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Abstract 

Background  ’Benign ethnic neutropenia’ (BEN) is a heritable condition characterized by lower neutrophil counts, 
predominantly observed in individuals of African ancestry, and the genetic basis of BEN remains a subject of exten‑
sive research. In this study, we aimed to dissect the genetic architecture underlying neutrophil count variation 
through a linear-mixed model genome-wide association study (GWAS) in a population of African ancestry (N = 5976). 
Malaria caused by P. falciparum imposes a tremendous public health burden on people living in sub-Saharan Africa. 
Individuals living in malaria endemic regions often have a reduced circulating neutrophil count due to BEN, raising 
the possibility that reduced neutrophil counts modulate severity of malaria in susceptible populations. As a follow-up, 
we tested this hypothesis by conducting a Mendelian randomization (MR) analysis of neutrophil counts on severe 
malaria (MalariaGEN, N = 17,056).

Results  We carried out a GWAS of neutrophil count in individuals associated to an African continental ancestry 
group within UK Biobank, identifying 73 loci (r2 = 0.1) and 10 index SNPs (GCTA-COJO loci) associated with neutrophil 
count, including previously unknown rare loci regulating neutrophil count in a non-European population. BOLT-
LMM was reliable when conducted in a non-European population, and additional covariates added to the model did 
not largely alter the results of the top loci or index SNPs. The two-sample bi-directional MR analysis between neu‑
trophil count and severe malaria showed the greatest evidence for an effect between neutrophil count and severe 
anaemia, although the confidence intervals crossed the null.

Conclusion  Our GWAS of neutrophil count revealed unique loci present in individuals of African ancestry. We note 
that a small sample-size reduced our power to identify variants with low allele frequencies and/or low effect sizes 
in our GWAS. Our work highlights the need for conducting large-scale biobank studies in Africa and for further explor‑
ing the link between neutrophils and severe malaria.
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Introduction
Malaria is a mosquito-transmitted disease that annu-
ally affects approximately 215 million people [1, 2]. The 
disease is caused by protozoan parasites of the Plasmo-
dium genus: Plasmodium falciparum (P. falciparum) 
causes life-threatening disease in sub-Saharan Africa 
and accounts for almost all malaria deaths, while P. vivax 
leads to a milder disease that is nonetheless associated 
with a significant public health burden in diverse geo-
graphical regions [2].

P. falciparum malaria causes approximately 400,000–
600,000 deaths each year, primarily in African children 
under the age of five [1]. The majority of P. falciparum 
malaria cases consist of uncomplicated febrile illness, 
however a portion of nonimmune infected individuals 
succumb to severe malaria, which can manifest as cer-
ebral malaria, severe anemia, acute respiratory distress 
or kidney injury [3]. Plasmodium resides and prolifer-
ates in red blood cells (RBCs) and pathology is triggered 
by cytoadherence of infected RBCs (iRBCs) to micro-
capillary endothelia in different organs, which can lead 
to vascular occlusion and endothelial permeability [3]. 
Inflammation plays a key role in both facilitating iRBC 
sequestration [4] and in tissue damage [3, 5, 6]. In cer-
ebral malaria, the deadliest form of the disease, iRBCs 
sequester in the neurovasculature, provoking blood brain 
barrier permeabilization, vascular leak and brain swelling 
[3].

Malaria has been the biggest cause of childhood 
deaths over the past 5000  years [7]. As such, it has 
exerted the strongest known selective pressure on the 
human genome and has resulted in the selection of vari-
ous polymorphisms that confer Plasmodium tolerance 
or resistance. Among the most prominent examples 
are haemoglobin S (Hbs; sickle cell trait) [8] and alpha-
thalassemia variants [9], both of which are common in 
malaria endemic regions despite causing disease in the 
homozygous state [7]. The HbS polymorphism in the 
heterozygous state confers the greatest protection (effect 
size > 80%; [7, 10]). The heritability of severe malaria is 
estimated to be around 30% [11, 12] but the cumulative 
effect of the aforementioned variants is thought to only 
be 2% [7, 11], suggesting that polygenic interactions may 
account for a large part of the missing heritability of this 
complex disease.

Individuals living in malaria-endemic regions, as well 
as those descended from them, often have reduced num-
bers of neutrophils in circulation as compared to those 
living in non-endemic regions. This heritable phenom-
enon is called ‘benign ethnic neutropenia’ (BEN) and is 
distinct from life-threatening severe neutropenia. BEN is 
prominent in South Mediterranean, Middle Eastern, sub-
Saharan African and West Indies populations [13]. BEN 

