptome alterations of TRIMs in cancer
To investigate the expression pattern of the TRIM fam-
ily proteins in cancer, we analyzed the gene expression 
profile of 18 cancers with 5 or more normal samples. In 
total, 72 TRIM genes with non-zero expression in at least 
30% of samples in each cancer were analyzed. We found 
that 71/72 (98.61%) of the TRIM genes were differentially 
expressed in at least one cancer (Fig.  2A, FDR < 0.05). 
Several TRIM genes exhibited similar expression pat-
terns in various cancer types, such as TRIM28 and 
TRIM59, which were extensively highly expressed in 

cancer (Fig. 2B and Additional file 1: Fig. S2A). In addi-
tion, TRIM58 or TRIM23 exhibited lower expression 
in multiple cancer types (Fig.  2C and Additional file  1: 
Fig. S2B). TRIM28 was significantly overexpressed in 
17 cancer types (Fig.  2B), which was consistent with 
the observations that TRIM28 was more prone to pro-
mote tumorigenesis [43, 44]. TRIM28 also played a role 
in the development of cancer by reducing autophagy or 
inhibiting anti-tumor immunity and immune check-
point blockade [45, 46]. In contrast, TRIM58 was ubiq-
uitously low expressed in 11 cancers (Fig.  2C). Notably, 
the expression levels of TRIM58 were negatively corre-
lated with methylation levels in various cancers except 
KIRC (Additional file 1: Fig. S3A–E). Almost all TRIM58 

Fig. 1  Genetic alterations of TRIM protein family. A Structure and classifications of TRIM family proteins (C-I to UC) are shown. Most TRIM proteins 
have a RING-finger domain (R), one or two B box zinc-finger domains (B1/B2) and a coiled-coil region (CC) in N-terminal region, and contain one 
or more carboxyl-terminal domains such as cos-box (COS), fibronectin type III repeat (FN3), PRY domain (PRY), SPRY domain (SPRY), PHD domain 
(PHD), bromodomain (BR), filamin-type I G domain (FIL), NCL1, HT2A and LIN41 domain (NHL), meprin and TRAF-homology domain (MATH), 
ADP-ribosylation factor family domain (ARF), and transmembrane region (TM). B Mutation frequency of TRIM proteins in different sub-classes (C-I 
to UC). Wilcoxon rank sum test, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. C Mutation frequency in different domains of TRIM proteins. D 
Functional impact scores of mutations in domain versus other regions, evaluated by SIFT, Polyphen-2, CADD and conservation. Wilcoxon rank sum 
test, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. E The somatic mutations and structure of TRIM16 are shown. Red, protein domains enriched 
somatic mutations. Blue, other domains. The number in the point represents the number of mutation samples. Mutation information includes 
mutation location and amino acids before and after mutation. F Proportion of mutations located in domain of interest and other regions for TRIM16. 
G The somatic mutations and structure of TRIM4. Red, protein domains enriched somatic mutations. Blue, other domains. The number in the point 
represents the number of mutation samples. Mutation information includes mutation location and amino acids before and after mutation. H 
Proportion of mutations located in domain of interest and other regions for TRIM4. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05
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methylation subtypes are significantly negatively cor-
related with their expression levels in various cancers, 
such as LIHC and COAD patients (Additional file 1: Fig. 
S3B, C). In addition, we further analyzed the relationship 
between methylation of TRIM58 and survival outcomes 

of patients using a web tool MethSurv (Additional file 1: 
Fig. S3F) [47]. It suggested that renal cancer-related 
patients with higher methylation level of TRIM58 are 
associated with poor survival (Additional file 1: Fig. S3G, 
H, ACC, cg20146541, HR = 4.204; KIRP, cg26157385, 

