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Abstract 

Background  RNA methylation is a widely known post-transcriptional regulation which exists in many cancer and 
immune system diseases. However, the potential role and crosstalk of five types RNA methylation regulators in dia-
betic nephropathy (DN) and immune microenvironment remain unclear.

Methods  The mRNA expression of 37 RNA modification regulators and RNA modification regulators related genes 
were identified in 112 samples from 5 Gene Expression Omnibus datasets. Nonnegative Matrix Factorization cluster-
ing method was performed to determine RNA modification patterns. The ssGSEA algorithms and the expression of 
human leukocyte antigen were employed to assess the immune microenvironment characteristics. Risk model based 
on differentially expression genes responsible for the modification regulators was constructed to evaluate its predic-
tive capability in DN patients. Furthermore, the results were validated by using immunofluorescence co-localizations 
and protein experiments in vitro.

Results  We found 24 RNA methylation regulators were significant differently expressed in glomeruli in DN group 
compared with control group. Four methylation-related genes and six RNA regulators were introduced into riskScore 
model using univariate Logistic regression and integrated LASSO regression, which could precisely distinguish the 
DN and healthy individuals. Group with high-risk score was associated with high immune infiltration. Three distinct 
RNA modification patterns were identified, which has significant differences in immune microenvironment, biological 
pathway and eGFR. Validation analyses showed the METTL3, ADAR1, DNMT1 were upregulated whereas YTHDC1 was 
downregulated in DN podocyte cell lines comparing with cells cultured by the normal glucose.

Conclusion  Our study reveals that RNA methylation regulators and immune infiltration regulation play critical roles 
in the pathogenesis of DN. The bioinformatic analyses combine with verification in vitro could provide robust evi-
dence for identification of predictive RNA methylation regulators in DN.
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Background
Diabetic nephropathy (DN) is one of the most common 
microvascular complications of diabetes mellitus and the 
leading cause of end-stage renal disease (ESRD) [1]. The 
latest reports from Diabetes Atlas estimated the number 
of patients with diabetes mellitus (DM) is 463 million in 
2019 and is predicted to reach 700 million by 2045 [2]. 
The exact mechanisms involved in the pathogenesis of 
DN is complicated and still not fully understood. Cur-
rent therapies for DN mainly focus on controlling plasma 
glucose and blood pressure by using hypoglycemic agents 
and renin–angiotensin–aldosterone system (RAAS) 
blockers, which could only slow down the progression to 
ESRD but defeat to prevent it [3, 4]. Thus, novel thera-
peutic targets need to be discovered. A substantial body 
of evidence now indicated that the existence of epigenetic 
regulatory (e.g., DNA methylation and noncoding RNA) 
in the field of renal disease beyond the role of genetic in 
the pathogenesis of DN [5]. However, the identification 
of post-transcriptional epigenetic modification of RNA in 
DN is still unclear.

Like DNA methylation, RNA methylation modifi-
cations regulate gene expressions without alter the 
sequence of RNA and can influence the interaction 
between the genes and microenvironment. Increasing 
evidences demonstrate that genes associated with the 
progression of DN are regulated not only by traditional 
signaling pathways but also by epigenetic mechanisms. 
As a post-transcriptional modification, N6-methyladen-
osine (m6A), N1-methyladenosine (m1A), 5-methyl-
cytosine (m5C), Alternative polyadenylation (APA), 
and adenosine-to-inosine (A-I) editing were the main 
RNA methylation modifications involving in RNA splic-
ing [6], stability [7], translation [8], initiation of miRNA 
biogenesis [9] and subsequently affecting various physi-
ological and pathological processes [10], such as cell dif-
ferentiation, immune responses, epithelial-mesenchymal 
transformation.

RNA methylation has been proven to be related to 
human physiologies and its mis-regulation are linked 
with a variety of human diseases [11]. Previous study 
reported that the overexpression of METTL14, an m6A 
methyltransferase, contributed to extracellular matrix 
accumulation of renal tubular cells in diabetic kidney 
diseases via regulated PI3K/Akt signaling pathway [12]. 
Even though m6A modification in RNA were discovered 
in the 1950s, our understanding of RNA methylation 
modifications is limited in DN. Other RNA modifications 
within eukaryotic mRNA including m1A, m5C, APA, A-I 
editing, were barely researched in DN. m1A, as a revers-
ible RNA modification, is methyl on the N1 position of 
adenosine and affect the translation of downstream genes 
and RNA–protein interaction [13]. m5C has emerged as 

the key regulators in modulating the translation and sta-
bility of RNA and ribosome assembly through its effector 
proteins- “writers” (methyltransferases), “readers,” and 
“erasers” (demethylase). Recent studies find that m5C 
are closely related to CD4+ T cells from systemic lupus 
erythematosus patients [14]. External mutation of a m5C 
methyltransferase NSUN3 lead to reduced mitochondrial 
translation, leading to severe multisystem mitochondrial 
diseases [15]. A-I editing is catalyzed by adenosine deam-
inases acting on RNA (ADARs) which binding to double-
stranded RNA substrates [16]. Depletion of m6A-related 
enzymes increases the expression of ADAR enzymes 
resulting in upregulated A-I editing on the same m6A-
depleted transcripts which showed a negative correla-
tion between m6A and A-I [17]. APA generates distinct 
3’ termini on mRNAs and other RNA polymerase II tran-
scripts and affects mRNA length and stability.

