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being more susceptible to androgen than the occipital 
scalp [3, 4]. As a result, MPB typically starts with a reced-
ing hairline and hair loss on the crown, eventually leav-
ing only a horseshoe-shaped area of hair on the back of 
the head [1, 5, 6]. The severity of MPB is assessed using 
the Hamilton-Norwood scale (HNS) that identifies char-
acteristic patterns of progression [7–10]. This scale is 
divided into three main types ranging from type 2 (mild 
MPB) to type 4 (severe MPB), while type 1 is considered 
the normal phenotype. MPB has a complex pathophysi-
ology, potentially involving interactions between various 
tissues including skin, adipose, blood, and other endo-
crine systems [11]. Currently, finasteride and dutasteride 

Introduction
Male-pattern baldness (MPB), also known as androge-
netic alopecia, is the leading cause of hair loss in men. 
MPB is a polygenic disease with a high heritability rate 
(~ 80%), reaching a prevalence of approximately 50% by 
the age of 50 [1, 2]. MPB is usually caused by testoster-
one, an androgenic hormone, with the hairline and crown 
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Abstract
Background  Male-pattern baldness (MPB) is the most common cause of hair loss in men. It can be categorized into 
three types: type 2 (T2), type 3 (T3), and type 4 (T4), with type 1 (T1) being considered normal. Although various MPB-
associated genetic variants have been suggested, a comprehensive study for linking these variants to gene expression 
regulation has not been performed to the best of our knowledge.

Results  In this study, we prioritized MPB-related tissue panels using tissue-specific enrichment analysis and utilized 
single-tissue panels from genotype-tissue expression version 8, as well as cross-tissue panels from context-specific 
genetics. Through a transcriptome-wide association study and colocalization analysis, we identified 52, 75, and 144 
MPB associations for T2, T3, and T4, respectively. To assess the causality of MPB genes, we performed a conditional 
and joint analysis, which revealed 10, 11, and 54 putative causality genes for T2, T3, and T4, respectively. Finally, we 
conducted drug repositioning and identified potential drug candidates that are connected to MPB-associated genes.

Conclusions  Overall, through an integrative analysis of gene expression and genotype data, we have identified 
robust MPB susceptibility genes that may help uncover the underlying molecular mechanisms and the novel drug 
candidates that may alleviate MPB.
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are used to temporarily alleviate MPB by inhibiting or 
decomposing testosterone, so these drugs are not effec-
tive for severe MPB, may have reproductive side effects, 
and often result in high recurrence rates [12, 13]. There-
fore, further research on the genetic basis of MPB and its 
application to therapeutic investigation is necessary.

Previous studies have suggested that the androgen 
receptor (AR) on the X chromosome and/or the genes 
involved with the Wnt/β-catenin signaling pathway are 
causal genetic factors that promote MPB [2, 4, 14]. How-
ever, these genes cannot fully explain the high heritability 
and mechanisms of MPB [1]. A previous genome-wide 
association study (GWAS) was performed to investigate 
the genetic features of MPB and several risk loci with 
high heritability were identified [1]. Although this study 
identified risk loci associated with MPB, it is neces-
sary to map these loci to specific genes to gain a deeper 
understanding of the underlying genomic and transcrip-
tomic mechanisms. As observed in many GWAS, the 
risk loci are often found in intergenic regions, such as 
single nucleotide polymorphisms (SNPs) in non-coding 
regions. These SNPs often regulate the expression of 
genes located far away from them, making it challeng-
ing to directly map them to genes based on their genomic 
locations [15–20]. In addition, GWAS identifies linkage 
disequilibrium (LD) blocks of associated variants rather 
than specific variant-trait associations [20]. Therefore, it 
is difficult to discover the causal variants using GWAS 
risk loci. To address these issues, transcriptome-wide 
association study (TWAS) has been proposed as a com-
prehensive method that takes into account SNP-medi-
ated gene expression based on the correlation between 
SNPs and gene expression levels [21]. TWAS predicts 
the gene expression levels associated with complex traits 
by calculating associations with genetic variants using 
expression quantitative trait loci (eQTL) panels. Recently, 
the eQTL panels from context-specific genetics (CON-
TENT), which combine tissue-shared genetic features in 
the regulation of gene expression, have shown improved 
statistical power in TWAS [22]. By utilizing the advan-
tages of TWAS that has proven effective in investigating 
the pathogenesis of traits and prioritizing causal genes, 
this study aims to address the limitations of previous 
studies and provide new insights into the mechanisms of 
MPB.