is estimated to occur in 25–50% of Africans [13–15] and 
10.7% of Arabs [16] but in less than 1% of people of Euro-
pean ancestry living in the Americas [17]. Neutrophils 
are essential for immune defense against bacteria and 
fungi [18], however BEN does not lead to significantly 
greater susceptibility to infection in the United States 
[13]. Nevertheless, it remains curious that selection for 
lower neutrophil counts occurred in sub-Saharan Africa, 
a region associated with a high infectious disease burden. 
This observation is partly explained by the finding that 
in populations of African and Yemenite Jewish ancestry, 
BEN is strongly associated with a polymorphism in the 
atypical chemokine receptor 1 (ACKR1/DARC), which 
encodes the Fy/Duffy antigen, a surface receptor utilized 
by P. vivax to invade RBCs [19]. This variant abolishes 
expression of ACKR1 on RBCs and is thought to contrib-
ute to low prevalence of P. vivax in sub-Saharan Africa, 
where the polymorphism is found at levels close to fixa-
tion [7]. ACKR1, in addition to serving as one of the inva-
sion receptors for P. vivax, controls circulating levels of 
chemokines [20], which also regulate blood neutrophil 
numbers [20]. It is unclear to what extent other polymor-
phisms contribute to BEN in individuals living in malaria 
endemic regions [21].

Neutrophils have recently been shown to have a det-
rimental role in malaria, promoting pathogenesis by 
enhancing sequestration of iRBCs [4] and contributing 
to inflammatory tissue damage [6, 22, 23]. Altered neu-
trophil responses have also been linked to severe malarial 
anemia in paediatric patients [24]. On the other hand, 
neutrophils have also been suggested to participate in 
parasite clearance [25] and in shaping the Plasmodium 
antigenic repertoire [26]. These studies raise the possi-
bility that neutropenia in malaria endemic regions may 
modulate severity of P. falciparum malaria, in addition 
to conferring resistance to P. vivax. However, obser-
vational studies, such as the ones referenced above, are 
prone to confounding and reverse causation [27–29]. It 
is therefore essential to employ additional methods, such 
as those in population genetics, to study the link between 
neutrophil count and P. falciparum severe malaria, with 
the overarching aim to improve the health outcomes of 
the people residing in endemic regions.

Mendelian randomization (MR) is a method in 
genetic epidemiology which uses genetic variants as 
proxies with the aim of providing evidence for causal 
inference between an exposure and an outcome [27]. 
As the majority of alleles are assigned randomly at 
birth, an MR analysis is analogous to that of a rand-
omized control trial (RCT), the most reliable method 
for evaluating the effectiveness of an intervention [30]. 
Large-scale studies, such as UK Biobank (UKBB) [31], 
have increased the potential of MR studies due to the 
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increase in power to detect associations in genome-
wide association studies (GWASs) that comes with 
such a large sample size.

Recent efforts in genetics have resulted in the gen-
eration of hundreds of GWAS using UKBB’s non-Euro-
pean participants for many traits in a hypothesis-free 
manner (https://​pan.​ukbb.​broad​insti​tute.​org/). How-
ever, the same covariates were used for each trait, and 
the impact of confounding due to population structure 
was not studied, this represents a potential limitation 
for constructing reliable instruments for a MR analy-
sis [32]. A recent study by Chen et al. used individuals 
of non-European ancestry in UKBB to perform trans-
ancestry GWAS of blood cell traits (BCTs) [33]. How-
ever, the African continental ancestry groups (CAGs) 
of UKBB display strong population structure [34]. It 
therefore remains unclear whether a GWAS of a com-
plex trait, such as neutrophil count, would result in 
associations that are linked to a biological mechanism, 
or whether the associations would be a product of con-
founding due to residual population structure. In order 
to answer these questions, a more thorough investiga-
tion of the sampled dataset is warranted. This becomes 
even more important when aiming to conduct causal 
inference analyses in genetic epidemiology, such as 
two-sample Mendelian randomization [35, 36].

To test the hypothesis that reduced neutrophil counts 
modulates severity of malaria in susceptible popula-
tions, we first performed a GWAS of neutrophil count 
in individuals associated to the UKBB African conti-
nental ancestry group (CAG), described in our previous 
study [34]. Here, we conducted a series of sensitivity 
analyses to describe the GWAS results and selection of 
genetic instruments to proxy for neutrophil count in a 
MR analysis. We then conducted bi-directional MR to 
estimate the casual relationship between neutrophil 
count and SM using data from the MalariaGEN consor-
tium [37].

Materials and methods
Study design
6,653 people representing the UKBB African CAG were 
identified as part of our previous study [34]. After PCA 
outlier filtering [34], we also excluded those without 
neutrophil count data and blood-related disorders [38], 
resulting in a final sample of 5,976. The primary GWAS 
of neutrophil count used in all other analyses was gener-
ated with BOLT-LMM. Several analyses were undertaken 
afterwards to test the validity of the primary GWAS esti-
mates. Following this, an MR analysis was performed 
between neutrophil count and severe malaria caused by 
P. falciparum using data from MalariaGEN (Fig. 1).