Fig. 2  Perturbations of the expression of TRIM protein family in cancer. A Landscape of differential expression of TRIM proteins family between 
normal and tumor samples across cancer types. Heatmap on the left panel showing the log2(fold-changes) of TRIM genes across cancer types, 
where ’*’ indicates significant difference. Bar plots on the right panel showing the number of cancers that the corresponding TRIM genes perturbed. 
Red represents up-regulated expression in cancer, and blue represents decreased expression. B and C Box plots showing the expression levels of 
TRIM28 (B) and TRIM58 (C) between normal and tumor samples across 18 cancer types. The point represents the median value of expression, and 
sides of the line represent the upper and lower quartiles of that. Wilcoxon rank sum test, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. D Boxplots 
showing the SCC distributions of TRIM genes within and between different sub-classes. Red represents Spearman correlation coefficient between 
the same sub-class, and blue represents that between different sub-classes. Wilcoxon rank sum test, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. 
E Circos plot showing the co-expression between TRIM genes. Gene pairs with p value < 0.05 and SCC > 0.75 was plotted. One line indicates strong 
correlation in one cancer, and multiple lines between two genes indicate strong correlation in multiple cancers
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HR = 2.423). It has been demonstrated that abnormal 
methylation of TRIM58 may lead to down-regulation of 
its expression, which leads to increased aggressiveness of 
cancer cells and reduced survival rate of cancer patients 
[48–50]. Recent studies have highlighted the possible 
role of TRIM58 as a tumor suppressor gene [50], which 
degrades β-catenin through ubiquitination, resulting 
in the inactivation of β-catenin signaling. There results 
suggested the widespread transcriptome alterations of 
TRIM genes in cancer. Furthermore, additional cohorts 
were used to analyze the gene expression of TRIMs in 11 
independent cancer types. We found that 67 TRIM genes 
exhibited differential expression in at least one cancer 
type (Additional file 1: Fig. S4A). In particular, TRIM28 
exhibited upregulation in seven cancer types, and immu-
nohistochemical results from The Human Protein Atlas 
(HPA) database [51] also showed that TRIM28 has higher 
expression in liver related cancer tissues than in normal 
liver tissues. (Additional file  1: Fig. S4B, D). Consistent 
with previous results, TRIM58 was also down-regulated 
in various cancers, and the expression of its coding pro-
tein in liver tumor tissues is reduced (Additional file  1: 
Fig. S4C, D). It indicated that TRIM28 was an oncogene, 
while TRIM58 is more likely to be a tumor suppressor 
gene. These results further confirmed the importance of 
TRIM gene in tumorigenesis.

In addition, genes do not function in isolation, and 
evidence has shown that collaboration among genes 
exists in the context of cancer [52]. We found that sev-
eral TRIM genes exhibited similar expression patterns in 
various cancers. Therefore, we calculated SCCs between 
TRIM genes, and found that TRIM genes belonging to 
the same sub-classes exhibited significantly higher SCCs 
in the majority of cancer types (Fig.  2D). In particular, 
TRIM genes from the same sub-classes were significantly 
positive correlation (Fig.  2E), when we considering the 
significantly correlated TRIM gene pairs (p adjust < 0.05 
and R > 0.75). Since TRIM family sub-classes were classi-
fied according to the annotations of functional domains, 
members from the same sub-classes with similar domains 
may play roles in cancer pathways coordinately. All these 
results indicated that TRIM genes were dysregulated in 
expression across cancer types, and genes in the same 
sub-classes tend to be co-expressed in cancer.

TRIMs regulate cancer immunology pathways
TO systematically explore the potential functional 
impacts of TRIMs transcriptome alterations in cancer, 
we first calculated a TRIMs score for each cancer patient 
based on single-sample gene set enrichment analysis 
(ssGSEA) algorithm [32]. We next evaluated the correla-
tion between TRIMs scores and expressions of all protein 
coding genes. Protein coding genes were ranked by the 

correlation and subjected into gene set enrichment analy-
sis (GSEA). The hallmark gene sets were evaluated across 
cancer types. We found that TRIMs scores are signifi-
cantly correlated with cancer- or immune-related path-
ways across cancer types (Fig. 3A, adjusted p < 0.05), such 
as epithelial-mesenchymal transition (EMT) and inter-
feron response pathways. In particular, EMT and Kras 
signaling up pathways were negatively correlated with 
TRIMs scores across cancer types (Fig.  3A). Interferon 
alpha response and interferon gamma response pathways 
exhibited consistently positively correlated with TRIMs 
scores across cancer types (Fig. 3A).

