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Abstract 

Background  Liquid biopsy, particularly cell-free RNA (cfRNA), has emerged as a promising non-invasive diagnostic 
tool for various diseases, including cancer, due to its accessibility and the wealth of information it provides. A key area 
of interest is the composition and cellular origin of cfRNA in the blood and the alterations in the cfRNA transcriptomic 
landscape during carcinogenesis. Investigating these changes can offer insights into the manifestations of tissue 
alterations in the blood, potentially leading to more effective diagnostic strategies. However, the consistency of these 
findings across different studies and their clinical utility remains to be fully elucidated, highlighting the need for fur-
ther research in this area.

Results  In this study, we analyzed over 350 blood samples from four distinct studies, investigating the cell type 
contributions to the cfRNA transcriptomic landscape in liver cancer. We found that an increase in hepatocyte pro-
portions in the blood is a consistent feature across most studies and can be effectively utilized for classifying cancer 
and healthy samples. Moreover, our analysis revealed that in addition to hepatocytes, liver endothelial cell signatures 
are also prominent in the observed changes. By comparing the classification performance of cellular proportions 
to established markers, we demonstrated that cellular proportions could distinguish cancer from healthy samples 
as effectively as existing markers and can even enhance classification when used in combination with these markers.

Conclusions  Our comprehensive analysis of liver cell-type composition changes in blood revealed robust effects 
that help classify cancer from healthy samples. This is especially noteworthy, considering the heterogeneous nature 
of datasets and the etiological distinctions of samples. Furthermore, the observed differences in results across studies 
underscore the importance of integrative and comparative approaches in the future research to determine the con-
sistency and robustness of findings. This study contributes to the understanding of cfRNA composition in liver cancer 
and highlights the potential of cellular deconvolution in liquid biopsy.
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Background
Liquid biopsy, the molecular analysis of body fluids, has 
emerged as a promising tool in cancer research, offer-
ing a more accessible assessment of patient health status 
compared to traditional tissue biopsies. Advancements 
in technology have enabled extensive genomic and tran-
scriptomic analysis of DNA and RNA, especially in blood 
[1–4]. Among the cell-free nucleic acids being studied, 
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cell-free RNA (cfRNA) has garnered increasing attention 
[5], including for its tissue and cell-type specificity [6–8].

Cellular deconvolution, a powerful computational 
approach, is used to determine the cellular origin of RNA 
in mixed transcriptomic data, such as bulk RNA-seq [9]. 
A multitude of cell types contributes to the formation 
of blood cell-free transcriptome [6], and as a result, the 
comparisons between such heterogeneous samples may 
occlude the critical differences, which are driven only by 
select cell types [10]. The knowledge of which specific cell 
types are responsible for the observed differences in the 
blood during, for example, carcinogenesis, will provide 
a more comprehensive characterization of the cell-free 
transcriptome perturbations [11]. Furthermore, identify-
ing the cell types of importance may accelerate the devel-
opment of more targeted diagnostic strategies.

Cellular deconvolution using cfRNAs has been demon-
strated to yield promising results in an increasing num-
ber of studies [6, 7, 12–15]. For instance, Vorperian et al. 
showed that hepatocyte signature scores are significantly 
higher in the blood of non-alcoholic steatohepatitis 
(NASH) and non-alcoholic fatty liver disease (NAFLD) 
patients compared with healthy control blood samples 
[18]. More widespread use of cellular deconvolution in 
liquid biopsy may result in it becoming an important 
component of the recently proposed "integrated liquid 
biopsy" framework [16], further increasing the sensitivity 
and specificity of available liquid biopsy biomarkers.

Liver cancer, predominantly represented by hepatocel-
lular carcinoma (HCC) and intrahepatic cholangiocarci-
noma (ICC), constitutes the second most lethal cancer 
type [16]. In 2020, liver cancer was responsible for more 
than 800,000 fatalities, and projections estimate a death 
toll of approximately 1,300,000 by the year 2040 [17]. The 
treatment of liver cancer, especially in advanced stages, is 
challenging, with the 5-year survival rate of HCC being 
just 18% [16]. Compounding the issue is the frequently 
delayed and late diagnosis of liver cancer, which can fur-
ther diminish treatment efficacy [18] and the generally 
low accuracy of liver cancer diagnostic assays, particu-
larly for early-stage detection [19–21]. Recently, liquid 
biopsy, including cfRNA biomarker discovery, has been 
proposed as a candidate to mitigate these issues [22–30] 
and hence, a number of publicly available cfRNA data-
sets have been generated. For these reasons, we decided 
to focus on investigating the cell type repertoire of blood 
cell-free transcriptome and its compositional changes in 
liver cancer.

Current cellular deconvolution methods typically rely 
on reference data that are advised to encompass all cell 
types present in the RNA mixture [9]. However, this 
strategy can make the analysis of non-hematopoietic 
cell types—particularly of rarer cell types—challenging, 

as hematopoietic cell types are the main contributor to 
the blood transcriptome [6, 31]. To address these chal-
lenges in blood cfRNA deconvolution and explore tis-
sue or organ-specific cell-type proportion changes in 
the blood, we introduce a novel approach called targeted 
cellular deconvolution. Targeted cellular deconvolution 
involves deconvoluting cell-free transcriptomic data with 
the single-cell reference dataset of the tissue or organ of 
interest using the deconvolution algorithm Bisque [52]. 
This should ensure a comprehensive representation of 
cell types of interest and a more detailed examination of 
rarer cell types.

