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Abstract
Interest in the assignment and frequency analysis of haplotypes in samples of unrelated individuals has increased immeasurably as a result of

the emphasis placed on haplotype analyses by, for example, the International HapMap Project and related initiatives. Although there are

many available computer programs for haplotype analysis applicable to samples of unrelated individuals, many of these programs have

limitations and/or very specific uses. In this paper, the key features of available haplotype analysis software for use with unrelated individuals,

as well as pooled DNA samples from unrelated individuals, are summarised. Programs for haplotype analysis were identified through

keyword searches on PUBMED and various internet search engines, a review of citations from retrieved papers and personal communi-

cations, up to June 2004. Priority was given to functioning computer programs, rather than theoretical models and methods. The available

software was considered in light of a number of factors: the algorithm(s) used, algorithm accuracy, assumptions, the accommodation of

genotyping error, implementation of hypothesis testing, handling of missing data, software characteristics and web-based implementations.

Review papers comparing specific methods and programs are also summarised. Forty-six haplotyping programs were identified and

reviewed. The programs were divided into two groups: those designed for individual genotype data (a total of 43 programs) and those

designed for use with pooled DNA samples (a total of three programs). The accuracy of programs using various criteria are assessed and the

programs are categorised and discussed in light of: algorithm and method, accuracy, assumptions, genotyping error, hypothesis testing,

missing data, software characteristics and web implementation. Many available programs have limitations (eg some cannot accommodate

missing data) and/or are designed with specific tasks in mind (eg estimating haplotype frequencies rather than assigning most likely

haplotypes to individuals). It is concluded that the selection of an appropriate haplotyping program for analysis purposes should be

guided by what is known about the accuracy of estimation, as well as by the limitations and assumptions built into a program.
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Introduction

The completion of the human genome project marks a sig-

nificant milestone in genetic research, ushering in an era of

research opportunities in the application of genomic tech-

nologies to medical and public health problems.1–3 One area

of application involves the identification and characterisation

of DNA sequence variation and its relationship (or associ-

ation) with, for example, disease susceptibility. Many initiatives

have been put in place to facilitate relevant association

studies, but the most important is the International HapMap

Project (IHP).4 The assignment and analysis of haplotype

frequencies (ie the number of times alleles at different loci are

observed together on the same chromosome in a sample of

individuals) can not only lead to estimates of linkage disequi-

librium (LD) strength, but can also be used as the basis for a

number of additional phenomena and analyses — such as the

comparison of population genetics structures (eg immigration

rates, genetic distances, etc), the consideration of chromosome

phylogeny and the estimation of the age of mutations.5–15

Moreover, the use of haplotypes may result in considerable

savings in terms of genotyping costs and power of an associ-

ation study.16–18

Unfortunately, many current genotyping technologies are

unable to resolve the phase of maternal and paternal

chromosomes in unrelated individuals, and hence the actual

haplotypes an individual possesses may be in doubt. This

ambiguity is referred to as the ‘haplotype problem’, and its
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complexity increases exponentially with the number of loci

being studied. Although there are technologies that can be

used to unambiguously resolve phase at the chromosome or

DNA level, they tend to be cost prohibitive.19–24 Haplotype

analysis involving related individuals (individuals collected

from families and/or pedigrees) potentially offers more infor-

mation and certain advantages compared with analysis

involving unrelated individuals. Family based analysis imposes

additional challenges and may not be suitable for all study

designs or research objectives.5,25–27 A companion review that

focuses on computer programs and issues related to haplotype

analyses involving related individuals will follow.28 Statistical

procedures are therefore required to both estimate haplotype

frequencies and assign the most likely haplotypes to unrelated

individuals from genotype data.23,29,30 In this paper, available

computer programs for haplotype frequency estimation will be

considered as well as assignment of haplotypes involving

unrelated individuals. The paper builds on an earlier review,31

recent discussions of relevant algorithms32,33 and articles

comparing different procedures.30,34–36 Some simple rec-

ommendations are made for addressing specific research

questions using available software. Finally, web-based sum-

maries of these evaluation are available and provide greater

detail than that outlined here (URL: http://polymorphism.

ucsd.edu/HapSoftwareReview/).

Materials and methods

Identification of software
Available software was identified through four means:

1) searching PUBMED through to June 2004; 2) reviewing

cited references of retrieved papers and reviews of papers; 3)

internet searches (eg via Google); and 4) communication with

investigators working in the field. The PUBMED and/or

internet searches included the following terms or combi-

nations of terms: ‘haplotyping’, ‘haplotype’, ‘analysis’,

‘methods’, ‘software’, ‘inference’, ‘assignment’, ‘problem’,

‘unrelated’, ‘population’ and ‘pooled’.

The methods, features and limitations of the identified

programs were evaluated using the original published articles

describing the methods, the manuals associated with the soft-

ware and articles comparing programs and methodologies. The

assessments provided here, build on an earlier review,31 pub-

lished discussions of algorithms for haplotype analysis32,33 and

articles contrasting different methodologies.30,34–36 Accuracy

of the methods used for estimating haplotype frequencies and

assigning haplotypes to individuals was considered to be of

particular importance. Ideally, validation of an indirect (ie

statistically-based) haplotyping method should be compared

with direct, DNA sequence-derived haplotype information.