Since these five RNA methylation patterns were crucial 
in the gene expression programing, immune cells regu-
latory and cell metastasis, identifying the epigenetic sig-
natures in DN and complicated interrelations occurring 
between m6A and other well-known epigenetic modi-
fications are urgently needed. In DN, RNA methylation 
not only affect the microenvironment but, importantly, 
mediate the persistent expression of DN-related genes 
and phenotypes induced by long-term hyper-glycemic 
exposure. However, previous studies on DN mainly focus 
on the specific amino acid residues of histone modifica-
tion or DNA methylation [18]. The aberrant expression 
profiles of RNA methylation on DN need to be further 
analyzed. In our current study, we integrated the epige-
netic features and immune characteristics in 111 sam-
ples from Gene Expression Omnibus (GEO) datasets. 
Then, nonnegative matrix factorization (NMF) clustering 
was used to identify three modification patterns and the 
correlation with immune landscape. A risk model was 
employed to further demonstrate the RNA methylation 
characteristics in DN. Finally, we combined cell lines with 
experimental techniques in  vitro to validate the expres-
sion of these significant regulators. The bioinformatic 
analyses of epigenetic events during the early stages of 
DN could provide valuable evidences for discovering new 
therapeutic strategies and reducing disease burden on 
patients.

Methods
Data collection and processing
The flowchart of the present study is shown in Fig.  1. 
Gene expression data based on RNA sequencing were 
obtained from the Gene Expression Omnibus (GEO) 
datasets. Four eligible datasets (GSE99339, GSE41783, 
GSE30528, GSE104948) were combined. After exclud-
ing patients who had no gene expression data from 
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glomeruli, 111 samples were enrolled for further analy-
sis, including those from the GSE99339 (14 DN samples, 
11 tumor nephrectomy controls), GSE41783 (14 DN 
samples, 17 tumor nephrectomy controls), GSE30528(9 

DN samples, 13 controls), GSE104948(12 DN samples, 
21 controls). Log scales matrix data was downloaded 
and then 37 RNA methylation regulators were collected 
according to the previously published literature [19–21]. 

Fig. 1  Schematic flowchart of this study
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The expression data of different datasets were normalized 
by using the "sva" R package (Version 3.46.0) for Com-
Bat Batch correction to remove batch effects (Additional 
file  1: Fig. S1). The "limma" R package (Version 3.54.0) 
was applied to determine the differential expression of 
the RNA methylation regulators in the DN and tumor 
adjacent control samples. The interaction between RNA 
methylation regulators at the protein level was examined 
using Networkanalyst platform. The expression relation-
ship among 37 regulators was evaluated by Pearson cor-
relation analysis.

Immune characteristics analysis
Single-sample gene set enrichment analysis (ssGSEA) 
algorithm was used and 28 gene sets labeling differ-
ent immune-infiltrating cells were contained for further 
analysis [22]. Enrichment scores were calculated using 
ssGSEA in the R "GSVA" package (Version 1.42.0) char-
acterizing the infiltration level of each type of immune 
cell in samples [23]. Immune reaction pathways were 
obtained from the ImmPort database. Correlation of 
RNA methylation regulators with immune-infiltrating 
cells, immune reaction pathways and HLA gene expres-
sion were calculated by spearman correlation analysis.

Gene set variation analysis (GSVA) and Biological 
enrichment analysis
In order to investigate the variation in biological signal-
ing pathways among different RNA methylation regu-
lators, gene set variation analysis (GSVA) enrichment 
analysis with R ‘GSVA’ package were employed. Gene 
sets “h.all.v7.5.1.symbols.gmt,” “kegg.v7.5.1.symbols.gmt,” 
“biocarta.v7.5.1.symbols.gmt,” “reactome.v7.5.1.symbols.
gmt,” and “wikipathways.v7.5.1.symbols.gmt” were down-
loaded from MSigDB database (v7.5.1). The gene set was 
considered significantly enriched if adjusted P value were 
less than 0.05. The R pheatmap package (Version 1.0.12) 
was used to visualize the results of HALLMARK and 
REACTOME pathways.

Consensus functional clustering
Based on 37 RNA methylation regulators, Nonnega-
tive Matrix Factorization (NMF) clustering was utilized 
to determine the optimal number and stability among 
all classifications. The k that before the highest varia-
tion in clustering was selected. The R package "NMF" 
(Version 0.24.0) with brunet algorithm and 100 nruns 
was performed for the consensus clustering. The RNA 
methylation regulators among three cluster subtypes and 
immune-infiltrating cells, immune reaction pathways and 
HLA gene expression were compared by ANOVA test.

Construction and validation of risk model
The overlapping of differentially expressed genes 
(DEGs) among three distinct subtypes were identified 
as RNA methylation-related genes by using empirical 
Bayesian approach. The R package "limma" were used to 
evaluated DEGs between three different modification 
clusters. Twenty-four RNA methylation regulators were 
also introduced for the model construction. In total, 52 
RNA regulatory genes for univariate logistic regression 
and the significant differently expressed genes were 
extracted. The R package "caret" (Version 6.0-93) was 
used to split data into training and test cohort. Iden-
tified genes related to prognosis using Least Absolute 
Shrinkage and Selection Operator (LASSO) regression 
to construct a risk model in the training cohort. The 
riskScore of each sample was separately quantified in 
the training and validation cohorts as follows:

where i means the RNA regulatory genes and the coef-
ficients were calculated form the LASSO regression algo-
rithm. Then, High- and Low-risk groups were divided 
according to the median risk score. To characterize the 
immune-infiltrating cells and immune reaction pathways 
affected by risk score, we performed differential expres-
sion and correlation analysis to identify the immune 
characteristics which were significantly correlated with 
risk score.

