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Abstract 

Background  Knowledge of the frequency of rare SERPINA1 mutations could help in the management of alpha1 anti‑
trypsin deficiency (AATD). The present study aims to assess the frequencies of rare and null alleles and their respiratory 
and hepatic pathogenicity.

Methods  This is a secondary analysis of a study that evaluated the viability of the Progenika diagnostic genotyping 
system in six different countries by analyzing 30,827 samples from cases of suspected AATD. Allele-specific genotyp‑
ing was carried out with the Progenika A1AT Genotyping Test which analyses 14 mutations in buccal swabs or dried 
blood spots samples. SERPINA1 gene sequencing was performed for serum AAT-genotype discrepancies or by request 
of the clinician. Only cases with rare mutations were included in this analysis.

Results  There were 818 cases (2.6%) carrying a rare allele, excluding newly identified mutations. All were het‑
erozygous except for 20 that were homozygous. The most frequent alleles were the M-like alleles, PI*Mmalton and 
PI*Mheerlen. Of the 14 mutations included in the Progenika panel, there were no cases detected of PI*Siiyama, PI*Q0granite 

falls and PI*Q0west. Other alleles not included in the 14-mutation panel and identified by gene sequencing included 
PI*Mwürzburg, PI*Zbristol, and PI*Zwrexham, and the null alleles PI*Q0porto, PI*Q0madrid, PI*Q0brescia, and PI*Q0kayseri.

Conclusions  The Progenika diagnostic network has allowed the identification of several rare alleles, some unex‑
pected and not included in the initial diagnostic panel. This establishes a new perspective on the distribution of these 
alleles in different countries. These findings may help prioritize allele selection for routine testing and highlights the 
need for further research into their pathogenetic role.
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Introduction
In recent decades, the number of described mutations 
of the SERPINA1 gene associated with alpha1 antit-
rypsin deficiency (AATD) has increased considerably. 
Beyond the two most frequent mutations, the S muta-
tion (c.863A > T) and the Z mutation (c.1096G > A) [1], 
the number of described variants has risen to more than 
500 [2]. Usually, the identification of these rare muta-
tions is initiated by a discrepancy between the serum 
AAT level and the mutation found by direct genotyp-
ing [3]. For this reason, rare mutations are usually con-
sidered to be pathogenetic. However, most have been 
described in individual cases without thorough exami-
nation of their pathogenetic capacity [4]. Moreover, the 
frequency of these rare mutations in a large population 
of AATD patients has not been consistently described. It 
is clear that the mutation should be identified in AATD 
cases with significant pulmonary or hepatic involvement 
[5]. Knowing the frequency of these rare mutations could 
help in the management of the disease and in prioritiz-
ing allele identification in routine practice. This could 
also highlight the gaps in our understanding of the patho-
physiologic behavior of these mutations.

Recently, our group published the results of a new 
system for AATD diagnosis based on buccal swabs and 
dried blood spots samples. After analyzing more than 
30,000 samples from six countries, the study showed 
this diagnostic procedure was feasible and suitable for 
the genetic diagnosis of AATD [1, 3]. The implementa-
tion of this AATD diagnostic network has revealed that 
there are 14 mutations that can explain the majority of 
the pathological cases of this disease. Using the data from 
this study, the present analysis describes the frequencies 
of rare alleles and relate them to the available data on 
their respiratory and hepatic pathogenicity. These results 
will help understand the epidemiological importance of 
the mutations in each geographic area and will highlight 
the research needed for a more complete understanding 
of the pathogenetic potential of these mutations.

