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Relationships between circulating 
metabolites and facial skin aging: a Mendelian 
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Abstract 

Background  Blood metabolites are important to various aspects of our health. However, currently, there is little 
evidence about the role of circulating metabolites in the process of skin aging.

Objectives  To examine the potential effects of circulating metabolites on the process of skin aging.

Method  In the primary analyses, we applied several MR methods to study the associations between 249 metabolites 
and facial skin aging risk. In the secondary analyses, we replicated the analyses with another array of datasets includ-
ing 123 metabolites. MR Bayesian model averaging (MR-BMA) method was further used to prioritize the metabolites 
for the identification of predominant metabolites that are associated with skin aging.

Results  In the primary analyses, only the unsaturation degree of fatty acids was found significantly associated with 
skin aging with the IVW method after multiple testing (odds ratio = 1.084, 95% confidence interval = 1.049–1.120, 
p = 1.737 × 10−06). Additionally, 11 out of 17 unsaturation-related biomarkers showed a significant or suggestively 
significant causal effect [p < 0.05 and > 2 × 10−4 (0.05/249 metabolites)]. In the secondary analyses, seven metabolic 
biomarkers were found significantly associated with skin aging [p < 4 × 10−4 (0.05/123)], while six of them were related 
to the unsaturation degree. MR-BMA method validated that the unsaturation degree of fatty acids plays a dominant 
role in facial skin aging.

Conclusions  Our study used systemic MR analyses and provided a comprehensive atlas for the associations between 
circulating metabolites and the risk of facial skin aging. Genetically proxied unsaturation degree of fatty acids was 
highlighted as a dominant factor correlated with the risk of facial skin aging.
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Introduction
The skin is the largest organ, covering the entire surface of 
the human body [1]. Exploring the mechanisms involved 
in skin aging, especially facial aging, has been an area of 
interest, not only for esthetic purposes but also because 
they may provide mechanistic insights into diseases with 
similar mechanisms [2, 3]. The process of skin aging is 
affected by circulating metabolites which are involved in 
a variety of cellular processes including cellular organiza-
tion, post-translational modification as well as epigenetic 
changes [4, 5]. Some metabolic biomarkers, such as the 
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levels of unsaturated lipids and polyunsaturated fatty 
acids (PUFAs), have been reported to play an important 
role in skin aging [6–10]. However, there are conflict-
ing opinions from different studies [11]. For example, a 
recent study based on mouse models found that PUFA 
supplementation can protect mice from photoaging [9]. 
However, another study reported that PUFA supple-
mentation may induce inflammation and extracellular 
matrix degradation [10]. There are several reasons that 
may lead to the contradictory results. Firstly, some stud-
ies have been performed on cultured cells or on mouse 
models, where the conditions may differ from the real-
life skin aging process [9, 10]. Furthermore, randomized 
controlled trials are not an option due to ethical consid-
erations and feasibility. Therefore, most of the studies are 
based on observational designs, in which the influence of 
confounding factors or reverse causality cannot be com-
pletely ruled out [12]. Finally, circulating metabolites can 
be divided into multiple subclasses, while different sub-
classes of metabolites may have distinct effects. Although 
various types of dietary intake have been studied in dif-
ferent aspects of tissue aging, the overall effect of the 
complex dietary components is difficult to imply the net 
effect of individual supplements [13]. Therefore, novel 
methodologies, which are unbiased by confounders, are 
needed for further exploration. Due to the increasing 
popularity of long-term oral supplementation of micro-
nutrients in modern society, it appears as an urgent need 
for systematic epidemiological evaluation demonstrating 
the overall impact of metabolites on skin aging.