Correlation between eGFR correlation and RNA 
methylation regulatory genes
To evaluate the correlation between estimated Glo-
merular Filtration Rate (eGFR) and RNA methylation 
regulatory genes, we performed a web-based analysis 
with Nephroseq V5 tool and visualized data by using 
"ggplot2" R package (Version 3.4.0).

Cell culture
Conditionally immortalized human podocyte cell 
line (HPC) and mouse podocyte cell line (MPC) were 
obtained from Jinling Clinical Medical College of 
Nanjing Medical University. The cells were cultured 
in RPMI-1640 (gibco, USA), 10% Fetal Bovine Serum 
(gibco), and penicillin/streptomycin medium at 33  °C 
in growth permissive conditions. IFN-γ was specially 
supplemented for MPC and Insulin-Transferrin-Sele-
nium for HPC. HPC and MPC were treated with high 
glucose medium (HG) in a concentration of 30 mM glu-
cose for 48 h when cells were cultured at 37  °C 7 days 

n

i=1

Coefi ∗ xi
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for differentiate. The normal concentration of glucose 
(5.5 mM) serves as control.

RNA extraction and quantitative real‑time PCR
Total cellular RNA was extracted using RNeasy Mini 
Kit (Qiagen, Hilden, Germany) in accordance with the 
manufacturer’s protocol. Complementary DNA (cDNA) 
was synthesized with RevertAid First Strand cDNA Syn-
thesis Kit (Thermo Fisher Scientific, Shanghai, China). 
Quantitative Real-time PCR (qRT-PCR) was performed 
using the Fast Start Essential DNA Green Master (Roche, 
Shanghai, China). The primer for target mRNA was 
designed and synthesized by Sangon Biotech (Shanghai, 
China) (Additional file 2: Table S1). All experiments were 
performed in triplicate and the amplification signals of 
β-actin mRNA served as the internal control.

Western blot analysis
Cultured cells were lysed and protein was extracted using 
radioimmunoprecipitation assay (RIPA) lysis buffer sup-
plemented with protease inhibitor (CW2200S, CWBio, 
China) and phosphatase inhibitors (CW2383S, CWBio, 
China). Equal amounts of proteins were resolved by 10% 
or 6% SDS-PAGE and were subjected to immunoblot 
analysis using standard methods with the following anti-
bodies: NHPS2 (ab50339, Abcam), Synaptopodin (21064-
1-AP), METTL3 (96391  s, Cell Signaling), YTHDC1 
(77422  s, Cell Signaling), ADAR1(bs-2168R, Bioss), 
DNMT1 (ab188453, Abcam), WTAP (60,188–1-Ig, Pro-
teintech) (all used at a 1:1000) and β-actin(AP0060, Bio-
world) (used at 1:5000). The Secondary antibodies were 
purchased from Dingguo Biotechnology (Beijing, China). 
Semiquantitative analysis of the protein density by west-
ern blotting was performed using ImageJ (Version 1.5.3).

Immunofluorescence staining
HPC and MPC grown on coverslips were fixed with 4% 
paraformaldehyde for 10  min at room temperature, fol-
lowed by permeabilization with 0.5% Triton X-100 for 
10 min and blocked with 3% bovine serum albumin and 
immunostained with anti-METTL3 (ab195352, Abcam, 
1:1000), ADAR1(bs-2168R, Bioss, 1:100), WTAP (60188-
1-Ig, Proteintech, 1:100) or anti-DNMT1 (ab188453, 
Abcam, 1  μg/ml) overnight at 4  °C. After washing with 
PBS, HPC or MPC were incubated with Alexa Fluor 488 
goat anti-rabbit IgG (Invitrogen, A32731, 1:200) and 
DAPI (Vectorlabs, H-1200) for nuclear staining. The 
specimens were visualized and analyzed by using Zeiss 
LSM880 confocal microscope (Carl Zeiss, Germany).

Statistical analysis
All statistical analyses were performed using R version 
4.1.2 and SPSS 24.0. The expression levels of the RNA 

methylation regulators were compared in DN sam-
ples versus controls using Wilcoxon rank-sum test. The 
normal distribution data was statistically analyzed by 
Student’s-t test between two groups and more than two 
groups were performed by one-way ANOVA. Univariate 
logistic regression analyses were performed to determine 
the independent prognostic factors. P < 0.05 was consid-
ered has a statistically significant.

Results
Landscape of RNA methylation regulators in diabetic 
nephropathy
A total of 37 RNA modification regulators (Additional 
file  2: Table  S2) from five types of RNA modifications, 
including 14 m6A methylation regulators, 3 A-I meth-
ylation regulators, 4 m5C methylation regulators, 7 m1A 
methylation regulators, and 9 APA methylation regula-
tors were identified. Figure  2A illustrates the biological 
processes and crosstalk between epigenetic modulators. 
The coordinated relationships between each epigenetic 
counterpart elicit the epigenetic remodeling, which 
accounts for the perplexing modulations of various bio-
processes. Metascape and GO enrichment were used 
to demonstrate how these associations impact biologi-
cal functions, particularly enrichment in mRNA meta-
bolic process (Fig. 2B). To analyze the distinct expression 
of the RNA modification regulators, we compared the 
mRNA expression of regulators between DN and con-
trol samples and found that a majority of m5C, A-I, and 
APA were significant highly expressed, whereas ZC3H13, 
RBM15, FMR1, IGF2BP2, FTO of m6A, ADARB2 of A-I, 
YTHDC1, TRMT61 of m1A, and PCF11 of APA were 
downregulated in DN samples (Fig. 2C–G).