Here, we present a study that examines gene expres-
sion to investigate the association between risk loci and 
genes. We conducted TWAS on three types of MPB (type 
2, type 3, and type 4) utilizing three GWAS datasets from 
the UK Biobank (UKBB), which consists of individuals of 
European ancestry. Prior to TWAS, the linkage disequi-
librium score-specifically expressed genes (LDSC-SEG) 
method was used to prioritize tissue panels that were sig-
nificantly associated with each type of MPB [23]. Using 

the results of the tissue prioritization with LDSC-SEG, we 
performed TWAS on single-tissue panels from the geno-
type-tissue expression (GTEx) version 8 and cross-tissue 
panels from the CONTENT. To verify the robustness of 
MPB susceptibility genes, we conducted a colocalization 
(COLOC) and conditional and joint analysis, which iden-
tified 10, 11, and 54 significantly associated genes with 
MPB type 2, type 3, and type 4, respectively. As down-
stream analyses of these MPB signatures, we conducted a 
phenome-wide association study (PheWAS) and in silico 
drug repositioning (Fig. 1).

Materials and methods
Description of GWAS summary statistics and data pre-
processing
The GWAS summary statistics for TWAS analyses were 
obtained from GWAS ATLAS (https://atlas.ctglab.nl/). 
The datasets were categorized into four types based on 
the disease states of MPB: type 1 (HNS I and II), type 2 
(HNS II, III, IIIa, and Iva), type 3 (HNS III vertex-V), and 
type 4 (HNS IV, V, Va, VI, and VII) [2, 24, 25]. Except for 
the normal type 1, the three datasets consisted of 176,380 
Europeans from the UKBB and additional details can 
be found in Supplementary Table S1. The datasets were 
converted into the LD score format using the LD score 
regression (LDSC) software (version 1.0.1).

The tissue-specific enrichment analysis based on genetic 
heritability
To prioritize tissue panels associated with MPB for 
TWAS analyses, we conducted a tissue-specific enrich-
ment analysis using LDSC-SEG, a tool developed by Finu-
cane et al. [23]. for identifying disease-relevant tissues. 
This method applies stratified LDSC to GWAS summary 
statistics to evaluate the contribution of the heritable ele-
ment in multiple tissue types [23]. We tested the tissue-
specific enrichments for the three types of MPB using the 
multi-tissue gene expression and multi-tissue chromatin 
modification (DNase hypersensitivity, histone acetyla-
tion, and histone methylation) datasets. The multi-tissue 
gene expression dataset consists of the GTEx [26] and 
Franke lab datasets [27, 28] and is classified into nine 
major groups for visualization purposes: adipose, blood/
immune, cardiovascular, central nervous system, diges-
tive, liver, musculoskeletal/connective, pancreas, and 
“other”. The multi-tissue chromatin modification dataset 
includes data from the Roadmap Epigenomics [29] and 
the Encyclopedia of DNA Elements (ENCODE) projects 
[30] and is classified as the multi-tissue gene expression 
dataset. Since chromatin modification can influence gene 
expression, we used the multi-tissue chromatin modifi-
cation dataset to validate the results obtained from the 
multi-tissue gene expression dataset and to account for 
epigenetic modifications. While MPB is known to be 

https://atlas.ctglab.nl/
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associated with the sex chromosomes, we aimed to iden-
tify responses in somatic cells that occur regardless of the 
sex chromosomes by considering general tissues or cells 
rather than those specific to sex chromosomes.

The transcriptome-wide association analysis using multi-
tissue panels
The TWAS analysis was performed using the func-
tional summary-based imputation (FUSION) software. 
FUSION integrates GWAS summary statistics and 
eQTL weights to compute gene expression-mediated 

Fig. 1  Workflow of the entire study. The GWAS summary statistics were obtained from GWAS ATLAS and tissue panels were prioritized using LDSC-
SEG. We conducted TWAS and COLOC using both single-tissue panels and cross-tissue panels. The biological functions of TWAS results from single-tissue 
panels were evaluated through functional annotation analysis. Downstream analyses were performed using 10 (type 2), 11 (type 3), and 54 (type 4) genes 
that showed significance in the conditional and joint analysis
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associations between genotype and phenotype [21]. We 
used eQTL panels from GTEx version 8, which were fil-
tered based on tissue-specific enrichment analysis. For 
multiple comparison adjustment, the Bonferroni correc-
tion method was applied for TWAS associations of tissue 
panels in MPB type 2, type 3, and type 4, respectively. To 
obtain additional TWAS associations with tissue-shared 
or tissue-specific effects, we utilized the cross-tissue 
expression panel from the CONTENT. The CONTENT 
panel computes based on the admixture of GTEx single-
tissue panels and combines tissue-shared and tissue-spe-
cific associations through linear regression calculated by 
Thompson et al. [22] For TWAS results using the CON-
TENT panel, the Bonferroni correction method was used 
and only results corresponding to the tissue panels of tis-
sue-specific enrichment analysis were selected.