Here, by employing targeted cellular deconvolution, we 
analyzed over 350 blood cell-free RNA-seq samples gath-
ered from four different studies [23–26], including over 
200 liver cancer and healthy samples (Fig. 1). We detailed 
the observed cell-type proportion perturbations in liver 
cancer with emphasis on cell types displaying a high 
degree of discriminatory ability. Furthermore, by lever-
aging cell-type proportions, we constructed prognostic 
models, which were subsequently compared with models 
built using reported cell-free gene markers of liver can-
cer. Finally, we integrated cell type and gene-level infor-
mation to build improved prognostic models for liver 
cancer diagnostics.

Materials and methods
Data processing
We used four publicly available cfRNA datasets contain-
ing blood RNA-seq samples from liver cancer patients 
and healthy donors, comprising 221 samples [23–26] 
(Table 1, Additional file 2: File S1). Additionally, the data-
set from Chen et al. included 157 samples from patients 
of four types of solid cancers (Table 1) [25]. The dataset 
of Block et  al. contained matched samples of extracel-
lular vesicle and plasma RNA-seq from five liver cancer 
patients [23].

Metadata files were downloaded from Sequence Read 
Archive (SRA) database and supplemented by us with 
additional information from the corresponding studies. 
Datasets generated by Zhu et  al. and Chen et  al. pro-
vided gene count matrices, the generations of which are 
detailed in the corresponding studies and were down-
loaded from the Gene Expression Omnibus (GEO) 
database under the accession numbers GSE142987 and 
GSE174302, respectively (Table 1). The raw reads of data-
sets from Roskams-Hieter et  al. and Block et  al. were 
downloaded as raw FASTQ files from the SRA database 
using the tool “fasterq-dump” of the National Center for 
Biotechnology Information (NCBI) SRA-Tools (version 
2.11.0) [32] under the accession numbers SRP334205 
and PRJNA907745, respectively (Table 1). Subsequently, 
adapters were trimmed and ribosomal reads filtered by 
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the BBDuk program of the BBMap suite of tools (ver-
sion 38.93) [33]. Afterward, samples were mapped to the 
human genome (build GRCh38) using the default param-
eters of the aligner STAR (version 2.7.8a) [34]. Gene 
count matrices were generated by the function “feature-
counts” of the Subread package of tools (version 2.0.1) 
[35], with the parameters “-p”, “-s 2” and “-M” using the 
human genome annotation of the GENCODE consor-
tium (build GRCh38 release 38). The resulting matrices 
both comprised 60,708 genes and each contained 58 and 
25 samples for Roskams-Hieter et  al. and Block et  al. 
datasets, respectively.

Ensembl gene IDs were converted to HGNC (Human 
Genome Organization Gene Nomenclature Commit-
tee) symbols using the R (version 4.1.2) [36] package 
biomaRt (version 2.50.3; Ensembl version 108) [37] to 
prepare the datasets for the subsequent cell-type decon-
volution. As the dataset by Chen et al. already contained 
HGNC gene symbols, it was excluded from this step. The 
final Roskams-Hieter et  al., Chen et  al., Zhu et  al. and 
Block et  al. datasets contained 40,155, 13,4278, 68,696 
and 40,155 genes, respectively. The dataset by Roskams-
Hieter et  al. was adjusted for batch effects using the 
function “Combat_seq” from the R package sva (version 

Fig. 1  Workflow of targeted cellular deconvolution. After data curation from the Gene Expression Omnibus (GEO) and Sequence Read Archive 
(SRA) databases, the blood cell-free RNA datasets are deconvoluted with the Bisque algorithm using a healthy single-cell RNA liver dataset; 
the produced cell-type proportions are used to compare the healthy and cancer samples. H1–H4 represent the healthy donor samples, and C1–C4 
represent the cancer samples

Table 1  Main characteristics of the cfRNA datasets used in the study

Dataset HD LC STAD LUAD CRC​ ESCA Accession number References

Roskams-Hieter et al. (2022) 30 28 NA NA NA NA SRP334205 [24]

Chen et al. (2022) 46 27 37 35 54 31 GSE174302 [25]

Zhu et al. (2021) 30 35 NA NA NA NA GSE142987 [26]

Block et al. (2022) 6 19 NA NA NA NA PRJNA907745 [23]
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3.42.0) [38], as this dataset was subsequently employed 
for model training. The samples were not further filtered 
or normalized as it has been shown that keeping samples 
in a linear scale ensures the best results during cell-type 
deconvolution [9] and the deconvolution algorithm per-
forms its own internal gene filtering.

In order to generate principal component analysis 
(PCA) plots, samples were separately normalized with 
variance stabilizing transformation using the function 
“vst” from the R package DESeq2 (1.34.0) [39]. Plots were 
generated with the R package ggplot2 (version 3.4.1) [40].

Cell‑type deconvolution
Cell-type deconvolution was performed using the R 
package Bisque (version 1.0.5) [52] with a reference 
single-cell dataset. As the study focused on liver cancer, 
we used a liver-derived single-cell dataset hypothesized 
to predominantly capture liver-specific signals from the 
data. We selected the reference single-cell dataset in 
accordance with the guidelines set by the authors of the 
Bisque algorithm, which stipulate a minimum of three 
single-cell samples [52], and ensured that it featured 
robustly defined cell-type annotations. The reference 
single-cell dataset was generated by MacParland et  al. 
from the livers of five healthy donors and contained cell 
type annotations for 8,444 cells [41]. The dataset contain-
ing log2CPM values and the corresponding annotation 
file were downloaded from the GEO database (accession 
number GSE115469). The single-cell reference data and 
the cell-free datasets were transformed into Expression-
Set class objects with the function “ExpressionSet” from 
the R package Biobase (version 2.54.0) [42]. To facilitate 
the cell-type deconvolution, the cell subtype annotations 
for hepatocytes, T cells, macrophages and liver sinusoidal 
endothelial cells (LSECs) were collapsed.