Methods
This is a secondary analysis of the data from a study 
evaluating the Progenika diagnostic system (Progenika 
Biopharma, Derio, Vizcaya, Spain) in 30,827 samples 
from patients with suspected AATD from six different 
countries. This diagnostic network found mutations in 
9,528 (30.9%) of the samples. The methodology has been 
previously described [1]. Briefly, this was an observa-
tional, cross-sectional analysis analyzing the anonymized 
data included on the Progenika web platform (https://​
grifo​lsalp​ha1te​st.​com/) from March 12, 2018, to Janu-
ary 10, 2022. The collection kits for sampling with the 
dried blood spots or buccal swabs were provided to 

participating centers free of charge by Grifols (Barce-
lona, Spain) upon request from the treating physicians. 
For the current analysis, samples from Argentina, Brazil, 
Chile, Colombia, Spain, and Turkey were analyzed. The 
samples were registered on the web platform through a 
unique code associated with each sample collection kit 
and sent by post to the reference laboratory at the Pro-
genika headquarters.

When registering the sample on the website, clinicians 
were asked to include some clinical data about the patient 
including age, smoking status (smoker, former smoker or 
never smoker), serum AAT level, and forced expiratory 
volume in one second (FEV1, expressed as a percentage 
of its predicted value), and the reasons for requesting the 
test. Although inclusion of these data was not manda-
tory, the AAT level was considered for concordance with 
the genotype and, if not concordant, the SERPINA1 gene 
was sequenced. Per the Spanish guidelines [6], AAT lev-
els ≤ 50 mg/dl were considered a severe deficiency.

Allele-specific genotyping was carried out with the 
Progenika A1AT Genotyping Test. The test uses poly-
merase chain reaction amplification to obtain large 
amounts of target sequences from the SERPINA1 gene. 
The Luminex® 200 system to detect previously labeled 
amplified fragments, as previously described [3]. The 
test and OCR100 buccal swabs used to collect the sam-
ples are CE marked (European Conformity) and United 
States Food and Drug Administration approved. The test 
is intended for use with genomic DNA extracted from 
human whole blood samples collected as dried blood 
spots or from human buccal swab samples using ORAc-
ollect Dx OCD-100.

The test can identify the 14 most frequent deficiency 
variants of the SERPINA1 gene, namely PI*S, PI*Z, 
PI*I, PI*Mprocida, PI*Mmalton, PI*Siiyama, PI*Q0granite falls, 
PI*Q0west, PI*Q0bellingham, PI*F, PI*Plowell, PI*Q0mattawa, 
PI*Q0clayton, and PI*Mheerlen. When none of the 14 alleles 
was found, the result was noted as negative and inter-
preted as an M allele. The absence of any of these 14 
alleles suggests with over 99% probability that the geno-
type corresponds to PI*M, unless there was a discrepancy 
with AAT levels. In those cases, gene sequencing was 
conducted.

For the current analysis, only cases with rare muta-
tions identified by the Progenika diagnostic system were 
included. Accordingly, those cases with genotypes exclu-
sively resulting from a combination of S or Z alleles (MS, 
MZ, SS, SZ and ZZ) were excluded from this analysis. 
Newly identified mutations not previously described 
were also excluded. After the identification of all rare 
alleles, we performed a non-systematic review of the lit-
erature looking for information on these rare alleles by 
searching for the name of the allele in PubMed.

https://grifolsalpha1test.com/
https://grifolsalpha1test.com/
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Results
The number of patients with rare variants was 818 (2.7% 
out of 30,827 samples; 8.6% out of 9,528 carrying any 
mutation). The flowchart of the distribution of the sam-
ples is available from a previous analysis [1]. The num-
ber of patients carrying rare alleles is listed by country 
in Table  1. Severe AAT deficiency was seen in 572 
patients (9.8% of those with serum AAT values). All cases 
were heterozygous except for the following (n = 20): 1 
homozygous PI*Mprocida (n = 1), homozygous PI*Mmalton 
(n = 13), homozygous PI*Mheerlen (n = 1), homozygous 
PI*Plowell (n = 4), and homozygous PI*Q0mattawa (n = 1). 
Of the 14 mutations included in the Progenika panel, 
no cases of PI*Siiyama, PI*Q0granite falls and PI*Q0west were 
found. Other alleles not included in the initial 14-muta-
tion panel were identified by gene sequencing. They 
included PI*Mwürzburg, PI*Zbristol, and PI*Zwrexham, and 
the null alleles PI*Q0porto, PI*Q0madrid, PI*Q0brescia, and 
PI*Q0kayseri.The frequency of rare and null alleles in the 
different countries are summarized in the Table 2.