Mendelian randomization (MR) is an epidemiological 
method that employs genetic variants as instrumental 
variables to proxy an exposure variable of interest and 
study the effect of the exposure on a certain outcome 
[14]. Since single-nucleotide polymorphisms (SNPs) 
are assigned randomly at conception, they are unlikely 
to be affected by confounding factors [15]. The bias to 
reverse causality is also diminished as genetic variants 
cannot be affected by the development of the outcome 
traits [15]. Furthermore, the genetic instrumental vari-
ables reflect lifetime exposure, making MR an ideal tool 
to study aging-related topics. Nowadays, with the advent 
of high-throughput metabolomics, the levels of hundreds 
of circulating metabolites can be measured simultane-
ously. Several genome-wide association studies (GWASs) 
investigating associations between circulating metabolic 
biomarkers and SNPs were recently published [16–18]. 
In this study, by integrating the largest human genomic 
datasets to date, we employed several MR methods to 1) 
estimate the causal effects of circulating metabolites on 
the risk of skin aging and 2) prioritize the metabolites 
that promote skin aging after adjusting for the effects of 
similar ones.

Materials and methods
Study design
In this study, we have used instrumental variables 
obtained from two different metabolomics quantitative 
trait loci studies on circulating metabolites for primary 
and secondary analyses, respectively, to study the roles of 
plasma metabolites on skin aging. For the primary analy-
ses, the summary-level GWAS datasets of 249 circulating 
metabolites that were divided into nine major categories 
were obtained from UK Biobank (unpublished, accessible 
via MRC IEU OpenGWAS database). Skin aging-related 
GWAS datasets were obtained from a recent publication 
by Roberts V. et al. [3]. For the secondary analyses, sum-
mary-level statistics on 123 circulating metabolites were 
obtained from Kettunen et  al. [18] and two-sample MR 
analyses were performed to further validate our findings. 
Considering that the metabolites in the same subcategory 
were highly correlated, we performed an MR Bayes-
ian model averaging (MR-BMA) analysis to prioritize 
the effect of major metabolites [19]. Only individuals of 
European ancestry were included in the analyses. Writ-
ten informed consent and approval from the local ethical 
committee were obtained by all included studies.

Data sources
Metabolic profile for primary analyses
Summary-level datasets on 249 circulating metabolites 
used in primary analysis were obtained from Nightingale 
Health Metabolic Biomarkers Phase 1 release study in 
UK Biobank (June 2019–April 2020) (Table 1). This study 
included 115,078 randomly selected participants. Meta-
bolic biomarkers were measured with non-fasting base-
line EDTA plasma samples by high-throughput nuclear 
magnetic resonance (NMR) (https://​bioba​nk.​ndph.​ox.​ac.​
uk/​ukb/​label.​cgi?​id=​220). The biomarkers include 168 
absolute metabolites (unit, mmol/L) and 81 metabolite 
ratios spanning multiple metabolic pathways such as 
lipoproteins, fatty acids, amino acids, and ketone bodies. 
The details of sample collection and NMR profiling have 
been depicted in previous publications [20–22].

BOLT-LMM (linear mixed model) was used to account 
for population structure, with further adjustment for age, 
sex, fasting status, and genotyping chips. Over 12.3 mil-
lion SNPs were included for further analyses after adjust-
ing for covariates and quality control.

Metabolic profile for secondary analyses
Summary-level datasets on 123 circulating metabo-
lites used in the secondary analysis were obtained from 
a previous publication by Kuttunen et al. [18] (Table 1). 
Metabolite concentrations were quantified with high-
throughput NMR spectroscopy from 10 studies includ-
ing 24,925 individuals of European ancestry. Datasets 

https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=220
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from different cohorts were analyzed separately with an 
additive model and then pooled together by a fixed-effect 
meta-analysis, with up to 12,133,295 SNPs included. 
All metabolite concentrations were adjusted for age, 
sex, time from the last meal, and ten first principal 
components.

IV selection
SNPs associated with metabolite biomarkers were 
selected with a conventional genome-wide association 
significance threshold (p < 5 × 10−8). Linkage disequi-
librium (LD) clumping was used to identify and exclude 
SNPs that were in LD (R2 > 0.001 or within ± 10,000 kilo-
base (kb) distance 1000 Genomes European-ancestry 
Reference Panel). Mean F-statistics were calculated to 
test for weak instruments as previously described [23].