The intersection of expression on 24 RNA methyla-
tion regulators is shown in Fig.  3A. The Pearson corre-
lation analysis showed that m6A “reader” METTL3 and 
HNRNPA2B1 were significant positively correlated with 
a value of 0.73, whereas A-I regulator ADAR2 and APA 
regulator CSTF1 were most negatively correlated with a 
value of − 0.69 (Fig. 3B, Additional file 2: Table S3). The 
results demonstrated that the RNA modification regula-
tors were not only correlated in same modification types, 
but also had relationships with other different modifi-
cation types. Next, GSVA was adopted to evaluate the 
biological pathways of these distinct RNA modification 
types. They were differently enriched in HALLMARKS 
pathway including glycolysis, KRAS signaling upregula-
tion, P53 pathway, epithelial-mesenchymal transition, 
and oxidative phosphorylation in DN samples (Fig. 3C). 
In addition, REACTOME pathways, including negative 
epigenetic regulation of rRNA expression, post transla-
tion protein modification and diseases of programmed 
cell death, were precisely rich in RNA metabolism and 
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Fig. 2  The landscape of RNA methylation regulators in diabetic nephropathy. A The overview of the metabolic process of RNA methylation 
regulation in cytoplasm. B Metascape enrichment network visualization showed the clusters and similarities of enriched terms. C The box plot 
demonstrated the transcriptome expression status of 14 m6A regulators between control and diabetic nephropathy samples. D Expression status of 
4 m5C regulators. E Expression status of 3 A to I editing regulators. F Expression status of 7 m1A regulators. G Expression status of 9 APA regulators. 
H The volcano plot shows the summary of expression information of 37 RNA methylation regulators. I Difference in features and expression levels of 
RNA methylation regulators between control and diabetic nephropathy samples



Page 7 of 19Li et al. Human Genomics            (2023) 17:6 	

Fig. 3  RNA methylation modification patterns and relevant biological pathways. A The interaction of expression on RNA methylation regulators in 
diabetic nephropathy. B Correlations among the expression of RNA methylation regulators in the meta-cohort. C, D Heatmap shows the GSVA score 
of representative Hallmark pathways and Reactome pathways between control and diabetic nephropathy samples. E Box plot shows the BIOCARTA, 
HALLMARK, KEGG, REACTOME, and WIKI enrichment analyses of RNA methylation regulators between control and diabetic nephropathy samples



Page 8 of 19Li et al. Human Genomics            (2023) 17:6 

protein synthesis pathways in DN samples (Fig. 3D). The 
BIOCARTA, KEGG, and WIKI pathways were also con-
ducted and results are shown in Fig. 3E.

Immune characteristics of DN
To explore the inflammation effects on pathogenesis and 
progression of DN, we constructed immune character-
istics analysis includes immune cell infiltrating, immune 
reaction pathways, HLA gene expression (Additional 
file  2: Tables S4–S6), and their correlations with RNA 
methylation regulators. We characterized the immune 
response with ssGSEA to visualize the relative abun-
dances of 28 immune-infiltrating cells between DN and 
control samples. The results demonstrated significant 
differences in immune-infiltrating cells between the two 
groups except CD56bright NK cells, immature B cells, 
and immature dendritic cell. Comparing with control 
group, the abundance of eosinophil, neutrophil, and type 
17  T helper cells were lower while the rest of immune 
cells were higher in DN samples (Fig. 4B). Then, ten vital 
immune reaction pathways were analyzed and identified 
that most of the immune reaction pathways of DN were 
markedly augmented, while TGFβ Family Members Sign-
aling and TCR_Pathway were decreased (Fig. 4C). Subse-
quent analysis demonstrated that HLA gene expressions 
were significantly higher in DN group which suggested 
an active immune response and inflammation involved in 
DN pathogenesis (Fig. 4D).

We further investigated the association between each 
RNA methylation regulator and immune cells infiltra-
tion by using Spearman’s correlation analyses (Fig.  4A). 
Enhanced immunocyte infiltration was positively associ-
ated with elevated expression of IGF2BP3, DNMT1, and 
CFI, in which, IGF2BP3 was highly correlated with mem-
ory B cell, regulatory T cell, central memory CD8 T cell, 
CD56dim natural killer cell and immature dendritic cell 
with correlation coefficient values over 0.5. YTHDC1, 
TRMT61B, and PCF11 exhibited negative correla-
tions with the immune infiltration level. m5C-regulator 
DNMT1 was mediating the activation of CD8 + T cells 
and central memory CD4 + T cells. CFI showed signifi-
cant positive effects on memory B cell and central mem-
ory CD8 T cell with the correlation coefficient values of 
0.66 and 0.61, respectively. Correlation analysis between 
the immune reaction pathways and RNA methylation 
regulators were performed (Additional file  1: Fig. S2A). 
We found DNMT1 was positively correlated with CTL_
Pathyway whereas IGF2BP3 was negatively correlated 
with TGFβ Family Members Signaling. High expression 
of METTL3, DNMT1, and RRP8 was significantly associ-
ated with HLA gene sets such as HLA-A, HLA-B, HLA-
C, HLA-DMA, HLA-DMB (Additional file  1: Fig. S2B). 
This indicated HLA types may predispose to related to 

the immune response through multiple mechanisms such 
as through changes in the expression or stability of RNA 
methylation.