The frequency of the different M-like rare alleles is 
shown in Fig.  1. The most frequent M-like allele was 
PI*Mmalton followed by PI*Mheerlen. Although these alleles 
were identified predominantly in the samples from Spain, 
some combinations (PI*Mmalton, PI*Mheerlen or PI*Mprocida) 
were found in samples from other countries. After Spain, 
Brazil had the most of these rare mutations.

The frequency of other rare alleles is shown in Fig.  2. 
PI*I was the most common and was predominantly found 
in samples from Spain. The allele PI*F was also frequently 
identified. Other alleles were less frequent, but some 
were identified in Turkey, e.g., combinations with Plowell.

The null alleles are summarized in Fig.  3. The most 
frequent null allele was Q0mattawa. These alleles were less 
frequent, and homozygous combinations were extremely 
rare. The Q0kayseri mutation is native to Turkey, but the 
only homozygous case for Q0brescia was also found in a 
sample from that country. Information on these muta-
tions from a non-systematic literature review is summa-
rized in Table 3.

Discussion
The present study assessed the frequency of rare muta-
tions in a large sample of cases with suspected AATD 
in six countries. Our results show the low frequency of 
these alleles and their distribution in different countries 
and help identify which variants are more frequent in dif-
ferent geographical areas. Our data indicate that these 
so-called rare variants may not be as rare when a thor-
ough diagnostic system is used.

AATD is an inherited disorder that increases the risk 
of lung and liver disease. Numerous point mutations of 
the SERPINA1 gene have been identified so far, although 

many of them are not associated with an increased risk 
for developing respiratory or liver disorders [2]. Conse-
quently, the identification of less frequent, but conse-
quential mutations and their characterization are relevant 
objectives for the management of AATD. Greater under-
standing of the underlying biologic pathways leading to 
cell damage in AATD will also be of benefit for the treat-
ment of AATD [7]. This is of special importance in the 
current pandemic situation with potential associations 
between AATD and COVID19 [8, 9]. The Progenika 
diagnostic network is formed by those countries using 
the Progenika system as the diagnostic standard for 
AATD. Other countries have started to use a similar sys-
tem including Italy [10] and Germany [11].

The main strengths of our study are the large number 
of samples analyzed, the simultaneous determination of 
several genotypes and the sequencing of samples from 
different countries, allowing the assessment of the geo-
graphic distribution of these mutations. However, there 
are some limitations that must be taken into account 
when interpreting our results. This is not a population-
based study, but a highly selected population of patients 
with suspected AATD. Accordingly, the prevalence fig-
ures may overestimate the prevalence of AATD in the 
general population. Another note of caution should be 
considered in the cases with hepatopathy of unknown 
cause. The clinicians participating in this circuit were 
mostly pulmonologists or general practitioners. There-
fore, cases with hepatopathy of unknown cause may be 
under-represented. The addition of liver disease special-
ists to the evaluation of these patients might contribute 
to the detection of cases of AATD in this clinical con-
text. Additionally, not all samples were sequenced, only 
those with a discrepancy between the serum level of 
AAT and the mutation found. There was a considerable 
number of cases with no AAT level available. Therefore, 
there may be an underestimation of some alleles. Finally, 
serum AAT and FEV1 reported in Table  1 are influ-
enced by the other accompanying allele in heterozygosis. 
Consequently, these data may lead to a false picture of 
the impact of these alleles on AAT levels or the result-
ing functional impairment. Interestingly, the majority of 
cases with AAT values available presented as non-severe 
AATD, suggesting that these alleles cannot be ruled out 
by the level of serum AAT alone.