The colocalization analysis between eQTL and GWAS 
signals
Since TWAS is based on predictive models that include 
the genotype, gene expression, and phenotype, there 
may be hidden confounding factors including LD con-
tamination, which can lead to false correlations between 
predicted gene expression and phenotype. To address 
this issue, we performed the COLOC analysis, a Bayes-
ian-based statistical method that estimates the probabil-
ity of shared causal variants between eQTL and GWAS 
signals [31]. The posterior probabilities (PP) for hypoth-
eses 0–4 were as follows: H0 (no causal variant), H1 (only 
causal variants between genotype and phenotype), H2 
(only causal variants for eQTL), H3 (phenotype and gene 
expressions driven by two independent causal variants), 
and H4 (phenotype and gene expressions share one causal 
variant). Following previous studies, we set the signifi-
cance threshold as PP3 + PP4 > 0.8 and PP4 / PP3 > 2 [16, 
32]. 

The conditional and joint analysis
To ensure accuracy in identifying potential LD-contam-
inated associations, a conditional and joint analysis was 
conducted. This analysis takes into account the extent 
to which GWAS signal remains significant when other 
associations are included as covariates. If a GWAS signal 
remains significant even after conditioning, it suggests 
that the signal is conditionally independent, meaning it 
is not reliant on other associations. However, if the sig-
nal becomes less significant after conditioning, it sug-
gests that the signal was influenced by other associations 
[15, 21]. Genes that still exhibit significance after condi-
tioning were defined as jointly significant genes, while 
genes showing reduced significance after conditioning 
are considered as marginally significant genes due to co-
regulation. We selected the jointly significant genes as 

the reliable genetic signature for each type of MPB and 
named them as MPB signatures.

The functional enrichment analysis in biological processes 
using GSEA
The functional annotations of TWAS associations 
were conducted using the gene set enrichment analy-
sis (GSEA) version 4.3.2, a computational method that 
interprets groups of genes that share a common biologi-
cal function by using gene expression data and a gene 
set database [33]. The functional enrichment analysis 
utilized gene sets derived from the gene ontology (GO) 
biological process and ranked gene lists with z-scores cal-
culated from TWAS. Biological processes that met a sig-
nificance threshold (P-value < 0.05) were shown based on 
the normalized enrichment scores (NES). The NES value 
reflects the degree of up-regulated and down-regulated 
gene enrichment through multiple hypothesis testing.

The phenome-wide association study using MPB 
signatures to identify MPB-associated traits
The PheWAS is a method used to search for phenotypes 
that share specific SNP associations across thousands 
of human phenotypes. This approach tests associations 
between genetic variants and a large number of phe-
notypes to discover pleiotropic effects, where specific 
genetic variants may be associated with multiple traits 
[34, 35]. By utilizing the PheWAS database available at 
GWAS ATLAS that contains leading SNPs from 4,756 
GWAS summary statistics, we examined the phenotype 
associations of MPB signatures [36]. For each SNP in the 
MPB signatures, we obtained a list of associations and 
filtered the results to identify significant traits linked to 
genetic loci of each type of MPB using a Bonferroni-cor-
rected significance threshold (P-value < 1.05 × 10− 5).

Drug-gene connectivity analysis for drug repositioning
To identify drugs that are associated with genes, we 
used the connectivity map (CMAP) and library of inte-
grated network-based cellular signatures (LINCS) uni-
fied environment (CLUE) (https://clue.io/about) that is 
a web-based tool for drug repositioning. CLUE gener-
ates drug-gene connections by analyzing gene expression 
and proteomics assays including the LINCS L1000 and 
CMAP databases [37, 38]. To validate the drug candidates 
identified by CLUE, we also used the Networkanalyst that 
can offer comprehensive list of protein-drug interaction 
networks collected from the DrugBank database (version 
5.0) [39]. The networks were visualized using Cytoscape 
application (version 3.9.1) and only networks that were 
directly linked to MPB signatures in both results were 
displayed [40]. 

https://clue.io/about
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Calculating the protein-protein interaction score
The protein-protein interaction (PPI) analysis was con-
ducted between the already known markers and signa-
tures of MPB. For the known MPB genes, we selected 336 
genes that appeared when searching for ‘androgenetic 
alopecia’ in the Open Targets Platform (https://platform.
opentargets.org/). The interaction score was calculated 
using the combined score from the STRING database 
(https://string-db.org/). As a control, we calculated the 
interaction score between randomly selected genes 
and known MPB genes. To determine whether the two 
groups of interaction scores were significantly different, 
we analyzed the degree of interaction using a one-tailed 
t-test with 10,000 repetitions.