EMT is a cellular program, which can enhance tumor-
initiating and metastatic potential, and contribute to 
the development of malignant tumors [53]. Interferons 
(IFNs) are a family of cytokines that protect against com-
plex diseases by activating immune responses, and of 
great significance for preventing and treating cancer [54]. 
TRIMs scores were significantly negatively correlated 
EMT pathway in 29 cancer types, and positively cor-
related with the activation of interferon alpha response 
related pathways in 32 cancer types (Fig.  3B, C). These 
results were consistent with previous observations that 
many members of the TRIM family were induced by IFN 
responses, and played an important role in IFN-mediated 
innate immune regulation [13, 55, 56]. In addition, we 
found that TRIMs scores were correlated with E2F targets 
and G2M checkpoint pathways in several cancer types 
(Additional file  1: Fig. S5A, B). We further divided the 
cancer samples into two groups with high or low TRIMs 
scores in each cancer, and identified the differentially 
expressed genes (DEGs) between two groups. Functional 
enrichment analysis revealed that up-regulated genes 
were significantly enriched in immune-mediated, antigen 
presentation and response-related functions (Additional 
file  1: Fig. S5C). Taken together, all these results sug-
gested that perturbations of TRIMs play important roles 
in immune- and cancer-related pathways.

TRIMs correlated with immune checkpoints and immune 
cell infiltrations
To further determine the correlation between TRIMs 
scores and immunity in the tumor microenvironment, 
we explored the correlation with 78 immune regulatory 
factors, which were mainly divided into seven categories: 
antigen presentation, cell adhesion, co-inhibition, co-
stimulation, receptor, ligand and others [57]. We found 
that TRIMs scores were significantly positively correlated 
with immune regulatory factors in the majority of can-
cers (Fig. 4A), such as MHC class I member HLA-A/B/C, 
BTN3A family activating T cells, interferon related fac-
tors (IFNA1, IFNG), TNFRSF14, which is a member of 
the pro-inflammatory tumor necrosis factor superfamily 
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(TNF) and oncogene CD274 (PD-L1) (Additional file  1: 
Fig. S6A). There were higher numbers of correlations 
observed in gynecological cancers, such as CESC, OV 
and UCEC (Additional file 1: Fig. S6B).

We further explored the association between TRIMs 
scores and 22 immune cell infiltrations. We found that 
TRIMs scores were significantly correlated with immune 
cells in cancer (Fig. 4B and Additional file 1: Fig. S6C), in 
particular for T cell follicular helper, CD8+ T cell, acti-
vated NK cell, Macrophage M1 and M2 (Fig. 4B). TRIMs 
scores were significantly positively correlated with pro-
inflammatory Macrophage M1 and negatively correlated 
with anti-inflammatory Macrophage M2 in numerous 
cancer types (Fig. 4C, D). Moreover, TRIMs scores were 
significantly correlated with T cell follicular helper and 
activated NK cell infiltrations in more than ten cancer 
types (Additional file 1: Fig. S6D, E). Next, we compared 
the immune cell infiltration levels between patients with 
low or high TRIMs scores. We found that there were 
great differences in the proportion of immune cell infil-
trations between two groups at the pan-cancer level 
(Additional file  1: Fig. S6F). For T cell follicular helper, 

CD8+ T cell, T cell regulatory (Tregs), activated NK 
cell, Macrophage M1 and Mast cell activated, patients in 
TRIMs scores high group had a significantly higher pro-
portion of immune cell infiltrations (Additional file 1: Fig. 
S6F).