Facial skin aging
Summary statistics of skin aging were obtained from 
a previous GWAS based on UK Biobank [3] (Table  1). 
Eligible participants identified from health records in 
National Health Service were invited to participate in 
baseline assessments including questionnaires, physical 
measurement, biological samples collection, and follow-
ups. The participants were asked the following questions 
in the questionnaires: “Do people say that you look…?” 
The possible answers were “Younger than you are,” “Older 
than you are,” “About your age,” “Do not know,” or “Pre-
fer not to answer.” Participants that did not respond 
were excluded from subsequent analyses. After imputa-
tion and quality control, genome-wide analysis was per-
formed with a linear mixed model using BOLT-LMM. 
Only individuals of European ancestry were included in 
the GWAS.

Mendelian randomization
The inverse-variance weighted (IVW) was used as the 
main method for causal estimation. Wald ratios of indi-
vidual SNPs’ effects on the outcome were combined 
with a fixed-effect IVW when IVs ≤ 3 or a random effect 
IVW when over 3 IVs were included. Heterogeneities 

of the IVW analyses were estimated with Cochran’s Q 
values, I2, and the H-statistics [24, 25]. We further per-
formed MR-Egger, weighted median as sensitivity analy-
ses [26–28]. MR-Egger is a method that can give valid 
causal estimates even with the existence of pleiotropy (p 
for intercept < 0.05), as it detects and corrects for poten-
tial horizontal pleiotropy [26]. The weighted median is a 
method that can be used to strengthen the causal esti-
mates when up to fifty percent of the weight in the MR 
analyses came from invalid instrument variables [27]. 
Multivariable Mendelian randomization (MVMR) is 
a method that estimates the direct effect of different 
exposures on the outcome after adjusting for the effects 
of other exposures. In this study, we have also used the 
MVMR method to estimate the causal associations of 
candidate metabolites/ratio index on the risk of facial 
skin aging adjusting for several common risk factors of 
aging including BMI, smoking behavior (cigarettes per 
day), and alcohol drinking (alcoholic drinks per week) 
[29].

Colocalization analysis
We have also performed a colocalization analysis 
between the degree of unsaturation and facial skin aging 
with HyprColoc (R package hyprcoloc: https://​rdrr.​io/​
github/​jrs95/​hyprc​oloc/) [30]. The default prior probabil-
ity that an SNP is causal to one trait was 1 × 10−4. If the 
posterior probability of one SNP being shared between 
the two traits in one region was greater than 0.8, we 
regarded it as a signal of colocalization.

MR Bayesian model averaging (MR‑BMA)
As many metabolic traits involved in the study are 
highly correlated based on sharing a substantial num-
ber of SNPs, it appears necessary to correct for the 
effects of “measured pleiotropy.” Here, we used the MR-
BMA to discover the metabolic biomarkers that play 
predominant roles in the causal associations with skin 
aging, from a group of related factors [19]. Compared 
with conventional multivariable MR methods, the MR-
BMA method is useful in disentangling the correlated 

Table 1  Detailed information of included data sources

Traits Sample size Year Population PubMed ID Web source

249 Circulating metabolites (primary 
analyses)

115,078 2020 European NA https://​www.​ukbio​bank.​ac.​uk/

123 Circulating metabolites (secondary 
analyses)

24,925 2016 European 27005,778 http://​www.​compu​tatio​nalme​
dicine.​fi/​data/​NMR_​GWAS/

Facial skin aging (perceived age) 423,992 (8,630 reported looking older 
than their biological age, 103,300 
reported looking about their age, and 
312,062 reported looking younger)