UK Biobank genetic data
UK Biobank’s “non-white” British data was studied pre-
viously, where 6653 people corresponded to the Afri-
can CAG, of which 6504 remained (5989 unrelated; 515 
related) after filtering for principal component analysis 
(PCA) outliers [34]. These were further assigned into 
seven clusters based on a K-means clustering algorithm 
(K1 = 527; K2 = 1,177; K3 = 1176; K4 = 1001; K5 = 1206; 
K6 = 862; K7 = 184) [34]. This dataset (N = 6504) included 
both directly genotyped (N = 784,256) and imputed 
(N = 29,363,284) SNPs filtered with a minor allele count 
of > 20. We filtered out SNPs with an INFO score thresh-
old of 0.3, as it gives the best balance between data quality 
and quantity. Another filtering process was a Hardy–
Weinberg equilibrium (HWE) test (P < 1e−10), used to 
identify SNPs of poor genotyping quality [39]. Finally, 
related individuals from the dataset were removed, 
resulting in 5,509 unrelated people in the filtered African 
CAG dataset. SNPs with a minor allele count of less than 
17 (corresponding to the new sample-size from 20) were 
removed. 23,530,028 SNPs remained after filtering by 
INFO score, HWE test and minor allele count.

UK Biobank phenotypic data
Haematological samples were analysed using four Beck-
man Coulter LH750 instruments [40]. Total white blood 
cell (WBC) count and neutrophil percentage (%) were 
measured through the Coulter method, with neutrophil 
count derived as “neutrophil %/100 × total WBC” and 
expressed as 109 cells/Litre [40]. Afterwards, the sample 
collection date was split into year, month, day, and min-
utes (passed since the start of the day of the appointment 
visit), while the neutrophil count measurement vari-
able was log-transformed into a variable named “nc_log”, 
which was used as the default neutrophil count variable 
throughout the study. Other variables that were used in 
the main analyses were: age, genetic sex, blood sample 
device ID, UKBB assessment centre and principal com-
ponents (PCs) 1 to 100. Filtering was performed based 
on the selection criteria described by Astle et al. [38] and 
Chen et  al. [33]. Briefly, individuals with disorders/dis-
eases that could affect blood counts (e.g. HIV, leukaemia, 
congenital anaemias, cirrhosis) were removed, bringing 
the final sample size to 5,976. This dataset is referred to 
as “AFR_CAG”.

BOLT‑LMM GWAS
BOLT-LMM was used as the software to run the primary 
(main) GWAS. Linkage disequilibrium (LD) scores were 
generated from the directly genotyped dataset that is 
required by BOLT-LMM to calibrate the test statistics. 
After preparing the phenotypic data to match the desired 

https://pan.ukbb.broadinstitute.org/


Page 4 of 15Constantinescu et al. Human Genomics           (2024) 18:26 

input, BOLT-LMM was run on AFR_CAG adjusting for 
age, genetic sex, UKBB assessment centre, blood sam-
pling device, sampling year, sampling month, sampling 
day, minutes passed in sampling day and the first 100 
principal components (PCs). Two linear model GWAS 
in SNPTEST were also completed on each K-means 
cluster and then meta-analysed: one without account-
ing for the Duffy SNP rs2814778 called “META-WOD”, 
and one where the Duffy SNP was included as a covari-
ate, called “META-WD”. Another BOLT-LMM sensitivity 
run was done with additional covariates to further study 
the validity of the main GWAS findings (Additional file 1: 
Methods).

Conditional and joint association analysis
We used GCTA-COJO [41, 42] to identify independ-
ent signals from the BOLT-LMM GWAS, as well as 
to detect any possible secondary signals arising from 
a stepwise selection model. SNPs which are close 
together are usually in LD i.e. their alleles are not ran-
dom, but correlated [39]. Before running GCTA-COJO, 
related individuals were filtered out of the dataset. 

PLINK was then used on this resulting output to per-
form a greedy filtering of related individuals. Follow-
ing this step, GCTA-COJO was run on the AFR_CAG 
filtered dataset to identify conditionally independent 
SNPs. These were referred to as “index” SNPs in the 
text.

PLINK clumping
After GCTA-COJO, we used PLINK to perform clump-
ing with three different thresholds. The first two repre-
sent the thresholds for defining LD independent SNPs 
for running analyses on the online variant annotation 
platform Functional Mapping and Annotation (FUMA) 
[43], while the latter being the clumping conditions 
used for conducting a Mendelian randomization analy-
sis [44, 45].

1.	 –clump-p1 = 5e−8, –clump-r2 = 0.6, –clump-
kb = 250

2.	 –clump-p1 = 5e−8, –clump-r2 = 0.1, –clump-
kb = 250

Fig. 1  Study design of the project
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3.	 –clump-p1 = 5e−8, –clump-r2 = 0.001, –clump-
kb = 10,000

Heritability analysis
An analysis was conducted with GCTA-GREML to esti-
mate the proportion of variance in neutrophil count 
explained by all genetic variants present in the filtered 
AFR_CAG dataset [46], with and without adjusting for 
the Duffy SNP rs2814778.