Finally, decomposition was carried out using the func-
tion “ReferenceBasedDecomposition” from the package 
Bisque with the parameter “use.overlap = FALSE” for 
each dataset. The Chen et al. dataset with the additional 
non-liver solid tumor samples was analyzed separately 
and was not used in the modeling steps.

Statistical test computation
To test if hepatocyte proportions were greater in liver 
cancer samples compared to other samples, a one-
sided, unpaired Wilcoxon test (Wilcoxon rank-sum 
test) was calculated using the deconvolution results of 
all samples with the function “wilcox_test” from the 
R package rstatix (version 0.7.2) [43]. To this end, the 
parameters “paired = FALSE,” “exact = TRUE” and “alter-
native = “greater” were used. For multiple comparisons, 
p-values were adjusted using the Benjamini–Hoch-
berg method with the “adjust_pvalue” function and 

parameter “method = ”BH”” from the R package rstatix. 
Effect size (r) and corresponding confidence intervals 
were generated with the function “wilcox_effsize” using 
the parameters “alternative = ”greater”,” “paired = FALSE,” 
“nboot = 100″ and “ci = TRUE” from the R package 
rstatix.

To test if the hepatocyte proportions were greater in 
the plasma compared with extracellular vesicles (EVs) 
of five liver cancer patients, a one-sided, paired Wil-
coxon test (Wilcoxon signed-rank test) was performed 
as previously described, with the only change being the 
parameter “paired = TRUE.” Effect size and correspond-
ing confidence intervals were calculated as previously 
described, with the only change being “paired = TRUE.” 
The results were visualized with the R packages rstatix, 
ggpubr (version 0.5.0) [44] and ggplot2.

Hepatocyte proportion‑based classification
To analyze the feasibility of classifying liver cancer and 
healthy samples based on hepatocyte proportions, we 
tested 20 hepatocyte proportion cutoffs ranging from 
0.2 to 0.4 in all cfRNA datasets—with samples above the 
cutoff classified as liver cancer (LC) patients and healthy 
donors (HD) if otherwise. Accuracy, sensitivity and 
specificity were computed at each cutoff with the func-
tion “confusionMatrix” from the R package caret (ver-
sion 6.0–93) [45] and were used to generate a scatter plot 
using the R package ggplot2. A confusion matrix plot 
was generated at the cutoff with the highest classification 
accuracy with the function “evaluate” and a modified ver-
sion of the function “plot_confusion_matrix” from the R 
package cvms (version 1.3.9.9000) [46].

Model construction
Random forest
We built random forest models to both determine the 
relative importance of cell types between biological con-
ditions, sources of samples and to evaluate the diagnos-
tic capabilities of various predictors. First, random forest 
models were built with each dataset using the cell-type 
proportions as input using the function “randomForest” 
with the parameter “importance = TRUE” from the R 
package randomForest (version 4.7–1.1) [47]. Afterward, 
the generated models were used as input for the function 
“varImpPlot” with the parameter “type = TRUE” from the 
R package randomForest, which calculates how much the 
model accuracy decreases without a certain predictor 
(feature). Finally, the results were visualized using the R 
package ggplot2.

To assess the performance of predictors, we trained 
a model with the Roskams-Hieter et  al. dataset, chosen 
for its balanced structure and informative sample com-
position (Additional file 1: Fig. S1), using either the raw 
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counts of gene markers reported by Roskams-Hieter 
et  al. [24] and Chen et  al. [25] (individually and com-
bined) or integration of gene markers and four cell-type 
proportions (hepatocytes, LSECs, portal endothelial 
cells (PECs), cholangiocytes). The model was later tested 
on the remaining three cell-free datasets. First, through 
repeated cross-validation (five-fold; repeated five times), 
the optimal mtry hyperparameter value (controls number 
of sampled features) was determined for training a model 
with the Roskams-Hieter et  al. dataset. To this end, the 
function “train” was used from the R package caret with 
the parameters “method = ”rf”,” “metric = ”ROC”” and 
“tunelenght = 10,″ which determined the mtry value with 
the highest achieved area under the receiver operator 
characteristic curve (AUROC/AUC). Then, the optimal 
mtry value was used to construct random forest mod-
els using the Roskams-Hieter et al. dataset as previously 
described (Additional file 1: Fig. S2).

A ROC curve was constructed with the out-of-bag 
(OOB) votes generated by the random forest algorithm 
using the function “roc” with the parameters “ci = TRUE” 
from the R package pROC (version 1.18.0) [48]. The ROC 
curve was utilized to determine the optimal cutoff for 
sample classification with the employment of the Youden 
J statistic. This was achieved with the function “coords” 
and the parameters “x = ”best”,” “best.method = ”Youden”” 
from the R package pROC.

Subsequently, the model was used to predict the prob-
abilities of the class to which the samples belong from 
other cfRNA datasets with the “predict” function using 
the parameter “type = ”prob”” from the R package ran-
domForest. The per dataset predicted probabilities were 
used as input to generate ROC curves as previously 
described. For the calculation of a total AUROC, all the 
predicted sample probabilities were used as input. Sam-
ple classification was performed using the cutoff value 
from the training dataset.