Despite these limitations, this is the largest study to 
date that includes analysis of the frequency of rare vari-
ants in a sample of patients with suspected AATD. The 
frequency of these rare alleles has been previously 
reported in several individual countries including Ger-
many [12], Italy [13, 14], Tunisia [15], Switzerland [16], 
Spain [17], Poland [18], Turkey [19] and the USA [20]. 
In these studies, the frequency of rare alleles ranged 
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Table 1  Rare and null alleles with their clinical characteristics by order of frequency

n Age (years) Smoking habits AAT available AAT (mg/dl) FEV1 available FEV1 (%)

Exsmoker Never Current

All combinations 818 49.3 (19.8) 281 (34.4) 382 (46.7) 155 (18.9) 373 (45.6) 67.6 (28.0) 40.7 (49.8) 77.7 (27.3)

M/M malton 235 45.9 (20.8) 58 (24.7%) 127 (54.0%) 50 (21.3%) 110 (46.8) 78.2 (14.9) 88 (37.4) 80.7 (27.5)

M/I 126 54.8 (19.2) 51 (40.5%) 52 (41.3%) 23 (18.3%) 29 (23.0) 95.5 (28.4) 59 (46.8) 72.9 (25.4)

M/P lowell 105 47.2 (19.8) 35 (33.3%) 47 (44.8%) 23 (21.9%) 28 (26.7) 95.8 (28.2) 46 (43.8) 79.9 (20.1)

S/M malton 60 50.1 (21.1) 23 (38.3%) 26 (43.3%) 11 (18.3%) 110 (46.8) 48.1 (13.9) 41 (68.3) 80.2 (26.9)

S/I 36 48.1 (17.4) 16 (44.4%) 14 (38.9%) 6 (16.7%) 19 (52.8) 76.2 (24.1) 17 (47.2) 75.7 (30.0)

Z/M malton 30 51.2 (13.8) 14 (46.7%) 10 (33.3%) 6 (20.0%) 18 (60.0) 21.3 (14.8) 16 (53.3) 52.0 (30.9)

M/M heerlen 26 49.8 (20.6) 7 (26.9%) 15 (57.7%) 4 (15.4%) 14 (53.8) 71.5 (10.2) 16 (61.5) 77.9 (24.6)

M/F 23 52.9 (22.2) 8 (34.8%) 11 (47.8%) 4 (17.4%) 3 (13.0) 113.3 (14.9) 8 (34.8) 71.7 (30.0)

M/M procida 21 49.1 (19.5) 6 (28.6%) 7 (33.3%) 8 (38.1%) 12 (57.1) 72.5 (10.5) 16 (76.2) 81.7 (21.7)

M/Q0 mattawa 21 52.6 (19.8) 8 (38.1%) 11 (52.4%) 2 (9.5%) 11 (52.4) 63.4 (12.4) 13 (61.9) 83.2 (21.6)

S/P lowell 18 40.5 (16.4) 4 (22.2%) 10 (55.6%) 4 (22.2%) 14 (77.8) 77.1 (21.1) 11 (61.1) 96.1 (16.5)

M malton/M malton 13 52.2 (21.5) 5 (38.5%) 6 (46.2%) 2 (15.4%) 7 (53.8) 22.5 (6.8) 9 (69.2) 66.8 (28.9)

Z/P lowell 12 56.5 (18.9) 6 (50.0%) 4 (33.3%) 2 (16.7%) 9 (75.0) 38.9 (10.9) 9 (75.0) 90.7 (39.1)

Z/I 11 57.6 (13.4) 5 (45.5%) 3 (27.3%) 3 (27.3%) 8 (72.7) 64.0 (11.9) 7 (63.6) 76.8 (29.9)

M/Q0 bellingham 6 22.0 (17.4) 1 (16.7%) 5 (83.3%) 0 (0.0%) 6 (100) 78.2 (8.4) 3 (50.0) 92.3 (3.5)

F/Z 5 40.2 (30.9) 2 (40.0%) 2 (40.0%) 1 (20.0%) 4 (80.0) 76.0 (7.1) 5 (100) 58.0 (38.5)