P. falciparum severe malaria genetic data
GWAS summary statistics for P. falciparum severe 
malaria were downloaded from a case–control study 
that spanned nine African and two Asian countries 
[37]. In brief, controls samples were gathered from cord 
blood, and in some cases, from the general population. 
Cases were diagnosed according to WHO definitions 
of severe malaria [47] and were categorised accord-
ing to CM, severe malarial anemia (SMA) and other 
severe malaria (OTHER) symptoms (Additional file  3: 
Table  S1). The majority of the RSIDs in the Malaria-
GEN dataset used older identifiers, and some of them 
had the “kgp” prefix that comes with the Illumina-
HumanOmni2.5  M array. Ideally, in a two-sample MR 
setting, the two samples would have a perfect match in 
the available genetic variants. It is desirable to at least 
maximise the number of matching variants to test. 
Therefore, RSID information for the MalariaGEN vari-
ants was updated in R by using the filtered AFR_CAG 
dataset as a reference panel.

Meta‑analysis of severe malaria African populations
Summary statistics for severe malaria and its sub-phe-
notypes were generated from a meta-analysis which 
included individuals from two non-African countries—
Vietnam and Papua New Guinea. The inclusion of SNP 
effect sizes from GWAS conducted in heterogenous 
population might bias MR estimates [48]. Therefore, 
per-population summary statistics were downloaded 
(https://​www.​malar​iagen.​net/​sppl25/) for each African 
country in the study and a meta-analysis was conducted 
on them using METAL [49–51].

Mendelian randomization analysis
The “TwoSampleMR” R package [52, 53] was used to 
perform the MR analyses. The two datasets were har-
monised i.e. orientated on the same strand and if SNPs 
were not found in the outcome dataset, we searched for 
SNP proxies. We then conducted a bi-directional MR 
analysis, where the effect of neutrophil count on over-
all severe malaria, along with the three sub-phenotypes 

was estimated and vice-versa. The main analysis was 
conducted using an IVW model [54]. Additionally, we 
ran a sensitivity MR analysis to outline the effect esti-
mates of each SNP on the desired outcome, with IVW 
and MR-Egger [55, 56] estimates where the number of 
instruments was larger than two and three, respectively.

Results
Analysis of study sample
5,976 out of 6,504 individuals in AFR_CAG remained 
after filtering for missing data and traits affecting blood 
cells. The mean value for neutrophil count was 2.9 × 109 
cells/litre, as expected this was lower than a European 
sample (4.21 × 109 cells/Litre) [33, 38]. The GWAS sample 
had a larger proportion of females (57%), was of a higher 
mean age (39 vs. 58.1 years) [57] and slightly higher body 
mass index (BMI) (27.6 vs. 29.8 kg/m2) [58] than the gen-
eral UK population (Additional file 3: Table S2).

We used the natural log-transformation, nc_log, in 
the GWAS. There was some variation in nc_log between 
each K-means cluster (Kpop) (Additional file 2: Fig. S1B), 
although this was low, with the median hovering around 
1 (Additional file 2: Fig. S1A).

Next, we conducted a power calculation supposing 
a linear, additive, GWA model [59–61]. The power to 
detect an association was > 80% when the proportion of 
variance explained by SNPs was higher than 0.75% (Addi-
tional file 2: Fig. S2).

Genome‑wide association study
We used BOLT-LMM for the main GWAS, which 
employs a linear-mixed model algorithm for conducting 
association testing [62]. It is unknown how well linear 
mixed model using PCs and kinship matrixes performs in 
highly stratified population samples with complex demo-
graphic histories and unique allele frequencies and link-
age disequilibrium [63]. To ensure that results derived 
by a linear mixed model as implemented by BOLT-LMM 
were reliable, we also aimed to conduct additional GWAS 
using a standard linear model on less stratified sub-sam-
ples of our sample population—as identified using an 
unsupervised machine learning methodology Additional 
file 1: Methods).

This AFR_CAG filtered sample was taken forward 
for further analyses. 704 genetic variants passed the 
GWAS significance threshold of P < 5e-8 in the primary 
GWAS. Most of these signals were in chromosome 1, 
in the proximity of the ACKR1-associated rs2814778, 
which had the lowest P-value across the genome (2.7E-
87) (Additional file  2: Fig. S2A). The META-WOD 
GWAS had 373 variants passing the threshold, while 

https://www.malariagen.net/sppl25/
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the META-WD (with Duffy adjustment) GWAS had 
31 significant SNPs, evidencing that most of the identi-
fied top signals in META-WOD were likely in LD with 
rs2814778. The QQ-plot of the BOLT-LMM GWAS 
did not display an early deviation from the expected 
P-value, indicating low likelihood of systemic bias in 
association statistics [64] (Additional file 2: Fig. S2B).

Next, we aimed to identify which SNPs might caus-
ally associate with neutrophil count. To do this, we 
used a conservative GCTA-COJO approach [42], which 
yielded 10 index SNPs (Fig. 2A, Table 1). Genomic loca-
tion context of each index SNP is available in Addi-
tional file 2: Figs. S3–S5.