2020 European 32339537 https://​doi.​org/​10.​5523/​
bris.​21crw​snj4x​wjm2g​4qi8c​
hathha

https://rdrr.io/github/jrs95/hyprcoloc/
https://rdrr.io/github/jrs95/hyprcoloc/
https://www.ukbiobank.ac.uk/
http://www.computationalmedicine.fi/data/NMR_GWAS/
http://www.computationalmedicine.fi/data/NMR_GWAS/
https://doi.org/10.5523/bris.21crwsnj4xwjm2g4qi8chathha
https://doi.org/10.5523/bris.21crwsnj4xwjm2g4qi8chathha
https://doi.org/10.5523/bris.21crwsnj4xwjm2g4qi8chathha
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metabolic biomarkers which may act via the same causal 
pathway [31]. In this study, we followed up the results 
from primary analyses, by assessing the causal effects 
of unsaturation-related biomarkers on skin aging with 
MR-BMA. SNPs associated with all selected biomarkers 
were pooled and then strictly clumped to exclude SNPs 
in LD (R2 < 0.001 in 10,000 kb distance in 1000 Genomes 
European-ancestry Reference Panel). Posterior probabil-
ity (PP) was calculated for all specific models (i.e., one 
biomarker or a combination of multiple biomarkers). The 
marginal inclusion probability (MIP) for each biomarker, 
which is the sum of the PP over all models where the bio-
marker is present, was used to rank the causal associa-
tions of the traits with the outcome. We also calculated 
model-averaged causal effects (MACE), which demon-
strates the direct causal effect of a biomarker on skin 
aging averaged across all related models. Cook’s distance 
was used to identify outliers in the MR-BMA analyses.

Statistical analyses
All statistical analyses in this study are two-sided. For 
primary analyses, a p-value < 2 × 10−4 (0.05/249, Bonfer-
roni adjusted) was considered statistically significant, 
and a p-value between 0.05 and 2 × 10−4 was consid-
ered suggestively significant. For secondary analyses, a 
p-value < 4 × 10−4 (0.05/123, Bonferroni adjusted) was 
considered statistically significant, and a p-value between 
0.05 and 4 × 10−4 was considered suggestively significant. 
All the analyses were performed on R platform (ver-
sion 4.1.0), with “TwoSampleMR” (0.5.5), “Mendelian 

randomization” (0.5.0), “MVMR,” “HyprColoc,” and 
“ggplot2” packages [28–30, 32, 33].

Results
Primary analyses
By assessing the 249 metabolic biomarkers’ effect on 
skin aging with univariable MR analyses, only the 
unsaturation degree of fatty acids was observed to have 
a significant causal effect on skin aging after Bonferroni 
adjustment (odds ratio [OR] = 1.084, 95% confidence 
interval [CI] = 1.049–1.120, p = 1.737 × 10−06) (Fig.  1, 
Additional file 2: Table S1). The causal estimate remained 
consistent with sensitivity analyses (Additional file  2: 
Tables S2, S3). No horizontal pleiotropy was identified 
with the MR-Egger method (Additional file 2: Table S4).

Besides, 65 biomarkers were shown to have a sug-
gestively causal effect on skin aging (Additional file  2: 
Table  S1). To understand the relationships between dif-
ferent kinds of metabolic biomarkers and skin aging, 
we classified the 249 metabolic traits into nine major 
groups (Fig. 2, Additional file 1: Figs. S1–S8). Among dif-
ferent groups of biomarkers, we surprisingly found that 
unsaturation-related biomarkers showed a consistent 
association with skin aging, with 11 out of 17 unsatura-
tion-related biomarkers showing a significant or sug-
gestively significant causal effect (Fig.  2). Among them, 
the ratio of PUFA to total fatty acids (OR = 1.084, 95% 
CI 1.022–1.151, p = 0.008), PUFA to monounsaturated 
fatty acids (MUFA) (OR = 1.072, 95% CI 1.025–1.121, 
p = 0.002), n-3 PUFA to fatty acids (OR = 1.054, 95% CI 