Clinical survival associations of TRIMs with cancer
Considering the associations between TRIMs scores 
and immunity in tumor microenvironment, we next 
evaluated the impact of TRIMs scores on clinical sur-
vival of cancer patients. We found there were a wide 
range of TRIMs scores for patients within the same 
cancer and across cancer types (Fig.  5A, ANOVA, p 
value < 2.2E−16), suggesting the great heterogeneities in 
cancer. Patients in acute myeloid leukemia (LAML) have 
the highest levels of TRIMs scores on average across all 
cancers, whereas patients in lymphoid neoplasm diffuse 
large B-cell lymphoma (DLBC) have the lowest TRIMs 
scores (Fig.  5A). Next, we compared the TRIMs scores 
between tumor and normal samples in 18 cancers with 
five or more normal samples. We found that there were 
significant differences in TRIMs score between normal 

Fig. 3  Functional pathways of TRIM protein family across cancer types. A Gene set enrichment analysis (GSEA) of TRIM genes in various cancers. 
Heat map showing the normalized enrichment scores (NES) and size of the dots corresponding to the − log10(adjusted p values). Red indicates 
active pathway, while blue indicates inhibitory pathway. The black border demonstrates significant results. Bar plots on the right panel showing the 
number of cancers that the corresponding pathway enriched (red) or depleted (blue). B and C The enrichment score (ES) distribution for the genes 
positively or negatively co-expressed with TRIMs scores in EMT pathway (B) and interferon alpha response pathway (C). Each line is for one cancer 
and lines are colored by cancer types
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and tumor samples in 14 cancers (Fig. 5B). TRIMs scores 
in cancer samples were significantly higher than those in 
normal samples across cancer types (Fig.  5B). We also 
explored the proportion of samples with high or low 
TRIMs scores in each cancer, and the results showed that 
there were more samples in the high TRIMs scores group 
(Additional file 1: Fig. S7).

To further evaluate to what extent the TRIMs scores in 
distinct the cancer and normal patients, we used pROC 
package to calculate the area under the receiver operating 

characteristic (ROC) curve (AUC), sensitivity, and 
specificity. We selected 14 cancers with 15 or more nor-
mal samples for further analysis. We found that TRIMs 
scores can accurately distinguish normal and cancer 
samples in the majority of cancer types (Fig. 5C). TRIMs 
score achieved better accuracy in kidney related cancer 
(AUC = 0.94 and 0.97 in KIRC and KIRP), liver related 
cancer (AUC = 0.91) and lung related disease (AUC = 0.8 
and 0.86 in LUAD and LUSC) (Fig.  5C). These results 

Fig. 4  Immune regulation of TRIM protein family across cancer types. A The landscape of correlations between TRIMs scores and expression of 
immune regulatory factors which divided into seven categories: antigen presentation, cell adhesion, co-inhibition, co-stimulation, receptor, ligand 
and others is shown. Heat map showing Spearman correlation coefficient (SCC) between TRIMs scores and expression of immune regulatory 
factors. Red indicates positive correlation, blue indicates negative correlation. Red indicates positive correlation, while blue indicates negative. 
B The correlations between TRIMs scores and immune cell infiltrations across cancer types. Dot plot showing Spearman correlation coefficient 
(SCC) and size of the dots corresponding to the − log10(adjusted p values). Red indicates positive, while blue indicates negative. The black border 
demonstrates significant correlation. C and D Scatter plots showing the correlations between TRIMs scores and Macrophage M1 (C) or M2 (D) 
infiltrations across cancer types. Dot and lines are colored by cancer types
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were consistent with the observations that TRIM genes 
expression greatly altered in cancer.