Clustering and construction a risk model for predictive
To further investigate RNA modification patterns in DN, 
nonnegative matrix factorization (NMF) algorithm was 
conducted and the results are shown in Additional file 1: 
Fig. S3. The three subtypes based on 37 RNA methylation 
regulators and their relationships with immune-infiltrat-
ing cells are shown in Fig. 5A,B. The immune-infiltrating 
cells were significantly different among three clusters 
(Fig.  5C). Subtype-1 performed relatively low infiltrated 
immunocytes compared with Subtype-2 and 3. Subtype-2 
had highest level of infiltrated activated B cells, activated 
CD4 T cells, CD56dim natural killer cell, macrophage, 
MDSC, while activated CD4 T cell, eosinophil, mast cell, 
and nature killer cells were enriched in Subtype-3. This 
new categorization was able to distinguish RNA meth-
ylation regulators based on gene expression at the tran-
scriptional level (Fig.  5D,E), demonstrated the diversity 
of epigenetic modification existed in DN. Three distinct 
subtypes of DN were identified, including 53 samples in 
Subtype-1, 24 samples in Subtype-2 and 34 samples in 
Subtype-3 (Fig. 5F).

Then, to explore the underlying genetic alterations 
within these phenotypes, a total of 28 overlapping dif-
ferentially expression genes (DEGs) which represented 
critical identified of three RNA modification patterns 
were illustrated by Venn diagram (Fig.  6A, Additional 
file  2: Table  S7). GO enrichment analysis of these sig-
nature genes revealed that biological processes related 
to collagen-containing extracellular, humoral immune 
response, positive regulation of cytokine, and leukocyte 
activation (Fig.  6B). These results further demonstrated 
that the overlapped RNA related DEGs had also related 
to immunity, which were consistent with our previ-
ous results. Based on 28 identified RNA methylation-
related DEGs and 24 RNA modification regulators, we 
constructed a novel risk model to quantify the impact 
of RNA methylation regulatory genes on the altera-
tion of all cases. Univariate logistic regression was used 
to identify the risk factors of DN and screened 43 genes 
for the subsequent analysis (Additional file 2: Table S8). 
Then, we used “caret” R package randomly classify the 
patients into training (n = 56) and testing (n = 55) groups 
at a ratio of 1:1. LASSO regression was performed and 
10 RNA regulatory genes were remained according to 
the minimum partial likelihood deviance (Fig.  6C,D). 
In summary, 6 RNA methylation regulators (METTL3, 
RBM15, DNMT3B, TRMT61B, CPSF4, PCF11) and 4 
methylation-related genes (BLNK, MS4A4A, CXCL12, 
COL15A1) were conducted to construct the risk model. 
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Fig. 4  Immune characteristics in diabetic nephropathy. A Spearman’s rank correlation analyses between 24 RNA methylation regulators and 
immune-infiltrating cells at the transcriptional level, in which red represent positive correlations and blue represent negative correlations. The 
scatter plot shows the correlation between RNA methylation regulators and immunocyte as the significantly correlations. B Difference distributions 
of 28 immune-infiltrating cells between control and diabetic nephropathy samples. C Difference distributions of 10 immune reaction pathways 
between control and diabetic nephropathy samples. D Difference expression of 17 HLA alleles between control and diabetic nephropathy samples
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Then, the risk score for each patient was calculated and 
patients with risk scores lower than the median risk 
score (cut-off value 17.961) were categorized into low-
risk group whereas those with scores above median were 
placed in high-risk group (Additional file 2: Table S9). The 
risk scores of DN samples were significantly higher than 
controls in both training (Fig.  6E) and testing (Fig.  6F) 
datasets, indicated that high-risk score was more prompt 
to progress to DN condition. Compared with Subtype-1, 
Subtype-2 had a significantly higher risk score (Fig. 6G). 
However, the small sample of Subtype-2 and 3 and the 
shortage of constructed risk model might lead to there is 
no difference between the Subtype-2 and Subtype-3. The 
distributions of risk scores in each patient are shown in 
Fig. 6H.

Evaluation of RNA methylation regulators and immune 
characteristics between the high‑ and low‑risk groups
To further demonstrate the characteristics of the risk 
model, we compared the expression of RNA methylation 
regulators between high- and low-risk group. Significant 
differences in RNA gene profiles were observed and this 
result was in accordance with the difference between DN 
and control group, which suggested our risk model had 
the robust capability to distinguish DN and control sam-
ples (Fig. 7F). As shown in Fig. 7A, METTL3, ZC3H13, 
CBLL1, HNRNPA2B1, IGF2BP3 were highly expressed 
in high-risk group, whereas FTO RBM15, FMR1 were 
highly expressed in low-risk group. For m5C, APA, m1A, 
A-I methylation type, the results are shown in Fig.  7B–
E, respectively. Then, we utilized ssGSEA algorithm to 
assess the association between riskScore and the abun-
dance of immune-infiltrating cells and found that the 
high-risk group was characterized by increasing immune 
infiltration (Fig. 7G). The risk score was positively corre-
lated with higher expression of T cells such as activated 
CD4 T cells, activated CD8 T cells, regulatory T cells, 
and T follicular helper cells, whereas negatively cor-
related with eosinophil, as indicated in the scatter dia-
grams (Fig. 7H). The relationships between the risk score 
and B linage cells such as active B cells, memory B cells, 
macrophage, were weak (Additional file 1: Fig. S4A). We 
also assessed the relationship between the ten risk genes 
in the proposed model and the abundance of immune 
cells. Results shown that most immune cells were signifi-
cantly correlated with the COL15A1, BLNK, MS4A4A, 