Results
Panel prioritization to select MPB-related tissue panels
Since TWAS calculates genetic associations based on 
tissue panels, it is necessary to select appropriate tis-
sues to obtain accurate results. In particular, to deter-
mine the effects of MPB on somatic cells, it is better to 
select MPB-related tissue panels from general tissue 
panels rather than focusing on tissue panels related to 
the sex chromosomes. To examine the genetic contribu-
tion in tissue-specific gene expression of MPB and select 
significantly associated tissue panels, we conducted a 
tissue-specific enrichment analysis using the LDSC-SEG 
with the multi-tissue gene expression dataset [23]. The 
LDSC-SEG analysis with the multi-tissue gene expres-
sion dataset suggested that four (adipose, digestive, mus-
culoskeletal/connective, and “other”) out of nine major 
categories showed significant association with MPB type 
2 (coefficient P-value < 0.05) (Fig.  2A). For MPB type 3, 
we identified significant enrichment in five (adipose, 
blood/immune, digestive, musculoskeletal/connective, 
and “other”) out of nine major categories (coefficient 
P-value < 0.05) (Fig.  2B). In the case of MPB type 4, the 
analysis revealed significant associations in four major 
categories (adipose, blood/immune, cardiovascular, and 
“other”; coefficient P-value < 0.05) (Fig.  2C and Supple-
mentary Data S1).

To validate the results of the tissue-specific enrich-
ment analysis using the multi-tissue gene expression 
dataset, we also utilized the multi-tissue chromatin 
modification dataset [23]. For MPB type 2, the analysis 
revealed significant enrichment in four (digestive, mus-
culoskeletal/connective, pancreas, and “other”) out of 
nine major categories, of which three categories showed 
significance in both the multi-tissue gene expression 
and multi-tissue chromatin modification datasets (coef-
ficient P-value < 0.05) (Fig. 2D). The results for MPB type 
3 showed significant enrichment in four major catego-
ries (adipose, digestive, musculoskeletal/connective, and 
“other”; coefficient P-value < 0.05) (Fig.  2E). These four 

categories were also significantly associated with MPB 
type 3 using the multi-tissue gene expression dataset. 
MPB type 4 showed significant enrichment in the adi-
pose, blood/immune, digestive, musculoskeletal/con-
nective, and “other” categories, three of which showed 
significance in both the multi-tissue gene expression and 
multi-tissue chromatin modification datasets (coefficient 
P-value < 0.05) (Fig. 2F). The specific tissue categories and 
statistics for MPB type 2, type 3, and type 4 are presented 
in Supplementary Data S1 and S2. Finally, we selected 
five, six, and five tissue eQTL panels from GTEx, based 
on their significant enrichment in both the multi-tissue 
gene expression and multi-tissue chromatin modifica-
tion datasets (Table 1). These selected tissue eQTL panels 
were used for subsequent TWAS analyses.

The transcriptome-wide association study to identify 
associations with MPB
To investigate the susceptibility genes for MPB, we con-
ducted TWAS using the FUSION method, which iden-
tifies associations between GWAS phenotype and gene 
expressions. We used three GWAS summary statistics 
and relevant tissue eQTL panels from the GTEx selected 
based on tissue-specific enrichment analysis (Table 1 and 
Supplementary Table S1). Among a total of associations, 
89, 156, and 331 associations in 20, 25, and 101 loci were 
significantly associated with MPB type 2, type 3, and 
type 4, respectively (Bonferroni-corrected P-value < 0.05) 
(Fig. 3A, Supplementary Fig. 1, and Supplementary Data 
S3). The significant associations can be divided into 
positive associations and negative associations based on 
the direction of the z-score, indicating that increased/
decreased expression leads to increased/decreased risk 
of MPB. In MPB type 2, there were 18 positive associa-
tions and 71 negative associations. In case of MPB type 3, 
it had 122 positive associations and 34 negative associa-
tions, while MPB type 4 showed 182 positive associations 
and 149 negative associations. The number of signifi-
cant associations according to tissue panels is shown in 
Fig. 3B. For MPB type 2 and type 3, the sun-exposed and 
not-sun-exposed skin panels had the largest number of 
associations. In the case of MPB type 4, subcutaneous 
adipose tissue had the largest number of associations, 
surpassing both skin tissue panels (Fig. 3B). Among the 
results, we found that 7, 10, 16 genes were significant in 
all tissue panels (Supplementary Fig.  2D–F). We then 
examined the Chi-squared TWAS z-scores for each tis-
sue and observed that the tissue panels within individual 
types of MPB had similarly grouped means of effect sizes 
(type 2: 5.39 to 5.84, type 3: 7.70 to 8.47, and type 4: 8.57 
to 9.21) (Supplementary Fig.  2A–C) [41]. This indicates 
that the associations of MPB may evenly affect gene 
expression in the tissue panels.