A sensitivity BOLT-LMM GWAS was conducted 
with six additional covariates on 5,310 individuals: UN 
region of birth, K-means cluster, smoking status, alco-
hol drinker status, menstrual status and BMI (Addi-
tional file  3: Table  S4, Additional file  2: Fig. S11). The 
association statistics of this sensitivity run and the main 
BOLT-LMM GWAS run were compared, showing very 
similar results (Additional file  3: Table  S5). This pro-
vides evidence that the effect of these additional varia-
bles on the main GWAS were modest, and that the PCs 
and kinship matrix derived by BOLT-LMM appears to 

have accounted for any population stratification. As a 
follow-up, we aimed to assess if “missing” or “prefer not 
to answer” data in these additional covariates associ-
ated with differences in neutrophil count,. Even after 
adjusting for these additional variables, there was no 
evidence of a difference in neutrophil count (Additional 
file 3: Table S6).

The effect sizes of the primary GWAS index SNPs were 
compared with those from the SNPTEST/META GWAS. 
The direction was consistent and effect sizes were similar 
between the three GWAS, with those generated from the 
BOLT-LMM run (primary GWAS) being slightly larger, 
most likely due to the improved sample size (minor allele 
count) and power of the linear-mixed model (Fig. 3). As 
expected, the META-WD effect size for the rs2814778 
SNP was zero.

We next investigated the association statistics of the 
index SNPs in each Kpop. This was done to detect dis-
crepancies in directionality and effect sizes, which could 
indicate residual population structure or a SNP asso-
ciation with a specific Kpop. Overall, there was agree-
ment in direction, and some variation in effect sizes was 
detected across Kpops (Additional file 2: Fig. S6).

Fig. 2  Manhattan plot of neutrophil count GWAS. The x-axis is the base-pair position inside each chromosome, while the y-axis is the -log 
of the association P-value. A GWAS significance line is drawn to correspond to P = 5e−8 on the −log(P) axis (A). Index SNPs from the GCTA-COJO run 
are highlighted in green. QQ-Plot of observed vs. expected P-values for each SNP, along with the genomic inflation factor on the top-left (B)
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The GCTA-COJO analysis was also run on the two 
SNPTEST/META GWASs. The META-WOD analysis 
identified rs2814778, rs138163369 and rs570518709 as 
index SNPs. Similarly, the META-WD analysis iden-
tified rs138163369 and rs570518709. These two lat-
ter SNPs were not identified as index SNPs in the 
BOLT-LMM analysis, but their P-values were simi-
lar (rs138163369 – 4.90E-08, 2.28E-08, 1.22E-08; 
rs570518709 – 8.10E-08, 1.07E-09, 3.03E-09) (Addi-
tional file 3: Table S6). As another sensitivity analysis to 
test the reliability of the BOLT-LMM results, the effect 
sizes of all GCTA-COJO SNPs were compared in a 

pair-wise manner across the three GWAS. A regression 
line was fit through the scatter plots, showing a large 
degree of correlation between the BOLT-LMM effect 
sizes and the SNPTEST/META runs (META-WOD 
R2 = 0.91, META-WD R2 = 0.93) (Additional file  2: Fig. 
S7).

Two PLINK clumping analyses were performed on the 
filtered AFR_CAG summary statistics using the same 
clumping parameters on the well-known FUMA plat-
form [43]. Here, 193 SNPs were identified as loci at the 
relaxed threshold of r2 = 0.6 and 73 independent loci at 
the stringent threshold of r2 = 0.1. Finally, 12 top loci were 

Fig. 3  Effect estimates of the index SNPs. The beta coefficient for each index SNP is displayed along with 95% CIs. These are displayed 
for the BOLT-LMM, META-WOD and META-WD GWAS
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identified at r2 = 0.001 and a 10  Mb window, which are 
the very conservative MR clumping parameters [44, 45]. 
Furthermore, a FUMA analysis was run on the filtered 
AFR_CAG dataset for the top loci (r2 = 0.1). This was 
done to visualise which genomic locations are affecting 
neutrophil count and if they are more likely to have a par-
ticular genetic function compared to the whole genome 
i.e. functional variants [65]. Seventeen genomic risk loci 
were identified (Additional file 2: Fig. S8A). The ANNO-
VAR analysis [66] showed evidence for changes in genetic 
function enrichment relative to all SNPs in the reference 
panel. In brief, seven genomic regions were enriched, all 
indicating an enrichment in genic rather than intergenic 
spaces (Additional file 2: Fig. S8B).

Next, we investigated the independent SNPs in the 
GWAS Catalog [67], as we aimed to see if they have 
been previously associated with WBC count or immu-
nity. Here, SNPs predominantly showed associations 
with white blood cell count variation, further improving 
the reliability of the GWAS (Additional file 3: Table S7). 
We compared the AFR_CAG GWAS with a neutrophil 
count GWAS meta-analysis of Africans from UKBB 
and additional studies from Chen et  al. [33], and found 
that 81.71% of the GWAS significant SNPs from Chen 
et  al. were replicated (using the same covariates) in the 
AFR_CAG dataset (P < 0.05) (Additional file 3: Table S8). 
The Manhattan plots also visually showed a good degree 
of overlap (Additional file  2: Fig. S9), in contrast with a 

GWAS of neutrophil count in Europeans Additional 
file  2: Fig. S10) [38]. Finally, SNPs that were top loci at 
r2 = 0.1 were investigated in the Astle et al. [38] and Chen 
et  al. [33] summary statistics, as well as in the GWAS 
Catalog [67]. Nineteen genetic variants were not pre-
sent in these three datasets, 7 of which were index SNPs 
(Table 2). All novel SNPs were rare if aligned to a Euro-
pean genomic reference panel.