Logistic regression
Equivalent to the random forest modeling, a logistic 
regression model with elastic net regularization was 
trained on the Roskams-Hieter et al. dataset with the cell-
type proportion and later tested on three other cfRNA 
datasets. First, the optimal alpha and lambda hyperpa-
rameter values were determined, where alpha controls 
the extent of L1 and L2 regularizations and lambda 
determines the magnitude of the regularization. This was 
achieved by performing repeated cross-validation (five-
fold; repeated five times) as previously described using 
the function “train” from the R package caret, where 
the parameters “method = ”glmnet”,” “metric = ”ROC,” 
“tunelenght = 10″ and “standardize = TRUE” were used. 
The resulting sample class probabilities were averaged 

across all the repeated cross-validations and used to 
assess the performance of the model. This was achieved 
by constructing a ROC curve as previously described 
(Additional file 1: Fig. S2).

The optimal hyperparameter values were used to train 
a model with the Roskams-Hieter et al. dataset with the 
function “glmnet” using the parameters “family = ”bino-
mial”” and “standardize = TRUE” from the R package 
glmnet (version 4.1–6) [49]. To determine the optimal 
cutoff for sample classification, the model was tested on 
the Roskams-Hieter et al. dataset with the “predict” func-
tion and parameter “type = response” from the R package 
glmnet. The resulting probabilities were used as input for 
a ROC curve construction and the optimal cutoff was 
determined as previously described.

Finally, the generated model was tested on remaining 
cfRNA datasets using the function “predict” with the 
parameter “type = ”response”” from the R package glm-
net. The predicted probabilities were used to generate 
ROC curves and calculate the total AUROC measure-
ment as previously described. Sample classification was 
done using the cutoff value from the training dataset.

Assessment of model performance
To assess the performance of the generated models, 
firstly, the AUROC was measured for each prediction 
with the function “calc_auc” from the R package plotROC 
(version 2.3.0) [50]. AUROC confidence intervals were 
obtained from the output of the “roc” function of the R 
package pROC. A confusion matrix plot was constructed 
for each model using the function “eval” and a modified 
version of the function “plot_confusion_matrix” from 
the R package cvms. Accuracy, sensitivity and specific-
ity were calculated using the function “confusionMa-
trix” from the R package caret. Confidence intervals of 
accuracy were obtained from the output of the function 
“confusionMatrix” from the R package caret, while the 
confidence intervals of sensitivity and specificity were 
calculated with the function “epi_tests” with the default 
settings from the R package epiR (version 2.0.60) [51]. 
The results were visualized with the R packages ggplot2 
and ggpubr.

To ascertain the influence of age on the accuracy of 
sample classification with the logistic regression model, 
we restricted our evaluation to male and female samples 
from healthy donors and liver cancer patients in the data-
sets generated by Roskams-Hieter et  al. and Zhu et  al., 
attributed to their comprehensive sample annotations. 
Visualization of sample metadata was conducted using 
the packages ggplot2 and ggpubr. Age-related differ-
ences in misclassified samples were statistically analyzed 
using an unpaired, two-sided Wilcoxon test as already 
described with the argument “alternative = ”t”” used in 
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the “wilcox_test” and “wilcox_effsize” functions from the 
“rstatix” package.

We further explored the potential influence of the 
blood collection date on classification accuracy of the 
logistic regression model within the dataset from Block 
et  al. as the dataset provided blood collection dates for 
liver cancer patient samples. First, liver cancer samples 
collected post-12–12-2010 were excluded, leading to 
the removal of six samples. Then, liver cancer samples 
obtained post-12–12-2016 were also omitted, result-
ing in four additional samples being excluded. Finally, 
in addition to testing the logistic regression model on 
the entirety of the Block et al. dataset, we also tested the 
model on the aforementioned filtered subsets as already 
described. Results were visualized using the ggplot2 and 
ggpubr packages as already described.

Results
Targeted cellular deconvolution validates hepatocyte 
importance in liver cancer blood transcriptomics
In order to investigate the liver cell type-specific contri-
bution to the cell-free transcriptome in blood and its per-
turbations during carcinogenesis, we performed targeted 
cellular deconvolution on four cfRNA datasets containing 
112 samples from healthy donors, 109 samples from liver 
cancer patients and 157 samples from colorectal cancer 
(CRC), stomach cancer (STAD), lung cancer (LUAD) and 
esophageal cancer (ESCA) patients (Table 1). The decon-
volution was carried out with the Bisque algorithm and 
using a healthy single-cell liver reference dataset (Fig. 1). 
We chose Bisque for its displayed effectiveness, speed 
and robustness [52]. In particular, even in cases where 
the reference data may not fully represent all cell types, 
Bisque generates cell-type proportions that, although 
potentially not reflecting the absolute proportions within 
the mixture, still provide valuable insights into the bio-
logical condition of the mixed RNA-seq samples [52]. 
Lastly, Bisque has displayed effectiveness without need-
ing the full repertoire of cell-type markers in the mixed 
RNA-seq samples [52]—an important consideration here, 
as dropouts cannot be ruled out for cfRNA sequencing.

Owing to the displayed importance of hepatocytes 
in inferring liver health status, we further analyzed the 
hepatocyte proportions to assess the performance of the 
method. In three datasets, liver cancer patient samples 
had significantly larger hepatocyte proportions than the 
corresponding healthy donor samples (Fig. 2A). Only the 
smallest dataset—Block et al.—did not display any signifi-
cant difference (Fig.  2A). In addition, in the Chen et  al. 
dataset, we noticed significant differences in hepatocyte 
proportions between liver cancer samples and sam-
ples from other solid tumor samples, indicating that the 
abundance of hepatocyte RNA in the blood is directly 

related to the liver cancer of the patients (Fig. 2A). In the 
Roskams-Hieter et al. dataset, the differences in hepato-
cyte proportions had a moderate effect size (0.3 < r < 0.5), 
while in the Chen et al. and Zhu et al. datasets, the differ-
ences had a large effect size (r >  = 0.5) (Additional file 3: 
File S2).