Fig. 1  Volcano plot showing the causal estimates of 249 metabolic biomarkers on facial skin aging in the primary analyses with IVW method. IVW, 
inverse-variance weighted; VLDL, very-low-density lipoprotein; HDL, High-density lipoprotein
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1.014–1.100, p = 0.008), docosahexaenoic acid (DHA) 
to total fatty acids (OR = 1.086, 95% CI 1.039–1.135, 
p = 2.679 × 10−04), n-3 PUFA (OR = 1.052, 95% CI 
1.017–1.088, p = 0.003), and DHA levels (OR = 1.066, 
95% CI 1.027–1.106, p = 8.103 × 10−04), as biomark-
ers known to be associated higher unsaturation degree, 
increased the risk of skin aging (Fig.  2). But the ratio 
of n-6 to n-3 PUFA (OR = 0.945, 95% CI 0.912–0.979, 
p = 0.002), MUFA to total fatty acids (OR = 0.932, 95% CI 
0.895–0.970, p = 5.280), linoleic acid to total fatty acids 
(OR = 0.917, 95% CI 0.869–0.968, p = 0.002), and MUFA 
levels (OR = 0.945, 95% CI 0.908–0.984, p = 0.006) were 
negatively associated with the susceptibility to skin aging 
(Fig. 2).

Heatmaps of the causal associations are shown in Addi-
tional file  1: Figs. S1–S8. Notably, multiple triglyceride-
related biomarkers showed an overall tendency to reduce 
the risk of skin aging; however, none of them remained 
significant in the sensitivity analyses (Additional file  1: 
Fig. S1).

Mean F-statistics of all metabolites were higher than 
10, indicating a low risk of weak instrument bias. Het-
erogeneity and horizontal pleiotropy for all the analyses 

are presented in Additional file  2: Tables S4 and S5. 
Detailed information on used SNPs is provided in 
Additional file 2: Table S6.

To rule out the possibility that the skin aging process 
changes the levels of candidate metabolite or saturation 
degree, we also performed a reverse MR assessing the 
causal effects of facial skin aging on the 249 metabolic 
biomarkers. We observed no significant effects of facial 
skin aging on any of the included biomarkers with the 
IVW method (Additional file 2: Table S15).

We further performed a colocalization analysis to test 
whether the degree of unsaturation colocalizes with 
facial skin aging, and we identified potential colocali-
zation of the two traits at two regions. One candidate 
causal SNP rs13107325 is in region Chr4:102688709-
103688709, in gene SLC39A8, with a posterior prob-
ability of 0.887 and regional probability of 0.897. The 
other candidate causal SNP rs174564 is in region 
Chr11:60953822-61953822, with a posterior probabil-
ity of 0.7938 and regional probability of 1. Interestingly, 
rs174564 is in a protein-encoding gene FADS2 (fatty 
acid desaturase 2) which encodes an enzyme that regu-
lates unsaturation of fatty acids by introducing double 
bonds between defined carbons of the fatty acyl chain.

Fig. 2  Heatmap showing the causal estimates of unsaturation-related traits on facial skin aging in the primary analyses with IVW, MR-Egger, and 
weighted median methods. MR, Mendelian randomization; IVW, inverse-variance weighted
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We further used the MVMR method to estimate the 
causal associations of the degree of unsaturation on the 
risk of facial skin aging adjusting for common risk factors 
of aging including BMI, smoking behavior (cigarettes per 
day), and alcohol drinking (alcoholic drinks per week). 
All four exposures remained significantly causally associ-
ated with facial skin aging after adjusting for other factors 
(Additional file 2: Table S16).