Heritability analysis
Without adjusting for rs2814778, the genetic variance 
was estimated at 0.101 (10.1%) (SE = 0.018), and the 
phenotypic variance at 0.133 (13.3%) (SE = 0.003) with 
an analysis P-value of 2.29e−09. When adjusting for the 
ACKR1/Duffy SNP, the genetic variance was estimated 
at 0.050 (5%) (SE = 0.017), twice as low as in the previ-
ous analysis, and the phenotypic variance was estimated 
at 0.123 (12.3%) (SE = 0.002), with the analysis P-value of 
1.36E−03 (Additional file 3: Table S9).

Mendelian randomization
Finally, a bi-directional MR was performed between neu-
trophil count and severe malaria. For the latter, we used 
summary statistics from the MalariaGEN study [37]. 
Only 3 SNPs were available to proxy for neutrophil count 
after data harmonization with the malaria dataset. For 
severe malaria as an exposure, 7 SNPs were available for 
overall severe malaria, 2 for CM and 3 for OTHER.

Table 2  Top loci not found in other studies. Only independent SNPs clumped at r = 0.1 are shown

EAF Effect allele frequency

SNP CHR BP (GRCh37) EAF r0.001 lead? cojo_index Novel? Nearest gene Type

rs28734019 1 90,800,573 0.998 Yes Yes Yes RNU6-695P Intergenic

rs61823703 1 159,542,164 0.987 No No Yes OR10AE1P Intergenic

rs539456851 1 158,731,459 0.982 No No Yes OR6N1 Intergenic

rs371178711 1 158,186,653 0.969 No No Yes RP11-404O13.5 Intergenic

rs146677619 1 158,995,984 0.991 No No Yes IFI16 Intronic

rs11576058 1 161,111,446 0.979 No No Yes UFC1 Intergenic

1:158777618_CT_C 1 158,777,618 0.050 No No Yes OR10AA1P Downstream

rs183362544 2 97,045,902 0.998 Yes Yes Yes NCAPH Intergenic

rs11422063 1 159,799,599 0.022 No No Yes SLAMF8 Intronic

rs112483667 1 151,651,180 0.974 No No Yes SNX27 Intronic

rs12406899 1 157,540,651 0.911 No No Yes FCRL4 Intergenic

rs1103805 1 158,924,741 0.929 No No Yes PYHIN1 Intronic

rs557482905 5 80,629,499 0.998 Yes Yes Yes ACOT12 Intronic

rs527921556 6 160,605,701 0.996 Yes Yes Yes SLC22A2 Intronic

rs10096834 8 116,281,087 0.573 Yes No Yes TRPS1 Intergenic

rs140048432 9 17,700,893 0.996 Yes Yes Yes SH3GL2 Intronic

rs530475031 12 48,810,860 0.998 Yes Yes Yes C12orf54 Intronic

rs558204720 16 59,472,815 0.998 Yes Yes Yes LOC105371298 Intronic

rs138163369 18 6,492,075 0.998 Yes No Yes CTD-2124B20.2 Intergenic
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The MR analysis did not suggest an effect of increas-
ing neutrophil count on CM risk (IVW OR: 1.00, 95% 
CI: 0.94–1.06; P = 0.98. There was limited evidence of 
an effect of neutrophil count on overall severe malaria 
(IVW OR: 1.03, 95% CI: 0.98–1.07; P = 0.24), OTHER 
(IVW OR: 1.03, 95% CI: 0.98–1.09; P = 0.26) and SMA 
(IVW OR: 1.08, 95% CI: 0.99–1.18; P = 0.08), although 
the effect estimates were trending towards an increased 
risk of severity, particularly for SMA (Fig. 4A, Additional 
file 3: Table S10). When running the MR analysis in the 
other direction, there was little evidence of an effect of 
overall severe malaria (IVW OR: 2.03, 95% CI: 0.70 to 
5.84; P = 0.19), CM (IVW OR: 2.14, 95% CI: 0.70–6.57; 
P = 0.18) and OTHER (IVW OR: 2.08, 95% CI: 0.59–
7.34; P = 0.25) on neutrophil count. However, there was 
a directional agreement in effect estimates towards an 
increase in neutrophil count (Fig.  4B, Additional file  3: 
Table  S11). No SNPs passed the GWAS significance 

threshold for SMA, meaning this analysis could not be 
conducted.