We also evaluated whether TRIMs scores could pre-
dict survival of patients. We found that TRIMs scores 
were significantly associated with overall survival in 
25/33 (76%) cancer types (Fig.  5D, p value < 0.05). We 
also obtained other cancer cohorts annotated with clini-
cal information from Gene Expression Omnibus (GEO) 
and Published literature [29, 58–61]. Univariable Cox-
regression analyses revealed a cancer-specific association 

of TRIMs scores in predicting survival times of patients. 
TRIMs scores were a favorable prognosis factor and 
patients with higher TRIMs scores were with better sur-
vival in metastatic urothelial cancer (Fig.  5E and Addi-
tional file 1: Fig. S8A, log-rank p = 0.002 and HR = 0.319), 
advanced clear cell renal cell carcinoma (Fig. 5F, log-rank 
p = 0.011 and HR = 0.697) and adrenocortical (Fig.  5G, 
log-rank p = 0.0024 and HR = 0.203). However, patients 
with higher TRIMs score were associated with lower 
survival rates in colorectal cancer and pancreatic cancer 

Fig. 5  Clinical associations of TRIMs score across cancer types. A The distributions of TRIMs score across cancer types. Dot and lines are colored by 
cancer types. Within each cancer, the scattered dots represented TRIMs score values. B Boxplots showing the distributions of TRIMs scores between 
normal (blue) and tumor (red) samples. The point represents the median value of TRIMs score in each cancer, and sides of the line represent 
the 25th and 75th quartiles of that. The statistical difference of two group was compared through the Wilcoxon rank sum test, ****p < 0.0001, 
***p < 0.001, **p < 0.01, *p < 0.05. C Area under the ROC curves (AUCs) for classifiers based on TRIMs scores in TCGA cohort. Legends show the basic 
information of each cancer. Lines are colored by 14 cancer types with 15 or more normal samples. ’h(m–n)’ indicates the HR values and 95%CI. D 
The distribution of hazard ratios (HR) based on TRIMs scores across different cancer types. The point represents the HR value, and sides of the line 
represent 95%CI. Red dots and lines indicate significant result. E–G Kaplan–Meier survival plot of patients grouped by high versus low TRIMs scores. 
The group with low TRIMs scores (blue) has poorest survival, whereas the high TRIMs score group (red) is associated with better outcomes (log-rank 
test p value < 0.05)
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(Additional file 1: Fig. S8A). It is consistent with previous 
results. All these results suggested that TRIMs scores can 
effectively predict the clinical outcome of many cancer 
patients.

Potential therapeutic response associated with TRIMs 
in cancer
TRIM proteins play important roles in the regulation 
of biological behaviors of cancer cells. Next, we further 
explored the potential value of TRIMs scores in cancer 
treatment. We first analyzed the drug therapy response 
of cancer patients based on TRIMs scores. Patients 
were classified into progressive disease (PD), stable dis-
ease (SD), partial response (PR) and complete response 

(CR) based on drug treatment responses. We found that 
there were significant differences in treatment response 
between TRIMs scores high and low groups in ten cancer 
types (Fig.  6A). In particular, patients with high TRIMs 
scores had a higher proportion of better treatment 
response in COAD, ESCA, LUAD, PRAD and SKCM 
(Fig. 6A, Fisher’s exact test, p value < 0.05).

In addition, we collected other cancer cohorts with 
drug therapy from literature. In melanoma patients 
treated with anti-PD-1 checkpoint inhibitors [60], we 
found patients response to treatment (CR and PR) were 
with higher TRIMs scores (Fig. 6B, p = 0.019 and 0.0052). 
Moreover, a higher proportion of patients in high TRIMs 
scores group were likely to response to drug treatment 