https://platform.opentargets.org/
https://platform.opentargets.org/
https://string-db.org/
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Fig. 2  Results of tissue prioritization using the multi-tissue gene expression and chromatin modification datasets. Scatter plots showing the 
tissue prioritization of MPB type 2, 3, and 4 using both multi-tissue gene expression dataset (A–C) and multi-tissue chromatin modification dataset (D–F). 
These tissue prioritization results were categorized into nine major groups and are plotted on the X-axis (scarlet: adipose; mustard: blood/immune; yellow 
green: cardiovascular; green: central nervous system; blue green: digestive; turquoise: liver; blue: musculoskeletal/connective; pink: pancreas; and lilac: 
“other”). The Y-axis represents –log(P-value) and the dashed lines indicate the significant thresholds (coefficient P-value < 0.05). Any tissues above the 
threshold are considered significant
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To examine the tissue-specific or tissue-shared genetic 
effects in TWAS associations at the pathway level, we 
performed the functional annotation for each tissue 
panel using GSEA. We found that all the 79, 111, and 116 
pathways that were statistically significant were enriched 
in multiple tissue panels (Supplementary Fig.  3 and 
Supplementary Data S4). The majority of tissue panels 
showed significant enrichments in pathways previously 
implicated in MPB pathogenesis, including apoptosis, 
signaling pathway, and immune response (Supplemen-
tary Table S2) [42–45]. This suggests that the cumula-
tive functional characteristics of TWAS associations for 
MPB are consistent across tissue panels and have shared 
effects across tissues.

Although TWAS using GTEx eQTL panels can iden-
tify associations for each tissue, it does not account for 
all intra-individual correlations found in multiple con-
texts [22]. To analyze the tissue-shared effects of MPB-
associated genetic variants, we performed additional 
TWAS analyses using cross-tissue panels called CON-
TENT. Since there was no cultured fibroblast panel in 
CONTENT, we conducted the analysis using the remain-
ing panels. After Bonferroni correction, we found 27, 56, 
and 149 associations in 6, 10, and 33 loci that were sig-
nificantly associated with MPB type 2, type 3, and type 
4. Among these associations, 12, 17, and 71 associations 
were not found in the results using GTEx panels (Bon-
ferroni-corrected P-value < 0.05) (Supplementary Data 
S5, Fig. 3A and G-I). The majority of TWAS associations 
for GTEx and CONTENT were located on chromosome 
17 that is known to be related to various human genetic 
diseases, including cancers, DNA damage response, and 
MPB (Supplementary Fig. 1) [46, 47]. Detailed results on 
the number of associations for each tissue panel are pre-
sented in Fig. 3C. The number of significant associations 
across all tissue panels was two, five, and six (Supplemen-
tary Fig. 4D–F). We also examined Pearson’s correlation 
between the results from the GTEx and CONTENT pan-
els, which showed moderate to high levels of consistency 
with minor differences (0.62 to 0.75 of Pearson’s R). These 
results indicate that our analysis accounted for both tis-
sue-specific and tissue-shared features of MPB (Supple-
mentary Fig. 4A–C).

To filter out LD-contaminated associations and ensure 
rigorousness, we additionally conducted the COLOC 

analysis. The COLOC analysis evaluates the consistency 
between GWAS signals and eQTL to determine if the 
signals are driven by a shared causal variant by calculat-
ing PPs for hypotheses of colocalized patterns between 
GWAS and eQTL signals. Out of the significant associa-
tions identified in the TWAS analyses, 52, 75, and 144 
associations met the COLOC threshold (PP3 + PP4 > 0.8 
and PP4 / PP3 > 2) (Fig.  3D–I and Supplementary Table 
S3).

The conditional and joint analysis to identify conditionally 
independent genes
To thoroughly eliminate any remaining potential LD con-
taminations, the conditional and joint analysis were per-
formed to determine the conditional or joint associations 
of significant levels [21]. We tested the joint significance 
of 52, 75, and 144 associations by conditioning on the 
GWAS signals and identified 13, 14, and 82 jointly signifi-
cant associations in 9, 8, and 44 loci for MPB type 2, type 
3, and type 4, respectively (joint P-value < 0.05) (Fig.  4 
and Supplementary Table S4).

There were 10, 11, and 54 genes found in jointly signifi-
cant associations, which were denoted as MPB signatures 
below, containing one, four, and nine non-coding RNAs, 
as well as 9, 7, and 45 protein-coding genes. Especially, 
among the protein coding genes, we identified two, 
two, and four novel genes that had not been recognized 
as MPB risk genes in previous studies and gene data-
bases: cluster of differentiation 59 (CD59) and zinc finger 
DHHC-type palmitoyltransferase 5 (ZDHHC5) in MPB 
type 2; chromodomain helicase DNA binding protein 6 
(CHD6) and zic family member 2 (ZIC2) in MPB type 3; 
and ADAM metallopeptidase with thrombospondin type 
1 motif 18 (ADAMTS18), ATPase H + transporting V0 
subunit D1 (ATP6V0D1), transmembrane protein 178B 
(TMEM178B), and ZDHHC5 in MPB type 4 (Table 2).