Next, we tried to classify the healthy donor and liver 
cancer samples based on a hepatocyte proportion cut-
off. We looked at cutoffs for hepatocyte proportions 
ranging from 0.2 to 0.4 and achieved the highest overall 
accuracy at a cutoff of 0.27 (Fig.  2B). Using the identi-
fied hepatocyte proportion cutoff of 0.27, in total 161 out 
of 221 samples were correctly classified with an accu-
racy of 72.85% (Fig.  2C, Additional file  4: File S3). The 
achieved positive predictive value (PPV) was 71.7% and 
the negative predictive value (NPV) was 74.1% (Fig. 2C). 
Although the overall accuracy was not very high, it is 
noteworthy that with the application of a simple hepato-
cyte proportion cutoff we were able to correctly classify 
most of the samples. This indicates the diagnostic poten-
tial of cell-type proportions in the blood.

Targeted cellular deconvolution reveals dataset 
and biological source‑dependent liver cell type proportion 
changes
Building on the encouraging results displayed by ana-
lyzing hepatocyte proportions, we decided to broaden 
the scope of our analysis and investigate other liver cell 
types as well. To that end, we used the cell-type propor-
tions to analyze their relative importance for separating 
healthy and liver cancer samples per dataset. A random 
forest model was fitted with each dataset and the result-
ing Mean Decrease in Accuracy (MDA) measure was 
used to rank the features (Fig. 3). In the Roskams-Hieter 
et al. (Fig. 3A) and Chen et al. (Fig. 3B) datasets, hepato-
cytes displayed the highest importance. In comparison, 
the datasets from Zhu et  al. (Fig.  3C) and Block et  al. 
(Fig.  3D) highlight the importance of endothelial cell 
types such as liver sinusoidal endothelial cells (LSECs) 
or portal endothelial cells (PECs). Interestingly, the high 
importance of PECs was consistent across all datasets 
examined (Fig. 3A–D). Also noteworthy, cholangiocytes 
were the second-highest-importance cell type in the 
Chen et  al. dataset, considering the presence of some 
ICC-derived samples in the dataset (Additional file 2: File 
S1).

Next, we investigated the difference in cell type propor-
tions between five plasma and extracellular vesicle (EV) 
samples from the same liver cancer patients in the Block 
et  al. dataset (Additional file  1: Fig. S3). Random forest 
models built with the datasets showed erythroid cells and 
hepatocytes having the highest importance in differenti-
ating plasma and EV samples (Additional file 1: Fig. S3A). 
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In all five cases, plasma samples had higher hepatocyte 
proportions than the corresponding EV samples (Addi-
tional file  1: Fig. S3B, Additional file  3: File S2), which 
agrees with a previously made observation [53].

Targeted cellular deconvolution accurately and robustly 
classifies cancer samples
In order to assess the feasibility of diagnostic modeling 
using the cellular deconvolution output, we used the 

Fig. 2  Analysis of hepatocyte proportions in cfRNA-seq datasets. A differences in hepatocyte proportions were analyzed with a one-sided Wilcoxon 
sum-rank test. P values were adjusted with the Benjamini–Hochberg procedure where appropriate. ns not significant, ***P < 10–4, ****P < 10–5. 
HD, healthy donor; LC, liver cancer; CRC, colorectal cancer; ESCA, esophageal cancer; LUAD, lung cancer; STAD, stomach cancer. B Hepatocyte 
proportion cutoff-based classification of HD and LC samples for proportions in the range of 0.2—0.4. Samples with a hepatocyte proportion higher 
than the tested proportion were classified as LC and HD if otherwise. The dotted vertical line indicates the most accurate hepatocyte proportion 
cutoff (0.27). C Confusion matrix of the results achieved after using the optimal hepatocyte proportion cutoff of 0.27. The left-hand top (71.7%) 
and right-hand bottom (74.1%) numbers represent the positive and negative predictive values, respectively. The numbers on the top (74.3%) 
and bottom (71.4%) represent the success rate of classifications
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cell-type proportions as input for logistic regression and 
random forest models. Since the random forest modeling 
yielded comparatively less accurate results, we decided 
to continue with a logistic model with elastic net regu-
larization for classification based on targeted cellular 
deconvolution results. This strategy helps to combat pos-
sible overfitting by penalizing and excluding less inform-
ative features. A model was trained using the dataset by 
Roskams-Hieter et  al. (Additional file  1: Fig. S3, Addi-
tional file 4: File S3) and was subsequently tested on the 
remaining three cfRNA datasets comprising in total of 82 
samples from non-cancer donors and 81 samples from 
liver cancer patients. The dataset by Roskams-Hieter 
et al. was chosen for its balanced nature, a high number 
of liver cancer samples, and a potentially more challeng-
ing and informative sample composition (Additional 
file 1: Fig. S1). The results of the model testing showed a 
total AUROC of 0.85 and stable AUROC measurements 
across the individual datasets (Additional file 1: Fig. S4A). 
In total, 128 samples out of 163 were correctly classified 
with a positive predictive value (PPV) of 80.3% and a 
negative predictive value (NPV) of 77% (Additional file 1: 
Fig. S5A).