CXCL12 genes (Additional file  1: Fig. S4B). Further-
more, we sought to determine the predictive ability of 
the risk model in HLA gene. As expected, patients in 
high-risk group were significantly associated with a high 
expression of HLA (Additional file 1: Fig. S4C). This phe-
nomenon of HLA-related protection against immunity 
could conceivably involve several mechanisms and then 
immune reaction pathways analysis reveal that multiple 
biological processes were remarkably related to the high-
riskscore group patients (Additional file  1: Fig. S4D). 
Combining both, a potential association of HLA poly-
morphisms with DN-related autoimmune, implicating 
this HLA gene in this complication of diabetes mellitus.

Validation of functional phenotypes in human podocyte 
cell lines
To elucidate the roles of our risk model genes, we inves-
tigated the correlation between ten genes and eGFR in 
the Nephroseq Database. Unfortunately, five of them 
were removed in further analyses since they were not 
currently involved in the database. Among the remain-
ing five genes, TRMT61B and CPSF4 was positively 
correlated with eGFR, which means higher expression 
indicates better renal function in DN patients (Fig. 8A). 
The BLNK, MS4A4A, and COL15A1 were all negatively 
correlated with eGFR, indicating that these genes may 
aggravate kidney damage in patients with DN. Then, we 
verified the expression of METTL3, WTAP, YTHDC1, 
ADAR1, DNMT1 protein in immortalized human 
podocyte cell line (HPC) and mouse podocyte cell line 
(MPC) by qRT-PCR and Western blot. Both the HPC 
and MPC expressed the high levels of METTL3, ADAR1, 
DNMT1 proteins whereas the expression of YTHDC1 
was expressed at obviously low levels as compared with 
the NG condition (Fig.  8C,D). The expression of podo-
cyte damage-related protein, podocin, and synaptopodin, 
decreased in HG condition (Fig.  8E,F). The intracellu-
lar localization of METTL3 WTAP, YTHDC1, ADAR1, 
DNMT1 was visualized by immunofluorescence localiza-
tion, as shown in Fig. 9.

Discussion
The pathophysiology of diabetic nephropathy is com-
plicated and involves interactions between genetic 
and epigenetic factors. Currently transcription fac-
tors have not been fully efficacious in the progression 

Fig. 5  Immune characteristics in distinct RNA modification patterns. A Consensus matrix of NMF algorithm for n = 3. B Unsupervised clustering 
of 37 RNA methylation regulators in the meta-cohort. Clinical information including Type and GEO database, as well as the cluster subtype, 
were shown in annotations above. Red represented the high expression of regulators and blue represented the low expression. C The fraction 
of immune-infiltrating cells in three clusters using the ssGSEA algorithm. *P < 0.05; **P < 0.01; ***P < 0.001. D Difference expression of each RNA 
methylation regulators in three modification subtypes. E Difference expression levels of RNA methylation regulators in three modification subtypes. 
F Principal component analysis for the expression of three subtypes

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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of DN, suggesting that further understanding of the 
epigenetic mechanisms is necessary for the improved 
management of this disease. With the rapid growing 
RNA research in the burgeoning field of RNA methyla-
tion, it becomes clear that these modifications play vital 
roles on modulating gene expression and controlling 
cell death, thereby igniting the new insights in RNA-
based therapeutic strategies. As such, it is crucial to 

investigate the renal expression of these differentially 
methylated genes in diabetic individuals. In our cur-
rent study, we firstly identified the expression profiles 
of RNA methylation modifications with special empha-
sis on m6A, m5C, m1A, APA, A-I editing, and their 
effects on immune microenvironment in DN patients. 
By explaining the regulation pattern of gene expression 
through post-transcriptional modification, our results 

Fig. 6  Construction of differential expression of methylation gene signatures and functional annotation. A 28 RNA methylation-related differentially 
expressed genes (DEGs) between three subtypes were shown in the Venn diagram. B Functional annotation for RNA methylation-related genes 
using GO enrichment analysis. C LASSO coefficient profiles of 52 RNA methylation regulatory genes to verifying the optimal Lambda. D Ten 
coefficients were selected in the LASSO regression. E The risk score distribution of training set in control and diabetic nephropathy samples. F The 
validation of risk score distribution of testing set in control and diabetic nephropathy samples. G Distribution of risk score among distinct RNA 
modification subtypes. H The risk score profiles for each patient and divided into high- and low-risk group according the median cut-off value 
(17.961)
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Fig. 7  Identification and function analysis of riskScore model. A The violin plot demonstrated the expression of 14 m6A regulators between 
high-risk and low-risk groups. B Expression status of 7 m1A regulators. C Expression status of 3 A to I editing regulators. D Expression status of 4 m5C 
regulators. E Expression status of 9 APA regulators. F Difference in features and expression levels of RNA methylation regulators between high-risk 
and low-risk groups. G The fraction of immune-infiltrating cells in high-risk and low-risk groups. *P < 0.05; **P < 0.01; ***P < 0.001. H Ten immunocyte 
were significantly correlate with risk score by spearman analysis
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provide novel scientific evidences for understanding 
the pathogenesis of DN.