F/S 4 45.2 (15.5) 1 (25.0%) 1 (25.0%) 2 (50.0%) 1 (25.0) 88.0 1 (25.0) 77.0

P lowell/P lowell 4 48.7 (9.2) 3 (75.0%) 1 (25.0%) 0 (0.0%) 3 (75.5) 57.0 (11.2) 3 (75.0) 71.6 (24.5)

S/M heerlen 4 42.5 (20.2) 2 (50.0%) 2 (50.0%) 0 (0.0%) 2 (50.0) 40.0 (0.0) 3 (75.0) 97.3 (6.4)

Z/M procida 4 64.0 (9.5) 0 (0.0%) 4 (100.0%) 0 (0.0%) 2 (50.0) 21.5 (0.7) 1 (25.0) 95.0

Z/Q0 mattawa 4 57.7 (12.7) 1 (25.0%) 2 (50.0%) 1 (25.0%) 3 (75.0) 23.6 (5.5) 2 (50.0) 73.5 (43.1)

S/M procida 3 63.3 (15.0) 2 (66.7%) 1 (33.3%) 0 (0.0%) 2 (66.7) 41.5 (4.9) 3 (100) 86.3 (29.2)

S/Q0 mattawa 3 55.6 (7.5) 1 (33.3%) 1 (33.3%) 1 (33.3%) 3 (100) 34.3 (11.9) 3 (100) 90.3 (20.3)

Z/M heerlen 3 58.6 (9.6) 2 (66.7%) 1 (33.3%) 0 (0.0%) 1 (33.3) 19.0 2 (66.7) 48.0 (26.8)

Z/M palermo 3 62.3 (6.6) 1 (33.3%) 2 (66.7%) 0 (0.0%) 1 (33.3) 20.0 1 (33.3) 31.0

Z/M würzburg 3 59.0 (15.6) 3 (100.0%) 0 (0.0%) 0 (0.0%) 3 (100) 47.6 (7.1) 3 (100) 92.0 (14.7)

I/P lowell 2 51.0 (14.1) 1 (50.0%) 1 (50.0%) 0 (0.0%) 2 (100) 65.5 (6.3) 2 (100) 107.0 (11.3)

M malton/M heerlen 2 41–0 (31.1) 1 (50.0%) 1 (50.0%) 0 (0.0%) 1 (50.0) 20.0 1 (50.0) 35.0

M/M palermo 2 41.5 (3.5) 0 (0.0%) 1 (50.0%) 1 (50.0%) 2 (100) 55.0 (1.4) 2 (100) 93.0 (18.3)

Z/Z wrexham 2 60.0 (1.4) 2 (100.0%) 0 (0.0%) 0 (0.0%) 1 (50.0) 57.0 1 (50.0) 29.0

M/Q0 clayton 1 72.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 1 (100) 63.0 1 (100) 114.0

F/I 1 49.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0) – 0 (0.0) –

F/Q0 mattawa 1 60.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 1 (100) 65.0 1 (100) 27.0

I/M heerlen 1 88.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 1 (100) 52.0 0 (0.0) –

I/M malton 1 15.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0) – 0 (0.0) –

M heerlen/M heerlen 1 49.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0) – 1 (100) 40.0

M malton/P lowell 1 51.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 1 (100) 40.0 0 (0.0) –

M procida/M procida 1 55.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0) – 0 (0.0) –

M/M malton + c.-
428G > A + c.424C > T

1 54.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 1 (100) 18.0 1 (100) 96.0

M/M pro‑

cida + c.194 T > C + c.853C > T
1 45.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 1 (100) 20.0 0 (0.0) –

M/M procida + Q0 porto 1 55.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 1 (100) 40.0 1 (100) 60.0

M/M würzburg 1 73.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 1 (100) 3.0 1 (100) 70.0

M/P lowell + c. − 109 + 41A > G 1 59.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 1 (100) 52.0 1 (100) 75.0