Phenome-wide association study of MPB signatures to 
identify potential pleiotropic effects
To explore the potential pleiotropic effects of our MPB 
signatures and identify shared genetic factors with other 
diseases or traits, we conducted a PheWAS analysis 
using GWAS ATLAS, which can reveal traits associated 
with MPB-signatures. We identified 223, 244, and 490 
traits that were categorized into 19, 19, and 25 domains, 
respectively, under the Bonferroni-corrected significance 
threshold (Fig.  5A–C and Supplementary Data S6). The 
psychiatric domain showed the highest number of traits 
associated with MPB type 2 and type 3, while the meta-
bolic domain had the highest number of traits in MPB 
type 4. The analysis revealed that variants from MPB sig-
natures were highly enriched in five domains across all 
types of MPB: activities, immunological, metabolic, neu-
rological, and psychiatric domains. It is well known that 

Table 1  Results of tissue prioritization for TWAS analyses
Trait GTEx eQTL panel
MPB Type 2 Sigmoid colon, Transverse colon, Cultured fibro-

blasts, Sun-exposed skin, Not-sun-exposed skin
MPB Type 3 Subcutaneous adipose, Visceral adipose, 

Cultured fibroblasts, Lung, Sun-exposed skin, 
Not-sun-exposed skin

MPB Type 4 Subcutaneous adipose, Visceral adipose, Whole 
blood, Sun-exposed skin, Not-sun-exposed skin
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Fig. 3  Results of TWAS and COLOC analyses.(A) A bar graph displaying the number of associations obtained using TWAS (GTEx and CONTENT) and 
COLOC, which passed the threshold for each analysis. The results are represented by different colors: green (type 2), orange (type 3), and blue (type 4). 
(B) Bar graphs showing the results of TWAS using individual tissue panels of GTEx. (C) Bar graphs displaying the results of TWAS using individual tissue 
panels of CONTENT. The bars are color-coded according to MPB types. Ternary plots showing TWAS and COLOC results for (D) MPB type 2, (E) type 3, and 
(F) type 4, respectively. PP0 + PP1 + PP2 indicates underpowered signals; PP3 indicates independent variants between phenotype and gene expression; 
and PP4 indicates colocalized variants where the causal SNP is associated with both phenotype and gene expression. Non-significant TWAS associations 
are represented with gray points, while significant associations are marked in blue, of which with a high posterior probability of colocalized signals are 
highlighted in red. Venn diagrams represent the number of associations from GTEx, CONTENT, and COLOC for (G) MPB type 2, (H) type 3, and (I) type 4, 
respectively. Genes used for further analysis are indicated in bold
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these domains are associated with an increased risk of 
MPB [1, 44, 48–51]. 

Among the variants that had pleiotropic effects, 
there were 6, 6, and 33 variants associated with five 
domains for MPB type 2, type 3, and type 4, respectively 

(Fig.  5D–F). Among the six variants in MPB type 2, 
rs4277389, rs199535, and rs199451 showed a high num-
ber of associations with psychiatric and other domains, 
regulating genes such as microtubule-associated protein 
tau (MAPT), RP11-259G18.3, and KAT8 regulatory NSL 

Table 2  Novel protein-coding genes in the results of conditional and joint analysis
Trait Gene Z (TWAS) P (TWAS) Z (Joint) P (Joint) Tissue panel
MPB Type 2 CD59 -4.5 6.10E-06 -4.5 6.10E-06 Transverse colon

ZDHHC5 8.3 8.60E-17 8.3 8.6E-17 Not-sun-exposed skin
MPB Type 3 CHD6 -5.6 1.60E-08 -5.6 1.60E-08 Cultured fibroblasts

ZIC2 -6.5 8.90E-11 -6.5 8.90E-11 Sun-exposed skin
MPB Type 4 ADAMTS18 5.0 4.50E-07 5.0 4.50E-07 Subcutaneous adipose

ATP6V0D1 -7.9 2.60E-15 -7.9 2.60E-15 Whole blood
TMEM178B -4.7 3.20E-06 -4.7 3.20E-06 Not-sun-exposed skin

-4.7 3.20E-06 -4.7 3.20E-06 Sun-exposed skin
ZDHHC5 -6.2 6.30E-10 -6.2 6.20E-10 Not-sun-exposed skin

Fig. 4  Results of the conditional and joint analysis. Dot plots showing joint genes that remained significant after conditioning in (A) MPB type 2, (B) 
type 3, and (C) type 4. The X-axis represents –log(joint P-value) and the dashed line indicates the significance threshold (joint P-value < 0.05). The dot color 
corresponds to the tissue panels (scarlet: subcutaneous adipose; mustard: visceral adipose; yellow green: cultured fibroblasts; green: sigmoid colon; light 
blue: transverse colon; blue: not-sun-exposed skin; pink: sun-exposed skin; and lilac: whole blood)
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complex subunit 1 (KANSL1), which are known to be 
involved in neuropsychiatric functions (Fig. 5D) [52–54]. 
In MPB type 3, rs8072451 and rs199456 were particu-
larly associated with the psychiatric domain, regulating 
RP11-798G7.8 and RP11-259G18.3 (Fig.  5E). Among 
the 33 variants associated with MPB type 4, rs174574, 
which regulates fatty acid desaturase 1 (FADS1) known 
to play a crucial role in the metabolic response of fatty 
acids, showed the largest number of associations with 
the metabolism domain (Fig. 5F) [55, 56]. We sought that 
these variants may cause pleiotropic effects by regulat-
ing gene expression in multiple tissues. By examining the 
traits associated with these variants, the traits that may 
be related to MPB can be confirmed.