To well understand the relationship between RNA 
modification and DN, the catalytic mediators of its 
“writer”, “eraser,” and “reader” proteins need to be firstly 
interpret. There were 37 RNA methylation regulators, in 
which, 24 of them were significant differently expressed 

in DN patients, suggesting the involvement in DN patho-
genesis. Most regulators showed close interactions in 
PPI network revealing the cooperative regulation of 
RNA methylation. Among these 24 regulators, METTL3, 
DNMT1, ADAR1, RRP8, and CSTF2 from m6A, m5C, 
A to I, m1A, and APA exhibited the highest fold change 
values in DN patients, respectively. METTL3, acting as a 

Fig. 8  Validation of functional phenotypes in database and cell lines. (A) Correlations between five RNA methylation regulatory genes and eGFR. 
(B) Relative expression levels of METTL3, WTAP, YTHDC1, ADAR1, DNMT1 mRNA in immortalized human podocyte cell line (HPC) and mouse 
podocyte cell line (MPC) by qRT-PCR. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 versus normal glucose (NG) group. (C, D) Immunoblot analysis 
of RNA methylation regulators protein in high glucose (HG) induced podocytes. (E, F) Immunoblot analysis of podocyte damage-related protein in 
high glucose (HG) induced podocytes.β-actin served as a loading control
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“writer,” was found to be a methylation regulator inhib-
iting the expression of HHLA2 in renal cell carcinoma 
[24]. However, activated HHLA2 could relieve inflam-
mation microenvironment by reducing interleukin-2 and 
interferon-γ production and T cell proliferation [25]. In 
our current study, METTL3 performed highly correla-
tions with activated CD8 T cell, central memory CD4 
T cell and effector memory CD4 T cell, suggesting the 
stimulation of T cells may contribute to development 
of DN via inflammation pathway. YTHDC1, known as 
m6A readers, is also necessary for its recognition of m1A 
[26]. ADAR1 is recognized in adenosine-to-inosine RNA 
conversion and prevent double-stranded RNA (dsRNA) 
damage and regulates innate immunity and the inter-
feron-mediated response [27]. The above three chemical 
modification of RNA structure were all occur in adenine, 
but m5C is particularly added S-adenosyl-methionine 
(SAM) to the carbon-5 position of the cytosine base in 
untranslated RNA region [28]. APA is involved in the 

3’end cleavage and polyadenylation and dysregulated fre-
quently leading to changes in oncogenes and tumor inva-
sion metastasis [29].

Next, to gain further insight into the immune charac-
teristics of glomeruli in DN patients, we identified the 
expression of immune-infiltrating cells and HLA gene 
sets. The results shown that CD4 memory T cells, fol-
licular helper T cells, T regulatory cells (Treg), gamma 
delta T cells, and neutrophils play pathogenic roles in 
immune defense of DN. Eller et  al. found that deplet-
ing Treg cells with anti-CD25 antibody in db/db mice 
could exacerbate diabetic renal injury including elevated 
albuminuria and glomerular hyperfiltration, transplant-
ing CD4+FoxP3+cells into mice could alleviate it, which 
was accordance with our results [30]. Emerging evi-
dence indicated that inflammation played a critical role 
on pathogenesis of DN, such as inflammatory cytokines, 
tumor necrosis factor (TNF)-α, and immune mediators 
in serum or peripheral blood cells [31]. In our study, we 

Fig. 9  Representative immunofluorescence staining for RNA methylation regulators (green) and DAPI (blue) in different groups of human 
podocytes. (A) Immunofluorescence co-localization was used to analysis the expression of METTL3, ADAR1 (B), DNMT1 (C) and WTAP (D). Scale bars: 
10 μm. HG, high glucose, 30 mM; NG, normal glucose, 5.5 mM
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identified the expression levels of activated B cells, mem-
ory B cells, monocyte and macrophage were significantly 
increased in DN group. Previous studies also indicated 
the activation of B cells, monocytes and macrophages 
were contributed to progression of DN via antigen pres-
entation and abnormal antibody sedimentation [32].

The correlations between RNA regulators and immune 
characteristics were close, implying that RNA modifica-
tion also contributed to the immune microenvironment 
regulation. We found that DNMT1 and FTO were highly 
correlated with activated CD8 + T cells and T follicu-
lar helper cells, respectively. DNMT1 potentiated T cell 
recruitment and deletion of DNMT1 in double-positive 
thymocytes leading to the activated T cells proliferation 
impaired [33, 34]. Up-regulating DNMT1 in diabetic 
immune cells could generate abnormal cytosine meth-
ylation of upstream regulators of mammalian target of 
rapamycin, following with aggravated inflammation in 
diabetic renal tissue [35]. Fat mass and obesity-associated 
(FTO) was responsible for the demethylation of m6A 
modifications and also mediates demethylation of m1A 
in tRNA [36]. In papillary thyroid cancer, FTO acts as a 
tumor suppressor via suppress glycolysis and cell growth 
through IGF2BP2-mediated m6A modification [37].