Fig. 6  Clinical therapeutic response associated with TRIMs in cancer. A The proportions of patients for therapeutic response between TRIMs scores 
high and low groups in TCGA cohorts. Patients were classified into progressive disease (PD), stable disease (SD), partial response (PR) and complete 
response (CR) based on drug treatment responses. Fisher’s exact test was used to compare statistical difference of two group. B Boxplots showing 
the distributions of TRIMs scores for patients with different therapeutic response to anti-PD1 immunotherapy. The statistical difference of three 
response stages was compared through the Wilcoxon rank sum test. Patients with better responses have higher TRIMs scores (p value < 0.05). C 
Proportions of patients with different therapeutic response to anti-PD1 immunotherapy in TIRMs scores high versus low groups. Fisher’s exact 
test was used to compare statistical difference of two group (p value = 0.0015). D Kaplan–Meier survival plot of patients grouped by high versus 
low TRIMs scores in anti-PD1 immunotherapy cohort (GSE78220). The group with low TRIMs scores (blue) has poorest survival, whereas the high 
TRIMs score group (red) is associated with better outcomes (log-rank test p value = 0.0039). E Boxplots showing the distributions of TRIMs scores 
for patients with different therapeutic response to anti-CTLA-4 immunotherapy. The statistical difference of three response stages was compared 
through the Wilcoxon rank sum test (p value = 0.0071). F Proportions of patients with different therapeutic response to anti-CTLA-4 immunotherapy 
in TIRMs scores high versus low groups (Fisher’s exact test, p value = 0.00075). G Kaplan–Meier survival plot of patients grouped by high versus low 
TRIMs scores in anti-CTLA-4 immunotherapy cohort. The group with low TRIMs scores (blue) has poorest survival, whereas the high TRIMs score 
group (red) is associated with better outcomes (log-rank test p value = 0.021). H. Kaplan–Meier survival plot of patients grouped by high versus 
low TRIMs scores in IMvigor210 cohorts. The group with low TRIMs scores (blue) has poorest survival, whereas the high TRIMs score group (red) is 
associated with better outcomes (log-rank test p value = 0.024)
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(CR and PR) (Fig. 6C, p = 0.0015, Fisher’s exact test). In 
addition, patients with higher TRIMs scores were with 
better survival (Fig.  6D, log-rank p = 0.0039). Moreover, 
for melanoma patients treated with CTLA-4 blockade 
[28], we found that TRIMs scores of patients response 
or not response to drug treatment were significantly dif-
ferent (Fig.  6E, p = 0.0071). The proportion of patients 
that response to treatment was higher in the high TRIMs 
scores group (Fig.  6F, p = 0.00075, Fisher’s exact test). 
Moreover, patients with high TRIMs scores had better 
survival (Fig. 6G, log-rank p = 0.021). TRIMs scores can 
relatively accurately predict the treatment effects with 
anti-PD-1 checkpoint inhibitor or CTLA-4 blockade in 
melanoma (Additional file  1: Fig. S8B, AUC = 0.84 and 
0.82). In the urothelial carcinoma treated with immuno-
therapy, we found that patients with high TRIMs scores 
had a better survival than those with low TRIMs scores 
(Fig. 6H, log-rank p = 0.024), which was consistent with 
previous results. In summary, TRIMs scores may be able 
to accurately predict drug response and clinical survival 
for some cancer types.

Discussion
Emerging evidence has revealed that TRIM proteins as 
regulators of cancer growth and immune-related path-
ways. However, the comprehensive genetic and tran-
scriptome landscape of TRIM genes across cancer types 
remain unclear, suggesting the need for comprehensive 
review analysis. In this study, we performed comprehen-
sive review and analyses of the somatic mutations, tran-
scriptome dysregulation, and clinical relevance of TRIM 
genes across cancer types. We found that somatic muta-
tions were likely to be observed in the domain regions 
of TRIM proteins. We prioritized several TRIM genes 
with enrichment of mutations in protein domain, such as 
TRIM16, TRIM4 and TRIM7. These genes provided can-
didates for further functional validation in cell lines or 
animal models.

Moreover, the transcriptome of TRIM genes exhibited 
greatly perturbed in cancer. TRIM11, TRIM27, TRIM28 
and TRIM59 have higher expression in almost all cancers. 
Previous studies have shown that overexpression of these 
genes promotes the proliferation, migration and invasion 
of many cancers through a variety of mechanisms, such 
as beta-catenin signaling, AKT signaling, P53 activity, 
and epithelial mesenchymal transition. On the contrary, 
TRIM23, TRIM61 and TRIM58 have lower expression 
in cancer. It has been reported that TRIM58 may inhibit 
tumor growth through interaction with pyruvate kinase 
M2 or beta-catenin signaling [62]. In addition, we found 
that methylation and expression of TRIM58 were sig-
nificantly negatively correlated, and patients with hyper-
methylation had poor survival in renal-related cancers. 