M/P lowell + Y orzinuovi 1 58.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 1 (100) 54.0 1 (100) 135.0

M/Q0 madrid 1 61.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 1 (100) 80.0 0 (0.0) –

M/Q0 mattawa + c.1052del 1 52.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 1 (100) 5.0 1 (100) 31.0
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from 0.5% of all screened patients in Germany [12] to 
4.1% in Tunisia [15] corresponding to 1.7% of cases with 
any mutation in Germany [12] and 20% in Tunisia [15]. 
In Turkey, our data showed a higher frequency of rare 
alleles, in line with recently published data from this 
country [19] within the Progenika network.

The information obtained from our literature review 
should be interpreted with caution since some muta-
tions have low case numbers, and their effects may be 
influenced by an accompanying mutation. Addition-
ally, some mutations have been assigned more than one 
name. There were two major allele complexes that are 
worth noting. The Mmalton complex includes the Mmalton 
(c.227_229delTCT on M2 variant), Mpalermo (same muta-
tion on M1V variant) and Mnichinan (same mutation with 
an additional mutation c.514G > A that does not seem to 
have a deleterious effect on its own). The Plowell complex 
includes Plowell (c.839A > T on M3 variant) and Pduarte, 
(same mutation on M1 variant; also known as Q0cardiff). 
The Plowell mutation is also seen in Ybarcelona which results 

from the combination of Plowell and Yorzinuovi in the same 
gene [21].

PI*I and PI*F were first alleles described in 1967 [22]. 
PI*I allele has been associated with moderate AATD with 
serum concentrations similar to those observed with the 
S allele [23]. PI*II homozygotes usually have AAT levels 
around 50 mgr/dL [24, 25]. Liver involvement is not usu-
ally seen with PI*I unless it is accompanied by an allele 
associated with liver involvement [26]. The serum con-
centration and function associated with the PI*F allele 
are at least 80% of that of the M allele [27, 28]. However, 
the PI*F allele shows a decreased ability to bind and less 
time-dependent inhibition of human neutrophil elastase 
compared to the M phenotype and similar inhibition 
to that of the Z phenotype [29]. The PI*F allele has a 
reduced functional ability to inhibit neutrophil elastase 
but not proteinase 3 [30], suggesting that inheritance 
of the F variant may increase a person’s susceptibility 
to elastase-induced lung damage, but not necessarily to 
emphysema. Due to normal hepatic secretion, it does not 

Data expressed as mean (standard deviation) or as absolute (relative) frequencies depending on the nature of the variable

AAT​ Alpha1 antitrypsin, FEV1 Forced expiratory volume in 1 s

Table 1  (continued)

n Age (years) Smoking habits AAT available AAT (mg/dl) FEV1 available FEV1 (%)

Exsmoker Never Current

M/Z bristol 1 69.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 1 (100) 59.0 1 (100) 134.0

P lowell / Z bristol 1 60.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 1 (100) 22.0 0 (0.0) –

P lowell/Y orzinouvi 1 37.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 1 (100) 44.0 0 (0.0) –

Q0 brescia/Q0 
brescia + c. − 10 T > C

1 55.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 1 (100) 18.0 0 (0.0) –

Q0 kayseri/Q0 kayseri 1 43.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 1 (100) 29.0 0 (0.0) –

Q0 mattawa/Q0 mattawa 1 68.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0) – 1 (100) 54.0

S/M palermo 1 77.0 0 (0.0%) 0 (0.0%) 1 (100.0%) 1 (100) 40.0 1 (100) 42.0

S/M würzburg 1 56.0 1 (100.0%) 0 (0.0%) 0 (0.0%) 1 (100) 40.0 1 (100) 53.0

S/Q0 madrid 1 56.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 1 (100) 40.0 1 (100) 80.0

S/Z bristol 1 56.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 1 (100) 56.0 1 (100) 131.0