Identification of potential drug candidates related to MPB 
signatures
In order to identify potential drug candidates for treat-
ing MPB, we analyzed the connectivity between drugs 
and MPB signatures using CLUE and Drugbank data-
base. We manually excluded drugs known to cause hair 
loss. Among the connected drugs, curcumin was directly 
connected to type 2 MPB signatures (Fig. 6A). For MPB 
type 4, five drug molecules showed a direct connection 
with type 4 MPB signatures: alpha-linolenic-acid, genis-
tein, diethylstilbestrol, afimoxifene, and succinic-acid 
(Fig. 6B). Previous studies on curcumin and succinic-acid 
have suggested their potential use in treating MPB, sup-
porting the reliability of our potential drug candidates 

Fig. 5  PheWAS results of SNP-trait associations. Bar graphs indicating the number of traits per each domain in (A) MPB type 2, (B) type 3, and (C) type 
4. Heatmaps showing the number of traits associated with each MPB signature variant for the top five domains in (D) MPB type 2, (E) type 3, and (F) type 4
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[57, 58]. Unfortunately, there were no drug molecules 
connected with type 3 MPB signatures.

Since we identified potential drug candidates based on 
the MPB signatures, it is important to assess the func-
tional connectivity between MPB signatures and known 
MPB marker genes in order to establish credibility for our 
results. To address this issue, we compared the connec-
tivity between MPB signatures and known MPB markers 
to the connectivity between random genes and known 
MPB markers (Supplementary Data S7). We calculated 
the interaction scores using protein interaction datas-
ets from the STRING database. The results showed that 
the mean connectivity of type 2 and type 4 MPB signa-
tures was significantly higher than that of random genes 
in nearly half of the cases in our simulation repeated up 
to 10,000 times (Supplementary Fig.  5). This indicates 
that MPB signatures may exhibit functional connectivity 
with known MPB markers, suggesting that drug candi-
dates potentially affect the known MPB markers via MPB 
signatures.

Discussion
MPB is a type of hair loss in men with specific patterns, 
which is caused by various genetic variants. Although 
previous studies have attempted to identify the MPB-
associated genetic variants, the associations between 
genetically regulated gene expression and MPB have not 
been studied yet. To investigate gene expression changes 
influenced by genetics in MPB, we utilized TWAS, a 
method that calculates the expected changes in gene 
expression modulated by genetic variants and identifies 
associations between genes and the trait [16]. 

Since MPB is a complex disease that may involve mul-
tiple tissues in its development, it is crucial to prioritize 
tissue panels based on gene expression patterns. We 
conducted tissue-specific enrichment analysis using the 
LDSC-SEG method, utilizing multi-tissue gene expres-
sion and chromatin modification datasets. As a result, 
we selected five, six, and five tissue panels for MPB type 
2, type 3, and type 4, respectively (Fig. 2; Table 1). These 

tissue panels consisted of adipose, colon, fibroblasts, skin, 
and whole blood. It has been reported that these tissues 
are associated with biological processes involved in the 
pathology of MPB, including inflammatory response and 
growth factors [59–64]. 

As indicated by our gene prioritization analyses, SNP-
mediated gene expression associated with MPB exhibits 
both tissue-specific and tissue-shared aspects (Supple-
mentary Fig.  3 and Fig.  3). By rigorously assessing the 
initial TWAS results throughout the conditional and 
joint analysis, we identified 10, 11, and 54 robust MPB 
signatures, of which two, two, and four protein-coding 
genes were novel, respectively (Fig.  4; Table  2). Among 
the type 2 MPB signatures, the CD59 gene plays a role 
in defending host cells from the complement system dur-
ing inflammation response, which is considered one of 
the causes of MPB [65, 66]. ZDHHC5, significant in both 
MPB type 2 and type 4, is involved in various biological 
processes, including cell adhesion, neuronal activity, and 
innate immune response [67–69]. In particular, reduced 
hair follicle cell adhesion can cause hair loss by stimulat-
ing stem cell exhaustion [70]. In MPB type 3, both the 
CHD6 and ZIC2 genes are involved with transcriptional 
processes by activating or repressing transcription [71, 
72]. Especially, the ZIC2 gene can inhibit Wnt/β-catenin 
signaling, a known cause of MPB [14, 73]. In MPB type 
4, the gene product of ADAMTS18 is a member of the 
ADAMTS protein family with proteolytic function [74]. 
Proteolytic activity affects the process of hair shedding 
driven by enzymatic mechanisms, which can lead to 
baldness with insufficient replacement of hair [75, 76]. 
ATP6V0D1 is a gene encoding a component of vacuolar 
ATPase that utilizes ATP energy to produce a proton gra-
dient [77]. Previous studies have shown that ATP-related 
processes play an important role in MPB and a previously 
known treatment, minoxidil, also acts on ATP processes 
[78–80]. TMEM178B is a gene that encodes a trans-
membrane protein and its function may be attributed to 
the diffusion or transport of steroid hormones includ-
ing androgen [81]. Therefore, based on previous studies, 