Immunohistochemical results further demonstrate the 
role of TRIM28 and TRIM58 in cancer. Perturbation of 
TRIM genes affected numerous cancer-related pathways. 
We proposed the TRIMs scores index for further investi-
gating the functional pathways regulated by TRIM genes. 
We found that EMT, interferon alpha response and inter-
feron gamma response were consistently correlated with 
TRIMs scores across cancer types. Emerging evidences 
suggest that TRIM family play important roles in these 
pathways. For example, TRIM50 can suppress pancreatic 
cancer progression and reverse EMT via Snail1, which 
is a key regulator of EMT [63]. TRIM11 can also pro-
mote proliferation, migration and EMT by activating the 
beta-catenin signaling in cancer [64]. In addition, TRIMs 
scores were correlated with E2F targets and G2M check-
point pathways, both of which are related to cell cycle. 
Several studies have shown that TRIM11 and TRIM59 
may promote proliferation and metastasis by regulating 
cyclin, and TRIM16 also plays a role in the process of cell 
cycle by changing the expression of cyclin D1 and p27. 
These results suggested that TRIM proteins play impor-
tant roles in cancer immunology.

TRIM proteins have been intensively studied as essen-
tial modulators in immune responses. We also found 
that TRIMs scores were significantly correlated with the 
expression of immune checkpoints and immune cell infil-
tration levels in cancer. TRIMs scores were positively cor-
related with M1 macrophage infiltrations and negatively 
correlated with M2 macrophage infiltrations. Both M1 
macrophages and M2 macrophages have been demon-
strated to be closely related to inflammatory responses, 
among which M1 macrophages are mainly involved in 
pro-inflammatory responses and M2 macrophages are 
mainly involved in anti-inflammatory responses [65]. In 
addition, TRIMs scores were significantly associated with 
T cell follicular helper cells, CD8+ T cell and activated 
NK cell infiltration, which are closely related to immune 
response. These observations revealed that TRIM pro-
teins play important roles in inflammatory and immune 
responses.

Well-established ubiquitylation mechanisms are 
understood on some key proteins (such as P53, NF-kb, 
and PI3K/AKT) of some signaling pathways. TRIM 
proteins have also been found to be targeted by sev-
eral drugs. For example, target therapy of TRIM14 can 
inhibit osteosarcoma aggressiveness through the NF-kb 
signaling pathway [66]. We found that TRIMs scores 
can effectively distinct the normal and cancer patients. 
TRIMs scores are also associated with clinical survival 
and drug treatment responses, in particular immune 
therapies. All these results suggested that TRIM fam-
ily members are potential biomarkers for cancer diag-
nosis and prognosis, and potential therapeutic targets 
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in cancer. However, despite the tremendous progress 
that has been made in understanding the functions 
and signaling pathways of TRIM proteins responsible 
for tumor, limited TRIM protein-based therapeutics 
for cancers are approved by the U.S. Food and Drug 
Administration (FDA) or entering clinical trials.

Our analysis of TRIMs genes was performed by can-
cer type separately. Because of the great heterogeneity 
between cancers, the results in each cancer are differ-
ent. For example, in the survival analysis, TRIMs scores 
were significantly associated with overall survival in 25 
cancer types. In 12 of these cancers, patients with high 
TRIMs scores had better survival, while in the remain-
ing 13 cancers, patients with high TRIMs scores were 
with poorer survival (Fig.  5D). The additional cohort 
obtained similar results. In investigating response to 
treatment, results from the TCGA cohort showed that 
TRIMs scores were positively associated with treatment 
response when as a protective factor in cancer, and 
negatively associated with treatment response when as 
a risk factor in cancer.

Conclusions
In summary, genome-wide analysis of the somatic muta-
tions and transcriptome supported the important roles 
of TRIM proteins in tumorigenesis. This study provided 
a comprehensive review and analyses of genetic and 
pharmacogenomics landscape of TRIM proteins across 
cancer types, which will shed light on the future develop-
ment of therapeutic targets.
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