S/Z bristol + c.-
428G > A + c.-10 T > C

1 74.0 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0) – 0 (0.0) –

Table 2  Frequency of rare and null alleles in the different countries

Data expressed as absolute numbers with percentages in parenthesis; first value showing percentages referred to the total number of samples in the geographical 
area, second value showing percentages referred to the total number of cases with mutations in the geographical area

Argentina 
(n = 2,941)

Brazil 
(n = 2,620)

Chile 
(n = 3,352)

Colombia 
(n = 2,057)

LATAM 
(n = 10,520)

Spain 
(n = 18,272)

Turkey 
(n = 2,035)

All (n = 30,827)

Any mutation: 384 (15.4) 745 (28.4) 423 (12.6) 257 (12.5) 1809 (17.2) 7579 (41.5) 140 (6.9) 9528 (30.9)

Rare alleles 20 (0.8; 5.2) 66 (2.5; 8.9) 33 (1.0; 7.8) 6 (0.3; 2.3) 125 (1.2; 6.9) 576 (3.2; 7.6) 76 (3.7; 54.6) 777 (2.5; 8.2)

Null alleles 1 (0.0; 0.3) 6 (0.2; 0.8) 3 (0.1; 0.7) 0 (0.0; 0.0) 10 (0.1; 0.6) 31 (0.2; 0.4) 2 (0.1; 1.4) 43 (0.1; 0.4)

Rare + Null 21 (0.7; 5.4) 72 (2.7;9.6) 36 (1.0; 8.5) 6 (0.2; 2.3) 135 (1.2; 7.4) 607 (5.7; 8.0) 78 (3.8; 55.7) 820 (2.7; 8.6)



Page 6 of 12Lopez‑Campos et al. Human Genomics           (2023) 17:48 

produce intrahepatic accumulation and therefore, does 
not increase the risk of liver injury.

According to our results, M-like alleles are the most 
frequent in patients with suspected AATD. PI*Mmalton 
complex (PI*Mmalton, PI*Mpalermo and PI*Mnichinan) have 

a similar behavior. PI*Mmalton was first described in 1975 
in a 2-year child with a minor infection [31]. PI*Mnichinan 
was first described in 1990 in a Japanese individual with 
severe AATD (18 mg/dl), associated with aggregated AAT 
molecules in the hepatocytes [32]. Finally, PI*Mpalermo 

Fig. 1  M-like alleles distribution



Page 7 of 12Lopez‑Campos et al. Human Genomics           (2023) 17:48 	

was first described in 1994 [33]. Their presence is asso-
ciated with serum AAT levels below 15%. These muta-
tions are characterized by conformational abnormalities 
that result in polymerized/aggregated insoluble forms 
of AAT that accumulate in the endoplasmic reticulum 

of hepatocytes. Therefore, all three variants meet the 
requirements for endoplasmic reticulum storage diseases 
and conformational diseases [34, 35]. Interestingly, the 
c.514G > A additional mutation of the PI*Mnichinan does 
not contribute to AATD [32].

Fig. 2  Other rare alleles distribution
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PI*Mwürzburg was first described in 1999 on a M1Val 
basis [36], and the same mutation was identified one 
year after as PI*Mvall d’hebron but on a M1Ala basis [37]. 
These defective alleles produce a change in the amino 
acid sequence at position 369 which is associated with 
a complete intracellular transport block in cell. Inter-
estingly, the allele PI*Mheerlen has a different amino acid 
substitution in the same position which is also shown 
to cause complete retention of the mutant protein in 
the hepatocytes.

PI*Mheerlen was first described in 1981 [38]. Homozy-
gous cases have serum AAT levels 2% of normal and 
very low antitrypsin activity. The tertiary structure of 
the Mheerlen protein is significantly altered resulting in 
intracellular proteolysis. Therefore, there is no accumu-
lation of Mheerlen protein in hepatocytes [39].