To study the influence of potential confounding factors 
on the efficacy of the logistic regression model, we ini-
tially examined the age distribution within the male and 

female samples from the Roskams-Hieter et al. and Zhu 
et al. datasets (Additional file 1: Fig. S6A) with a particu-
lar focus on the misclassified samples (Additional file 1: 
Fig S6B). Our findings revealed that among all compari-
sons only two had statistically significant (P = 0.03) age 
disparities: between female liver cancer samples and 
their male counterparts, and between female healthy 
donors and female liver cancer samples (Additional file 3: 
File S2). No statistically significant age variations were 
observed among the misclassified male and female sam-
ples or between the misclassified and the entire sample 
set (Additional file 3: File S2). This suggests that despite 
certain biases present in the datasets from Roskams-
Hieter et al. and Zhu et al., the classification accuracy of 
the model remained unaffected.

Additionally, we considered the effect of blood collec-
tion dates on the accuracy of the model within the Block 
et  al. dataset. After excluding liver cancer samples col-
lected post-2010, the AUROC of the model increased to 
0.91 from an initial 0.79, which was observed on the com-
plete dataset (Additional file 1: Fig. S7). A further exclu-
sion of samples collected post-2016, elevated the AUROC 
to 0.98 (Additional file  1: Fig. S7). These enhancements 
suggest that prolonged storage of blood samples can neg-
atively impact the targeted cellular deconvolution model 
performance. This deterioration in performance could 

Fig. 3  Cell type significance in differentiating healthy and cancerous samples. Random forest models were trained with Roskams-Hieter et al. (A), 
Chen et al. (B), Zhu et al. (C), Block et al. (D) datasets and the resulting Mean Decrease in Accuracy (MDA) measurement was used to order the cell 
types in descending order of importance for the classification of HD and LC samples in each dataset. HD, healthy donor; LC, liver cancer; PECs, portal 
endothelial cells; NK, natural killer, HSCs, hepatic stellate cells; LSECs, liver sinusoidal endothelial cells



Page 9 of 14Safrastyan et al. Human Genomics           (2023) 17:90 	

stem from storage conditions leading to decreased sam-
ple quality.

Next, we compared the performance of the deconvo-
lution-based diagnostic model with models based on 
the cell-free gene markers reported by Roskams-Hieter 
et al. (10 markers), Chen et al. (5 markers) and a combi-
nation of both (15 markers). Since the logistic regression 
modeling yielded comparatively less accurate results, we 
decided to continue with a random forest model. A ran-
dom forest model was trained using the Roskams-Hieter 
et  al. dataset using either the marker sets separately or 
combined (Additional file 1: Fig. S2, Additional file 4: File 
S3). The model testing results showed a total AUROC of 
0.81, 0.84 and 0.82 for Roskams-Hieter et al., Chen et al. 
and combined models with Block et  al. dataset predic-
tions displaying relatively low AUROC in all three cases 
(Additional file  1: Figure S4B-D). In total, Roskams-
Hieter et al. and Chen et al. gene marker models correctly 
classified 122 samples, while the combined model—126 
(Additional file  1: Fig. S5B-D). The displayed PPV and 
NPV for Roskams-Hieter et al., Chen et al. and combined 
gene markers were 81.2%, 76.3%, 86.7% and 70.7%, 73.6%, 
71.8%, respectively (Additional file 1: Fig. S5B-D). Over-
all, these results demonstrate that models built with the 
results of cellular deconvolution of cfRNA are yielding 
classification results that are comparable to established 
markers, thus confirming the validity of this approach.

Integration of cell‑type proportions into gene‑marker 
models leads to improved performance
Next, we aimed to test if integrating cell-type propor-
tions into gene marker-based diagnostic models would 
improve classification results. In order to achieve that, we 
added four cell-type proportions (hepatocytes, LSECs, 
PECs, cholangiocytes) that previously displayed high 
importance in differentiating biological conditions to the 
combined gene marker random forest model. As before, 
the integrated model was trained with the Roskams-
Hieter et al. dataset (Additional file 1: Fig. S2) and tested 
on three other cfRNA datasets (Additional file 4: File S3). 
Compared with the targeted cellular deconvolution and 
individual gene marker-based models, after model test-
ing the integrated model achieved a higher total AUROC 
(0.86) (Fig.  4A) and higher PPV and NPV—87% and 
77.7%, respectively (Fig.  4B). The integrated model cor-
rectly classified 133 samples, thereby outperforming the 
other models (Fig. 4B).

To analyze the performance of the models further, we 
also examined the accuracy, specificity and sensitivity 
that the models achieved (Fig.  4C). For these compari-
sons, we also included the hepatocyte proportion cutoff-
based classification that we described in Fig. 2C with the 
exclusion of the Roskams-Hieter et  al. dataset results. 

The integrated model demonstrated the highest accu-
racy (0.816) and matched the specificity (0.89) that was 
obtained from the combined gene marker model (0.902), 
which exhibited the highest specificity among all mod-
els (Fig.  4C). The targeted cellular deconvolution-based 
model achieved the highest sensitivity (0.753), which 
is comparable to the integrated model (0.74) (Fig.  4C). 
Notably, the sensitivity attained by the integrated model 
surpassed that of the most sensitive gene marker model 
(Chen et  al.), which had a sensitivity of 0.716 (Fig.  4C). 
These results support the notion that the synthesis of 
cell-type proportions and gene marker data can result in 
more accurate diagnostic models.

Discussion
Liver cancer diagnosis remains a challenge despite 
numerous advancements made toward elucidating its 
progression and early presentation. Liquid biopsy holds 
great promise in providing a readily available and poten-
tially more robust diagnostic approach but is hindered 
by the fragmented nature of existing research and the 
absence of comprehensive efforts to synthesize current 
findings. Additionally, as liquid biopsy is still a develop-
ing field, it still holds substantial untapped potential. One 
of the still poorly explored aspects of liquid biopsy and 
specifically blood cell-free transcriptome, is the degree of 
the contribution of various cell types. Here, we applied a 
novel deconvolution approach—targeted cellular decon-
volution—to over 350 blood cfRNA samples that using 
the Bisque algorithm, deconvolutes the RNA mixture uti-
lizing the tissue or organ of interest (i.e., liver).