Secondary analyses
In the secondary analyses, we estimated the causal 
effects of 123 circulating metabolic biomarkers on the 
risk of skin aging with two-sample MR. Seven out of 123 
biomarkers demonstrated statistical significance after 
adjusting for multiple testing (Fig. 3A). Interestingly, six 
of these seven biomarkers were associated with unsatura-
tion degree of fatty acids (Fig. 3A). Specifically, biomark-
ers indicative of a higher unsaturation degree, including 
average number of double bonds in a fatty acid chain 
(OR = 1.073, 95% CI 1.042–1.105, p = 2.99 × 10−06), the 
ratio of bis-allylic groups to double bonds (OR = 1.073, 
95% CI 1.042–1.105, p = 2.99 × 10−06), ratio of bis-allylic 
groups to total fatty acids (OR = 1.078, 95% CI 1.042–
1.115, p = 1.12 × 10−05), and other polyunsaturated 
fatty acids than 18:2 (OR = 1.053, 95% CI 1.025–1.082, 
p = 1.82 × 10−04), significantly increased the risk of facial 
skin aging (Fig. 3A, B). On the contrary, biomarkers that 
lead to a reduced level of unsaturation, including the 
average number of methylene groups per double bond 
(OR = 0.916, 95% CI 0.892–0.941, p = 1.77 × 10−10) and 
the average number of methylene groups in a fatty acid 
chain (OR = 0.888, 95% CI 0.847–0.929, p = 4.13 × 10−07), 
were inversely correlated with skin aging predisposition 
(Fig.  3a, b). The significance of the unsaturation-related 
traits remained consistent in all the sensitivity analyses 
(Additional file  1: Fig. S9). Causal estimates from sensi-
tivity analyses, horizontal pleiotropy, and heterogeneity 
are shown in Additional file  2: Tables S7–S11. Detailed 
information on all included IVs is presented in Additional 
file 2: Table S12.

MR Bayesian model averaging
We further performed an MR Bayesian model averag-
ing analysis with 17 unsaturation-related traits from the 
primary analyses. A total of 463 SNPs were identified as 
associated with the 17 biomarkers after removing dupli-
cate SNPs. We then removed SNPs in LD and retained 
214 SNPs for downstream analyses (Additional file  2: 
Table S13).

In the MR-BMA analyses, we selected the best models 
with the highest posterior probability (Additional file  2: 
Table S14). After that, the MIPs of all included metabo-
lite biomarkers were calculated and used to rank the 

biomarkers for their causal associations with skin aging 
risk (Table  2). Degree of unsaturation was identified as 
the top-ranked biomarker that increases the risk of skin 
aging (MIP = 0.654, average effect = 0.056, p = 0.010). 
Besides, the ratio of PUFA to MUFA (MIP = 0.106, aver-
age effect = 0.008, p = 0.040) and MUFA percentage 
(MIP = 0.093, average effect = -0.006, p = 0.040) were also 
identified to be independently associated with skin aging 
(Table  2). No outliers were identified in the analyses by 
using Cook’s distance (Additional file  1: Figures  S10–
S12). We have used the Q-statistics for identifying out-
liers in MR-BMA; after removing outliers, degree of 
unsaturation remained the top-ranked biomarker asso-
ciated with the risk of skin aging (MIP = 0.852, average 
effect = 0.073, p = 0.010) (Additional file 1: Fig. S13).

Discussion
The aging process may be influenced by various factors 
including intrinsic aging, environment, and lifestyle hab-
its [34–37]. Nutritional factors have been shown to play 
an important role in maintaining the normal function of 
the skin [38]. However, the association between nutri-
tional status and changes in skin appearance remains 
unclear. Our study, for the first time, comprehensively 
studied the individual causal effects of a broad range of 
circulating metabolic traits on the predisposition of skin 
aging. Our results highlighted the effect of the degree of 
unsaturation and several unsaturation-related metabo-
lites on the risk of skin aging. We also observed that 
multiple triglyceride-related biomarkers showed a trend 
toward reduced skin aging risk. This further confirmed 
the robustness of our analyses as triglycerides are a major 
component of sebum, which is known to be important 
for moisturizing and protecting human skin [39].