PI*Mprocida was first described in 1988 [40]. This 
rare allele encoding AAT synthesis is associated with 
reduced serum AAT levels (below 10  mg/dl). The 
Mprocida molecule behaves normally in vivo with a half-
life similar to normal M1 AAT. Neutrophil elastase 
inhibitory activity of Mprocida protein is slightly reduced. 
Evaluation of the crystallographic structure suggests 
that the mutation may alter alpha-helix A, suggesting 
that the molecule is unstable and degrades intracel-
lularly prior to secretion. The tertiary structure of the 
protein is significantly altered resulting in intracellular 
proteolysis and, therefore, not associated with risk of 
liver injury. The risk of lung disease is high, but the risk 
of liver disease is low [40].

Although P-type mutations have been known since 
1968 [41], it was not until 1990 that the PI*Plowell genotype 
began to be characterized [42]. In 1993, a new P-allele 
was identified as Pduarte which carried the same mutation 
as Plowell but on a M4 basis [43]. These alleles have simi-
lar behavior. Homozygous Plowell exhibits decreased AAT 
serum concentration—around 40% of normality [44]. 
However, Plowell has near normal function as an inhibitor 
of human neutrophil elastase [45]. Therefore, increased 
risk for lung involvement depends on the accompanying 
alleles [41]. The Plowell substitution has a profound effect 
on intracellular processing of the AAT molecule result-
ing in deficiency. This variant has been associated with 
increased intracellular degradation of newly synthetized 
protein and to serum levels 24% of normal [42]. There-
fore, the risk for liver disease is low. PI*Pduarte is similar to 
Plowell but on M4. AAT levels in Pduarte are 41% of normal, 
similar to Plowell [43]. Thus, the Pduarte allele differs from 
the Plowell allele only by the normal allelic background in 
which the mutation occurs.

Ybarcelona was first described in 1998 as the combina-
tion of PI*Plowell + another mutation (c.1244C > A) [21]. 
In 2012, the mutation c.1244C > A was reported to have 
a pathogenetic effect by itself, i.e., a case with mild hyper-
transaminasemia reported in Orzinuovi (Brescia, Italy). 
The allele was named as PI*Yorzinuovi [46]. Consequently, 
Ybarcelona results from a combination of PI*Plowell plus 
PI*Yorzinuovi. In heterozygous cases, the risk of lung dis-
ease is likely to be similar to that of MZ heterozygotes 
[47].

Fig. 3  Null alleles distribution
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Zbristol was first reported in 1997 in a woman with an 
obstetric history of three perinatal deaths from fulmi-
nant liver disease and no living offspring [48]. Only a few 
cases have been reported in children with low levels of 
AAT if accompanied by a Z allele and near to normal if 
accompanied by an M allele, with frequent liver involve-
ment in children [49, 50]. The Zwrexhan allele has only 
been described in a family with severe AATD which also 
carried the common mutation causing Z deficiency [51]. 
Individuals with such a deficiency are, therefore, com-
pound heterozygotes. The behavior of these particular 
mutations in the absence of the Z mutation is not known.

Null (Q0) alleles encode a truncated protein with large 
conformational changes that is degraded intracellu-
larly without having the opportunity to aggregate. These 
patients have undetectable serum concentrations of AAT. 
The protein is retained in the rough endoplasmic reticu-
lum or pre-Golgi compartment and is degraded. This 
means that homozygotes are at very high risk for emphy-
sema, but not liver disease.

In conclusion, the present report informs on the fre-
quency of rare and null alleles updating their distribu-
tion in a large sample population from six countries. The 
Progenika diagnostic network has allowed the identifi-
cation of several rare alleles providing a new view of the 
distribution of these alleles in different countries. Due to 
the efficacy in both the detection of AATD cases and the 
identification of new variants, in the future we believe 
that Progenika’s system could continue to expand to other 
countries. Consequently, future studies should focus on 
the characterization of these and other new mutations 
as they emerge in the context of patients with suspected 
AATD. These findings may help prioritize allele selection 
for routine testing and highlights the need for continuing 
research into their pathogenetic roles.
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