The targeted cellular deconvolution provided a snap-
shot of the contribution of liver cell types to the blood 
cell-free transcriptome. By extrapolating the cell-type 
proportions, liver-targeted cellular deconvolution also 
provided the changes in liver cell-type proportions dur-
ing cancerogenesis. As for the liver [54], the cell type with 
the largest contribution is the hepatocytes. We found 
that hepatocyte proportions were increased significantly 
in most datasets in liver cancer patients compared with 
not only healthy but also other solid tumor blood sam-
ples. This displays not only the perturbations of hepato-
cytes during cancerogenesis but also their specificity to 
liver cancer. Hepatocyte cell death is assumed to be an 
important step of HCC progression [55, 56] and may 
explain the increase of hepatocyte signal in the blood 
of liver cancer patients, the vast majority of whom were 
diagnosed with HCC (Additional file  2: File S1). With 
this in mind, we tried to separate healthy and liver can-
cer samples using hepatocyte proportions. At a cutoff of 
0.27, we were able to correctly classify most of the sam-
ples with almost equal accuracy in detecting healthy and 
liver cancer samples. It is especially noteworthy taking 
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into account the varied origins of the samples, the pre-
ponderance of early-stage liver cancer samples and sam-
ples with blood alpha-fetoprotein (AFP) levels below the 
commonly used diagnostic threshold of 400  ng/ml [20] 
(Additional file 2: File S1).

We further investigated the importance of other liver 
cell types in classification. Hence, we fitted random 

forest models with each dataset and, through the MDA 
measurement, ordered the cell types by importance in 
each dataset. While the high importance displayed by 
hepatocytes in two datasets was expected, it was inter-
esting to note that in two other datasets, other cell 
types, notably LSECs and PECs, were more important 
in classification. PECs were also highly important in all 

Fig. 4  Performance assessment of the integrated model. Proportions of hepatocytes, cholangiocytes, liver sinusoidal and portal endothelial 
cells were integrated with gene markers described in the literature. The resulting integrated model was trained with Roskams-Hieter et al. (2022) 
dataset and tested on the remaining datasets. The results were assessed with receiver operator characteristic (ROC) curves and area under ROC 
curves (AUC) values (A), a confusion matrix (B) and were compared with the performance of other models (C). The error bars depicted in the figure 
represent the 95% confidence intervals
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four datasets, further strengthening the argument for 
an increased focus on the liver endothelial cells. While 
LSECs have recently received attention for their role 
in liver cancer cancerogenesis [57] and potential in liq-
uid biopsy research [58], PECs still remain relatively 
poorly characterized and their role in liver cancer is not 
fully elucidated. However, as in the case of LSECs [59], 
their proximity to blood vessels [41] makes PECs a pos-
sible source of information on the liver condition in 
blood. Finally, cholangiocytes, which were relatively low 
in importance across three datasets, were the second 
highest important cell type in the Chen et al. generated 
dataset. The Chen et  al. dataset contained some ICC 
patient-derived samples that could explain the displayed 
importance of cholangiocytes [60]. This indicates that 
cholangiocyte contribution to blood cell-free transcrip-
tome warrants further investigation, given that ICC is the 
second most widespread primary liver cancer type.

A recent consideration in the field of liquid biopsy has 
been the source of the cell-free RNAs in blood, with the 
main choices being between plasma and EVs [12, 23, 
53]. Our analysis of the matched plasma and EV samples 
from five liver cancer patients in the Block et  al. data-
set showed the high importance of erythroid cells and 
hepatocytes in separating these samples. Erythrocyte 
proportions have been reported to be increased in EVs 
compared with plasma [12], which is supported by our 
results. Additionally, in matched HCC-derived samples 
we found significantly higher proportions of hepatocytes 
in plasma compared with EVs, which is consistent with a 
previous observation in HCC patients of higher expres-
sion of circulating liver-derived transcripts in plasma 
compared with EVs [53]. Our results lead us to believe 
that EV isolation may be unnecessary for liver cancer 
diagnosis, especially considering that EV isolation is very 
labor intensive.

We also endeavored to improve upon the results dis-
played by the hepatocyte proportion cutoff. Since we 
noticed that hepatocytes did not have a strong discrim-
inatory ability in the Block et al. dataset and other cell 
types also displayed high importance during classifica-
tion, we sought to incorporate the proportions of other 
liver cell types as well into developing more robust 
diagnostic models. Logistic regression with an elas-
tic net regularization model built with all the cell-type 
proportions of Roskams-Hieter et  al. datasets as input 
showed robust results across all three tested datasets. 
Compared with the hepatocyte proportion cutoff-based 
classification, the overall accuracy was improved, prov-
ing further the importance of other, non-hepatocyte 
cell types as well. To assess the performance of tar-
geted cellular deconvolution models, we concurrently 

analyzed some of the reported cell-free gene marker 
sets for liver cancer diagnosis. The gene marker sets 
were modeled both individually and in combination. 
Random forest models built using gene marker expres-
sion in the Roskams-Hieter et  al. dataset displayed 
comparable accuracy to the deconvolution-based 
model, with the latter slightly outperforming the for-
mer. While the cellular deconvolution model displayed 
higher sensitivity, the gene marker models (especially 
the combined model) outperformed it in terms of spec-
ificity. These results not only show the validity of both 
methods but also underline the remarkable similarity 
and stability of blood cfRNA samples generated in dif-
ferent environments and drawn from patients with dif-
ferent etiologies (e.g., hepatitis B, hepatitis C, hepatic 
steatosis) (Additional file 2: File S1).