A single-SNP MR analysis was performed to study the 
effect of each genetic variant on the outcome. For neu-
trophil count as the exposure, SNPs rs2325919 (proxy 
for rs2814778), rs7460611 (proxy for rs10096834), and 
rs144109344 were used. There was little evidence of an 
effect by any single SNP, although the general direction 
was towards an increased risk of severe malaria (Addi-
tional file  3: Table  S11, Additional file  2: Fig. S12). The 
estimated conditional F-statistic for SNPs rs2325919, 
rs7460611 and rs144109344 were 182, 16 and 36 
respectively. For severe malaria as an exposure, SNPs 
rs113892119, rs116423146, rs1419114, rs553707144, 
rs557568961, rs57032711, rs8176751 were used to proxy 
for overall severe malaria, rs113892119 and rs543034558 
for CM, and rs113892119, rs116423146, rs557568961 
for OTHER (Additional file 3: Supplementary Table S12, 

Fig. 4  Bi-directional Mendelian randomization. Forest plot of the IVW MR analysis with neutrophil count as an exposure (A) and severe malaria 
as an exposure (B). Overall severe malaria and its sub-phenotypes are listed on the y-axis, with the effect estimates on the x-axis. In the first instance, 
the MR results are interpreted as an OR increase severe malaria per 1-SD increase in neutrophil count, while in the latter as a 1-SD unit difference 
in neutrophil count per 1-OR
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Additional file  2: Supplementary Fig. S13). The esti-
mated conditional F-statistic for SNPs rs113892119, 
rs116423146, rs1419114, rs553707144, rs557568961, 
rs57032711 and rs8176751 were 96, 32, 30, 38, 119, 32 
and 44 respectively.

Discussion
Here, we conducted a GWAS of neutrophil count in 
individuals from the AFR CAG in UKBB. Seventy-three 
independent loci were identified, of which nineteen were 
novel and rare (when contrasted to a European reference 
panel). Ten index SNPs were found using the conserva-
tive GCTA-COJO approach, and another two through 
MR clumping. Moreover, BOLT-LMM was found to be 
reliable in conducting GWAS on UKBB participants of 
African ancestry. As a follow-up application example, we 
ran a MR analysis between neutrophil count and P. falci-
parum severe malaria.

An aim of our study was to assess whether BOLT-
LMM could provide reliable results when performing 
a GWAS in people of non-European ancestry, such as 
those in the UKBB AFR CAG. In their meta-analysis of 
BCT in non-European datasets, Chen et al. used a linear 
model in PLINK to run their GWAS, restricting BOLT-
LMM only to the European dataset [33]. Compared to 
our META-WD and META-WOD GWAS, the BOLT-
LMM approach was more similar to that of Chen et  al. 
conducted with a larger sample-size (N = 15,171). These 
findings indicate that a linear mixed model framework 
using a kinship matrix might reliably account for exten-
sive population structure in a complex data set such as 
that seen in the African CAG used here. If this observa-
tion holds true this would be advantageous in identifying 
more causal ancestry-specific SNPs in future studies, as 
the power of BOLT-LMM scales with increasing GWAS 
sample-size [62].

Next, we found a marked difference between the 
genetic architecture of neutrophil count in people of 
African vs. European ancestry [38]. Interestingly, tissue 
expression for BCTs has been found to vary between 
ancestries as well [68], further showing the importance of 
conducting GWAS in diverse populations to improve the 
understanding of BCT biology. We investigated some of 
the GCTA-COJO index SNPs in relation to a biological 
mechanism that could explain how allele variation might 
affect neutrophil count levels in people of African ances-
try. Not all index SNPs had evidence in the literature or 
online databases in terms of their potential biological 
function(s) and we have included only those SNPs for 
which information was available.

One such SNP is rs12747038, an index SNP located 
on chromosome 1 (1q21.1), was also identified by Chen 
et  al. and Hu et  al. to be associated with neutrophil 

count and they found a similar effect size to us (AFR_
CAG: BETA = −0.22, P-value = 3.90e−09; Chen et  al.: 
BETA = −0.31, P-value = 3e−20; Hu et al.: BETA = −0.21, 
P-value = 8e−36) [33, 69]. Interestingly, rs12747038 has 
a role as a splicing QTL (sQTL) i.e. affecting alternative 
splicing to make different protein isoforms [70], which 
can be more relevant mechanistically to a phenotype 
compared to expression data [71]. The strongest asso-
ciation as an sQTL was with NBPF12 gene (NES = 0.49, 
P-value = 2.9e−9) in the thyroid. McCartney et  al. had 
found that rs11239931, an sQTL for NBPF12, was 
also associated with a decrease in granulocyte count 
(BETA = −0.23, P-value = 4e−12) in people of African 
ancestry (N = 6152) [72]. NBPF12 is part of the neuro-
blastoma breakpoint family, which has been associated 
with an array of traits, such as autism, psoriasis and vari-
ous cancers [73].