There are limited publications on unsaturated fatty 
acids in skin aging. Some studies found an improved 
photoprotection with dietary supplementation of PUFAs 
[12, 40–42]. However, most of these studies were based 
on observational designs or short-term oral supplemen-
tation and only assessed the interaction of unsaturation 
with environmental risk factors for skin aging such as 
sunlight exposure. The long-term effects of lipid unsatu-
ration degree on skin aging process are still not fully 
established. Besides, oral supplementation commonly 
contains several categories of unsaturated fatty acids, 
while fatty acids with different degrees of unsaturation 
may generate diverse effects on skin aging [9, 42]. Even 
though shown to be photoprotective, fat unsaturation 
has also been reported to be associated with aging by 
several studies [9, 43, 44]. A higher degree of fat unsatu-
ration in tissue membrane promotes the aging process 
through free radical production and oxidative stress [45, 
46]. This is consistent with our observations in this study 
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Fig. 3  Causal effects of circulating metabolome on facial skin aging in the secondary analyses. A Volcano plot showing the causal estimates of 123 
metabolic traits on facial skin aging in the secondary analyses with IVW method; B forest plots showing the causal estimates of seven metabolic 
traits that are significantly associated with facial skin aging in the secondary analyses with IVW, MR-Egger, and weighted median methods. MR, 
Mendelian randomization; IVW, inverse-variance weighted, No., number; SNP, single-nucleotide polymorphism; CI, confidence interval
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that genetically proxied degree of unsaturation was pos-
itively correlated with the risk of facial skin aging as an 
independent risk factor (Fig.  1). We also observed that 
increased ratios of total PUFA, n-3 PUFA, and DHA tend 
to contribute to skin aging, while a higher ratio of n-6 
to n-3 PUFA, and the ratio of linoleic acid, reduced the 
risk of skin aging (Fig. 1). Intriguingly, neither the abso-
lute level nor the percentage of saturated fatty acids were 
associated with facial skin aging in any of the methods of 
analysis, suggesting that changes in the proportions of 
different kinds of unsaturated fatty acids with different 
degrees of unsaturation were more important factors for 
skin aging (Figs. 1, 2).

These results were validated in our secondary analyses 
with an independent dataset for circulating metabolites. 
As n-6 PUFAs have fewer double bonds than n-3 PUFAs 
(2–4 compared to 3–6 double bonds), we observed that 
a higher number of double bonds in fatty acids increased 
facial skin aging risk (Fig. 3). Furthermore, we also found 
that higher numbers and ratios of bis-allylic groups, 
which have been reported to determine cells’ susceptibil-
ity to free radical-mediated peroxidative events, added to 
the risk of skin aging (Fig. 3) [47]. DHA is a kind of n-3 
PUFA that contains five bis-allylic positions. It is highly 
sensitive to radical oxidation and may lead to deleteri-
ous advanced lipid peroxidation end products (ALEs) 
[48, 49]. When ALEs are formed at toxic levels, they may 
disrupt the cellular membrane and cause DNA damage 
[50, 51]. In this study, we also observed that genetically 

proxied higher DHA percentage and absolute level had a 
causal effect on skin aging (Fig. 2). Metabolite biomark-
ers analyzed in this study include both absolute levels 
and their percentage in total fatty acids or ratios to other 
metabolites. Intriguingly, it appears that the percentages 
of these unsaturation-related metabolites tend to gen-
erate a more significant effect on skin aging than their 
absolute concentrations (Fig. 1, Table 2). Previous publi-
cations also suggested that dietary intake of PUFA should 
be below a ceiling percentage of total energy [52]. The 
evidence suggests that maintaining a rational propor-
tion of dietary unsaturated fatty acids might be of great 
importance to prevent their adverse effects on human 
skin.

The effects of PUFA on aging and obesity have also 
been intensively studied in mouse models. It has been 
shown that linoleic acid, compared with saturated fat, is 
more prone to induce obesity and insulin resistance and 
reduce motility (14962692, 22334255, 27886622). To rule 
out the potential confounding factors and mediation 
effects, we also performed the MVMR to adjust for BMI 
and common lifestyle habits that could lead to metabolic 
dysregulation. Notably, our MVMR results further con-
firmed our MR findings, indicating that the unsaturation 
degree of fatty acid may be an independent risk factor in 
inducing facial aging.