In light of the strengths of each diagnostic model 
and the enhanced performance of the combined gene 
marker model, we decided to integrate some of the 
cellular deconvolution results into the combined gene 
markers models. Based on previous results, we decided 
to integrate the proportions of hepatocytes, cholangio-
cytes, PECs and LSECs into the combined gene marker 
model. The new, integrated model displayed the highest 
overall accuracy among all models and closely matched 
the sensitivity and specificity of the deconvolution and 
gene marker models. The enhanced performance of the 
integrated model thus facilitates more comprehensive 
modeling of liquid biopsy data, incorporating not only 
gene marker expression but also additional data, such 
as cell-type proportions. We expect that integrated 
models will exhibit improved performance as they will 
incorporate more and varied types of liquid biopsy 
data. Particularly with the concern of relatively low sen-
sitivity displayed by prospective liquid biopsy assays, 
the incorporation of cell-type proportions yielded by 
targeted cellular deconvolution can mitigate that issue 
to a degree.

Potential confounding factors remain a major issue 
for the clinical adoption of liquid biopsy. A compre-
hensive exploration of potential sources of variation 
in the blood cell-free transcriptome can mitigate these 
concerns. While our analysis showed one of the major 
confounders in liquid biopsy—age [61, 62]—to have 
no discernible effect on the efficacy of the targeted cel-
lular deconvolution model either for male or female 
samples, we identified sample generation date to be 
of vital importance. Although sometimes unavoid-
able, extended storage of blood samples, especially in 
improper conditions, should be avoided whenever pos-
sible for optimal outcomes. Yet, further exploration is 
needed to identify other unknown confounders and 
possibly mitigate their adverse effects.
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Conclusions
In conclusion, in this study, we showed the viability of 
liquid biopsy studies that are translatable across different 
conditions. Furthermore, we highlighted the potential 
of targeted cellular deconvolution and deconvolution in 
general for blood cell-free transcriptomic studies, which 
can improve cfRNA characterization and assist in the 
development of enhanced diagnostic assays.

In the future, we envision the application of targeted 
cellular deconvolution to other conditions as well and the 
expansion of the data generated by us through the deeper 
analysis of, for example, liver cirrhosis-derived samples. 
The increase of assay accuracy with the addition of cell-
type proportion data to other liquid biopsy biomarkers 
in the framework of “integrated liquid biopsy” can facili-
tate its clinical adoption. Finally, as new liquid biopsy 
datasets are being continuously generated, the need for 
meta-analyses, comparison and integration of diverse 
and extensive information will continue to grow and we 
expect more gene markers will be discovered. We believe 
that the strategies outlined in this study will contribute to 
these efforts and expedite the clinical adoption of liquid 
biopsy diagnostic assays.
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Additional file 1. Figure S1: Principal component analysis (PCA) plot. 
Plots were generated using variance stabilized counts prior to batch 
correction for Roskams-Hieter et al. (A), Chen et al. (B), Zhu et al. (C) and 
Block et al. (D) datasets. HD, healthy donor; LC, liver cancer. Figure S2: Per-
formance of model training with Roskams-Hieter et al. (2022) dataset. The 
results are represented with receiver operator characteristic (ROC) curves 
and area under ROC curves (AUC) values. Figure S3: Differences in cellular 
sources of cfRNA between matched plasma and extracellular vesicle (EV) 
samples in the Block et al. (2022) dataset. (A) Importance of cell types in 
the classification of plasma and EV samples as measured by the Mean 
Decrease in Accuracy (MDA) value from the random forest model. Cell 
types were ordered in descending order of MDA. (B) Hepatocyte propor-
tion differences between matched plasma and EV samples from each 
patient. Figure S4: Performance of model testing on each dataset repre-
sented with receiver operator characteristic (ROC) curves and area under 
ROC (AUC) values. The targeted cellular deconvolution (A), Roskams-Hieter 
et al. gene markers (B), Chen et al. gene markers (C) and combined gene 
markers (D)   models were trained with the Roskams-Hieter et al. (2022) 
dataset and tested on the remaining datasets. The results were assessed 
with receiver operator characteristic (ROC) curves and area under ROC 
curves (AUC) values . The error bars depicted in the figure represent the 
95% confidence intervals. Figure S5: Confusion matrices of model testing. 
Confusion matrices for the targeted cellular deconvolution (A), Roskams-
Hieter et al. gene markers (B), Chen et al. gene markers (C) and combined 
gene markers (D) model testing. The left-hand top and right-hand 
bottom numbers represent the positive and negative predictive values, 
respectively. The numbers on the top and bottom represent the success 
rate of classifications. Figure S6: Age distribution in Roskams-Hieter et 
al. and Zhu et al. datasets. Age distribution of female and male healthy 
donor (HD) and liver cancer (LC) samples in Roskams-Hieter et al. and Zhu 
et al. datasets (only these datasets contained comprehensive per sample 
annotations)  (A), all samples (B), samples misclassified by the targeted 
cellular deconvolution model. Figure S7: Influence of sample collection 

date on model performance. Performance of targeted cellular deconvolu-
tion model on Block et al. dataset (only this dataset contained bleed date 
information): full, after removing liver cancer samples generated after 2010 
and after further removing liver cancer samples generated after 2016. The 
results are represented with receiver operator characteristic (ROC) curves 
and area under ROC curves (AUC) values. 
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