The rs2814778 (chromosome 1q23.2) index SNP has 
been the most replicated genetic variant in people of 
African ancestry known to affect neutrophil count [33, 
74–79], with the CC genotype (most common in Afri-
cans) associated with decreased neutrophil count [20]. 
The exact location of rs2814778 is inside a promoter 
upstream of the ACKR1/DARC​ (Atypical Chemokine 
Receptor 1/Duffy Antigen Receptor for Chemokines) 
gene [13]. The CC genotype inhibits the binding of the 
GATA transcription factor and therefore ACKR1 expres-
sion in erythrocytes, preventing the production of a gly-
cosylated transmembrane receptor [20]. This receptor is 
heavily involved in chemokine signalling, such as CXCL8 
and CCL5 [13].

rs144109344 is an index variant on chromosome 2 
(2q21.3), and its association was similar to that in the 
studies of Chen et  al. and Soremekun et  al. (N = 17,802 
Africans): AFR_CAG BETA = −0.12, P-value = 3.10e−10; 
Chen BETA = −0.27, P-value = 3.39e−14; Soremekun 
BETA = −0.21, P-value = 2e−13) [33, 77]. Similarly, other 
SNPs mapping to the DARS/CXCR4 (Aspartyl-TRNA 
Synthetase 1/C-X-C Motif Chemokine Receptor 4) genes 
have been associated with neutrophil and monocyte 
count [33, 38, 80–83]. CXCR4 is a chemokine receptor 
which binds to CXCL12 [84], and is known to regulate 
the release of neutrophils from the bone marrow dur-
ing both homeostasis and infections [85]. Interestingly, 
CXCR4 has been implicated in P. falciparum pathogen-
esis. Macrophage migration inhibitory factor (MIF) can 
interact with CXCR4 to recruit neutrophils [86], and P. 
falciparum is known to also produce MIF (PfMIF) [87]. A 
previous laboratory study using both murine (P berghei) 
and human (P falciparum) models found impairment of 
the parasite liver-cycle in both genetically deficient and 
drug-targeted CXCR4 [88].
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We note that the process of mapping SNPs to a bio-
logical function is a difficult process. This particularly 
applies to rare SNPs, such as those identified in our 
study, due to multiple factors (not limited to): rare 
SNPs being harder to detect in the first place [89], lack 
of information in databases on SNPs found in non-
Euroepan population and especially Africa [90, 91], 
no straight forward way to find function (e.g. splicing 
vs non-coding) [92], context-dependent and interac-
tion-dependent SNP effects along with small effects 
on multiple traits (pleiotropy) [93]. Therefore, the brief 
discussion above only serves as an inquiry into a possi-
ble explanation for the primary GWAS results.

Finally, in the MR analysis, there was limited evi-
dence for an effect of increased circulating neutrophil 
on the risk of SM. The strongest effect was observed 
for the SMA sub-phenotype, however, this did not 
reach statistical significance. Interestingly, a recent 
report demonstrated an association between circulat-
ing neutrophil transcriptional activity and levels of 
anaemia in children with malaria [24], highlighting the 
need for further pathophysiological studies. We also 
observed little evidence for an effect of SM on neu-
trophil count. Previously, Band et  al. performed a MR 
analysis between neutrophil count and P. falciparum 
SM [37], however, they used SNPs for neutrophil count 
generated from a GWAS in Europeans from UKBB [38], 
where they found no evidence of an effect on SM (AFR_
CAG BETA = 0.03, P-value = 0.24; Band BETA = 0.00, 
P-value = 0.87) [37].

Our study has certain limitations. Firstly, the novel 
genetic variants identified here may be a result of Win-
ner’s curse [94]—SNPs can pass the “significance” thresh-
old (commonly set at 5e-8 [95, 96]) in GWAS by chance 
in the first discovery study, which is then not replicated 
in subsequent studies [97, 98].

Secondly, only a limited number of instruments were 
available to proxy for neutrophil count in the MR analy-
sis. Seven index SNPs had a very high effect allele count, 
which might have been fixed in the MalariaGEN study 
population and so could not be used in the MR analysis. 
The rs2814778 SNP (associated with the ACKR1 gene) 
most likely had a very small allele frequency and might 
have been eliminated, although we were able to use 
another SNP in LD with it as a proxy. While LD proxies 
are useful, they can also come with the caveat of not pre-
cisely instrumenting the trait [36].

Finally, the most impactful limitation in this study is 
the small sample-size and hence statistical power. As 
mentioned previously, we have chosen to use BOLT-
LMM here to best address the issues of a small sample-
size and the presence of population structure. Current 
studies performed on people living in sub-Saharan Africa 

have been small [33, 75–77] compared to those currently 
being carried out in Europe, East Asia and the US [31, 
83, 99]. Having a large-scale study akin to UKBB in sub-
Saharan African would allow for finding common SNPs 
with smaller effect sizes that could be used reliably for 
polygenic risk score generation or MR analyses for com-
plex traits such as neutrophil count.

In conclusion, our GWAS of neutrophil count in peo-
ple from the UKBB African CAG identified several SNPs 
associated with neutrophil count. Additionally, our analy-
ses would support a conclusion that linear mixed model 
frameworks can properly account for possible confounding 
due to population stratification in complex highly strati-
fied sample populations. Finally, while the MR results were 
largely inconclusive, this only demonstrates the impor-
tance of conducting large-scale biobank studies in Africa.
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