Although there was limited study reported the asso-
ciation between HLA-gene sets and RNA methylations 
in DN. The aberrant expressions of HLA were contrib-
uted to different inflammation consequences in vari-
ous immune-related diseases. In diabetic patients, the 
HLA-DQB1*0501 allele showed protective effects on 
the progression of diabetic kidney disease in a Chinese 
Han population [38]. On the other hand, in a Canadian 
T2DM population, comparing with other types of HLA, 
the HLA-A2 with either HLA-DR4 or HLA-DR8 were 
associated with development of ESRD in younger age 
[39]. These findings highlight the complexity in assessing 
the potential role of HLA in DN. Advances in molecular 
techniques and the use of more samples are needed for 
the improved understanding of HLA alleles associations 
with DN.

Then, we evaluate the biological pathways of RNA 
modification types. DN samples were differently 
enriched in HALLMARKS pathway, especially glycolysis, 
epithelial-mesenchymal transition and oxidative phos-
phorylation. Zeng et al. reported that glucose dysregula-
tion can initiate macrophage glycolysis and the release of 
inflammatory factors, causing renal injury in mice [40]. 
Reduced activity of glycolytic enzymes, oxidative phos-
phorylation, and increased production of reactive oxygen 
species is a principal link in the occurrence and progres-
sion of DN [41]. In addition, we specifically analyzed 
REACTOME pathways that concentrate on the exact 
mechanistic detail involved in RNA methylation. The 

epigenetic regulation of rRNA expression and diseases of 
programmed cell death pathways were precisely located 
in RNA metabolism and protein synthesis biological 
pathways in DN samples. In this sense, our results pro-
vided new evidence to reveal the pathological and immu-
notherapy management in DN glomerular injury.

We identified three distinct RNA methylation modifi-
cation patterns by nonnegative matrix factorization clus-
tering of the DN samples. Each subtype characterized by 
different expression of RNA methylation regulators and 
immune characteristics. Sub-2 and Sub-3 patterns were 
associated with elevated activated infiltrating immuno-
cytes and innate immune cells such as neutrophils and 
macrophages. Macrophages were demonstrated to be 
the most prevalent infiltrating leucocytes in diabetic kid-
neys and associated with declining renal function in DN 
patients [42]. Then, we adopted an algorithm strategy 
and construct a risk model to quantify the contributions 
of RNA methylation regulatory genes to the prognosis 
of every case in the training set. The RNA modification 
pattern characterized by the immune-high phenotype 
exhibited a higher risk score, while the pattern charac-
terized by the immune-low phenotype showed a lower 
risk score. Considering the high-risk group were mostly 
DN patients, the risk score could be capable of being a 
predictive biomarker in DN and associated with immune 
reaction. We identified the correlation between the risk 
score and immunocytes and the results suggesting that 
the riskScore system could applied in DN patients to 
determine immune characteristics and therapeutic tar-
geting of the innate immune system.

Besides elucidated the results of riskScore model, we 
also explored the ten RNA methylation regulatory genes 
in Nephroseq Database. TRMT61B was responsible for 
1-methyladenosine of mitochondrial tRNA and par-
ticipated in altered gene expression which involved in 
mitochondrial processes in Alzheimer’s disease [43, 44]. 
CPSF4 protein functionally regulated the transcription of 
specific target RNAs and could generate a broad range of 
oncoproteins for its mRNA export and translation activi-
ties [45]. High CPSF4 expression was positively associ-
ated with eGFR in DN patients. BLNK as a central linker 
protein, regulating biological outcomes of B cell function 
and development [46]. We identified BLNK were nega-
tively correlated with eGFR and this is consistent with 
results that DN samples present a higher number of acti-
vated B cells and memory B cells than controls, which 
indicated that B cell depletion might be most beneficial 
in individuals at high risk of DN.

To validate the results of our bioinformatic analyses, 
we proved that METTL3, ADAR1 and DNMT1 were all 
expression in DN cell lines and higher expression when 
compared with normal glucose condition. YTHDC1 
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expression was downregulated in HPC and MPC. The 
expression of DNMT1 and WTAP were not signifi-
cantly different in HPC, whereas DNMT1 expression 
was increased and WTAP were downregulated in MPC. 
These all localizes with speckles in interphase nuclei and 
associated with nuclear pre-mRNA splicing components 
[47].

Nevertheless, our study had some limitations. 
Although our study primarily reveals the expression of 
serval RNA regulators in  vitro, its functions and meta-
bolic network are required further intensive laboratory 
work. The series of new identified RNA regulators were 
not obtained from the databases and high throughput 
sequencing methylation profiling are needed for further 
verification. Besides, it was difficult to obtain datasets 
that simultaneously included clinical data, the small sam-
ple size of the GEO row data and the shortcoming of the 
constructed riskScore model might lack of prognostic 
value. A larger number of clinical data and modification 
of the risk model are still required to evaluate the clinical 
correlations.

Conclusions
In conclusion, our study is the first comprehensive 
approach by integrating epigenetic and genetic signals 
to identify novel disease-driving pathways and thera-
peutic targets. We reveal that the aberrant expression 
of RNA methylation regulators and immune infiltration 
regulation play critical roles in the pathogenesis of DN, 
which could promote predictive-based DN manage-
ment. Greater understanding of the relationship between 
RNA methylation regulators and kidney function has 
the potential not only to further the understanding of 
immune renal disease at a fundamental level but also to 
lead to the development and application of more effec-
tive, specific and less toxic therapies for DN treatment.
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