There are several strengths and limitations of our 
study. To our knowledge, this is the first study employ-
ing an MR approach to assess the effects of individual 

Table 2  Ranking of unsaturation-related metabolic biomarkers for the risk of skin aging using MR-BMA

MIP marginal inclusion probability, MR Mendelian randomization, MR-BMA MR based on Bayesian model averaging, PUFA polyunsaturated fatty acids, MUFA 
monounsaturated fatty acids, DHA docosahexaenoic acid, LA linoleic acid, SFA saturated fatty acids

Metabolite biomarkers MR-base ID Ranking 
by MIP

MIP Average effect p value

Degree of unsaturation met-d-Unsaturation 1 0.654 0.056 0.009901

Ratio of polyunsaturated fatty acids to monounsaturated fatty acids met-d-PUFA_by_MUFA 2 0.106 0.008 0.039604

Ratio of monounsaturated fatty acids to total fatty acids met-d-MUFA_pct 3 0.093 − 0.006 0.039604

Ratio of polyunsaturated fatty acids to total fatty acids met-d-PUFA_pct 4 0.088 0.007 0.09901

Ratio of docosahexaenoic acid to total fatty acids met-d-DHA_pct 5 0.067 0.002 0.366337

Docosahexaenoic acid met-d-DHA 6 0.025 − 0.001 0.930693

Ratio of omega-3 fatty acids to total fatty acids met-d-Omega_3_pct 7 0.02 0.002 0.930693

Ratio of linoleic acid to total fatty acids met-d-LA_pct 8 0.018 − 0.001 0.960396

Ratio of omega-6 fatty acids to total fatty acids met-d-Omega_6_pct 9 0.017 0.001 0.970297

Ratio of omega-6 fatty acids to omega-3 fatty acids met-d-Omega_6_by_Omega_3 10 0.016 0.001 0.950495

Linoleic acid met-d-LA 11 0.013 − 0.002 0.980198

Monounsaturated fatty acids met-d-MUFA 12 0.012 − 0.001 0.039604

Omega-6 fatty acids met-d-Omega_6 13 0.011 0.001 0.980198

Omega-3 fatty acids met-d-Omega_3 14 0.011 0 0.970297

Saturated fatty acids met-d-SFA 15 0.008 0 0.990099

Polyunsaturated fatty acids met-d-PUFA 16 0.007 0 0.990099

Ratio of saturated fatty acids to total fatty acids met-d-SFA_pct 17 0.005 0 1
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circulating metabolites on skin aging. This is particu-
larly important as results from observational studies 
or experimental mouse models are based on the aggre-
gate effect of different dietary intake components [53]. 
Our results highlighted the importance of unsaturation 
degree in facial skin aging and provided a good reference 
for future studies. Besides, by using genetic variants as 
instrumental variables for the metabolic biomarkers, we 
minimized the bias from confounding factors and reverse 
causality. Also, the results remained consistent across 
the primary and replication analyses, which guaranteed 
the robustness of the findings. Lastly, the study popula-
tion were refined to individuals of European ancestry to 
minimize bias from population stratification. However, 
this also restricted the generalizability of the conclusions, 
and it is necessary to validate the findings in other popu-
lations. Another restriction is that using genetic variants 
as proxies mimics a lifetime exposure, while oral sup-
plementation for short period may generate a different 
effect. Finally, the metabolic biomarkers were measured 
in a non-fasting population, which can lead to inaccu-
rate measurements. Nevertheless, the GWASs of the 
metabolites were adjusted for fasting time and found the 
alterations in the estimates were neglectable. Lastly, our 
MR study is unable to explore the cellular and molecu-
lar mechanisms underlying the effects of metabolites on 
facial aging. The gene GPR120 has been identified as the 
natural receptor of PUFA; we believed that further inves-
tigations using mutant mouse models (such as Gpr120 
mutant mice), skin cell in vitro culture, single-cell RNA-
seq, and proteomics experiments are warranted to reveal 
the detailed molecular events in skin tissue after the sup-
plementation of PUFA.

In conclusion, our study provided evidence suggesting 
the unsaturation degree of circulating fatty acids as the 
predominant trait that is involved in the development 
of facial skin aging. Further studies are needed to inves-
tigate the role of long-term supplementation of unsatu-
rated fatty acids in facial skin aging.
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