Fig. 6  Drug-gene interaction network using CLUE and Drugbank database. The drug-gene interactions for (A) MPB type 2 and (B) type 4 were 
identified using CLUE and Drugbank database and only drugs common to both results were visualized using Cytoscape. The solid line represents drug-
gene interaction from CLUE, dashed line indicates drug-gene interaction from Drugbank database, and parallel lines indicate drug-gene interaction from 
both CLUE and Drugbank database
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these novel genes may be involved in mechanisms related 
to MPB.

Using these MPB signatures, we conducted PheWAS 
and drug repositioning as downstream analyses. The 
results of the PheWAS revealed that all types of MPB 
were commonly associated with activities, immunologi-
cal, metabolic, neurological, and psychiatric domains 
(Fig.  5). The traits involved in the metabolic and psy-
chiatric domains were previously reported in a GWAS 
study by Pirastu et al. [1] and those of activities, immu-
nological, and neurological domains were also known 
to be associated with MPB [1, 2, 44, 48–51, 82–84]. One 
of the significantly associated traits among the activities 
domain was UV exposure that can cause hair damage 
and hair loss [82]. In the immunological domain, several 
immune-related cells play a significant role in hair follicle 
regulation and regeneration [44]. Diabetes, overweight, 
and high cholesterol levels were shown in the metabo-
lism domain, which have been previously reported to be 
related to MPB [49, 83]. Parkinson’s disease, known as 
an MPB-related, has been reported to share genetic fac-
tors with MPB in previous studies, particularly in the 
neurological domain [2, 50]. In addition, traits related to 
drinking, smoking and stress in the psychiatric domain 
may affect the mechanisms of MPB such as hair follicle 
inflammation [51]. 

We analyzed the connections between genes and drug 
molecules to identify potential drug candidates for MPB 
(Fig. 6). We suggested curcumin as a potential drug can-
didate for MPB type 2, which have already been men-
tioned as potential molecules for treating baldness. 
Curcumin is a plant-derived substance that exhibits anti-
inflammatory, anti-bacterial, and antioxidant proper-
ties. Previous studies using curcumin for the treatment 
of MPB have shown significant improvements in hair 
growth and hair loss without any side-effects [57, 85]. 
Additionally, curcumin analogs can block the activity of 
AR that plays a crucial role in MPB pathogenesis [86, 87]. 
For MPB type 4, five drug candidates were estimated to 
be effective in treating MPB. The lack of alpha-linolenic 
acid, an omega-3 fatty acid, can lead to scalp hemor-
rhagic folliculitis and maintaining adequate levels of 
alpha-linolenic acid can help strengthen the skin barrier 
[88–91]. Treatment with linolenic acid has been found to 
increase hair cell growth by antagonizing Wnt/β-catenin 
signaling, making it effective for treating baldness [92]. 
Estrogen-related drugs such as afimoxifene, diethylstil-
bestrol, and genistein have been reported to alleviate 
hair loss by controlling abnormal estrogen levels [93–
96]. Succinic-acid, used in ATP generation reaction in 
the mitochondria, can promote hair growth by increas-
ing ATP concentration in the scalp and regulating the 
inflammatory response [58, 97–99]. In MPB type 3, the 
MPB signatures were involved in cellular functions such 

as transcriptional processes and chromosomal remodel-
ing, which may cause drug-induced cell death when tar-
geted [100]. 

While our study has provided insights into the complex 
underlying mechanisms of MPB, there are still some limi-
tations within the study design. First, there was no scalp 
skin panel in GTEx, so we had to use available skin pan-
els obtained from the suprapubic or lower leg instead of 
scalp skin. However, it is important to note that the scalp 
belongs to the ectoderm-oriented epidermis, thus choos-
ing skin panels was the best alternative for this study. 
Although MPB is associated with sex chromosomes, the 
GWAS datasets we used only include autosomal chro-
mosomes. This was done intentionally to observe the 
effects of MPB on autosomal chromosomes only in this 
study. Additionally, since this study was performed in 
silico approach, our findings need to be validated with 
additional experimental studies. Especially, some drug 
candidates for treating MPB have not been studied yet, 
so the efficacy and delivery method of these drug candi-
dates need to be further tested using in vivo and in vitro 
models. Despite these limitations, we believe that our 
study will contribute to the understanding of the genetic 
mechanisms of MPB and provide new insights for treat-
ment of MPB.
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