Although studies with simulated data are also informative,

allowing discrimination of program performance under a var-

iety of situations, without a ‘gold standard’ for comparison

purposes it is hard to assess the true reliability of a method.

The large number of reviewed programs precludes systematic

testing of the identified programs’ accuracy, performance and

claims. The evaluation of this large group of programs is

complicated by the diversity of methods used, measures of

reliability algorithms used, varying datasets and assumptions

and program characteristics which limit or prevent a program

from working in all instances. The authors have endeavoured

to provide a thorough review of the literature of haplotyping

software in unrelated individuals, but it is acknowledged that

not all original authors’ claims have been validated (Sup-

plemental Table S-A provides a brief summary of reviewed

articles in which programs were actually compared). Thus,

there is a reliance on some authors’ claims that have not been

independently verified. The majority of identified programs

are freely available to academic and non-profit users. Finally,

recommendations are provided for specific research objectives.

Evaluation criteria
The identified computer programs were evaluated on the

basis of a number of criteria and/or software features.

Many of these features and criteria were considered because

they reflect items that should guide the use of particular

haplotyping software.

1. Algorithms and methods: the analytical methods and algor-

ithms implemented in the available programs are con-

sidered. Essentially, algorithms can be divided into two

broad classes: parsimony and likelihood methods.

2. Accuracy: the accuracy of haplotyping algorithms is

considered in terms of the algorithms ability to assess

haplotype frequencies from a sample of unrelated

individuals, as well as to assign haplotypes to particular

individuals. Measures of accuracy are discussed briefly in

the accuracy section and are detailed on the above-

mentioned website (see supplementary Table S-B).

3. Assumptions: haplotyping programs often make assump-

tions about, for example, Hardy-Weinberg equilibrium

(HWE), LD, population history and recombination.

These assumptions can have an impact on the accuracy of

haplotype frequency estimates and assignments.

4. Genotyping error: the accommodation of genotyping error

in haplotype inference is considered. Programs that

identify and accommodate genotyping errors are noted.

5. Hypothesis testing: not all programs have the ability to

conduct statistical tests of hypotheses, so this feature is

considered as well.

6. Missing data: the accommodation of missing data in hap-

lotype analysis is considered.

7. Software characteristics: issues related to the usability of

programs are considered, including computer system

requirements, input data formats, interfaces, output, run

time and sample size.

8. Web implementation: web-based implementations of avail-

able computer programs are considered.
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Results

Forty-six haplotyping programs were identified and reviewed.

The programs were divided into two groups: those designed

for analyses involving individual genotype data from unrela-

ted individuals (a total of 43 programs) and those designed for

analysis of DNA pools (three total programs). An overview of

reviewed programs is presented in Tables 1–4 and in

Supplemental Tables S1-S4, S-A and S-B: (http://

polymorphism.ucsd.edu/HapSoftwareReview/). Additional

information on the software programs discussed in this paper,

links and contact information for programs, all supplemental

tables, updates to existing software and newly released software

are available at the following website: http://polymorphism.

ucsd.edu/HapSoftwareReview/.

The majority of identified programs for estimating haplo-

type frequencies and assigning them to individuals use

methods rooted in likelihood theory (eg for estimation

purposes — primarily the maximum likelihood approach).

From a survey of the literature, it appears that most of the

programs give similar results, although performance is not

always consistent. No group or individual program appears to

work well in all situations, or have all the features one might

like to see implemented in a haplotype analysis program. It

appears that accuracy and performance are affected by the

characteristics of the data to be analysed and the characteristics

of the population from which the individuals are sampled.

Haplotyping in unrelated populations
Algorithms and methods. A number of different analytical

methods have been proposed for haplotype analysis involving

unrelated individuals (see Table 1 and Supplemental Table S1).

Ultimate classification of haplotyping algorithms is difficult,

since implemented algorithms are often modified and com-

bined in programs. A broad classification can be made, how-

ever, between algorithms based on parsimony and algorithms

based on likelihood theory. An overview of each of these

classes is provided below.

Methods based on parsimony: in 1990, Clark37 proposed

an innovative method of constructing haplotypes using a

rule-based algorithm. This simple method uses the frequencies

of individuals whose haplotypes are known with certainty

(eg individuals homozygous at every loci) to draw inferences

about the most likely haplotypes for individuals whose

haplotypes are ambiguous, given their genotype data. HAPI-

NFREX, which employs Clark’s method, is computationally

fast and efficient and has been used in a great deal of

research14,38 Limitations of the method include the

requirement of unambiguous individuals in the study popu-

lation, sensitivity to the order in which data are analysed, the

inability to assign haplotypes to all individuals and potentially

erroneous haplotype assignments.37,39 To overcome these

limitations, a pure parsimony extension, using integer linear

programming, has been proposed40,41 and implemented in the

program HAPAR.39 Extensions of parsimony methods take

advantage of the ‘perfect phylogeny framework’.40 These

programs apply the results of recent research that indicates that

recombination is uncommon within LD blocks16–18 for effi-

cient and effective haplotype analysis. Perfect phylogeny

haplotyping (PPH) reduces the haplotype analysis problem to

a phylogeny problem40 by making the assumptions of no

recombination and infinite site mutations. Along this frame-

work, unphased genotype data are reduced to a ‘graph realis-

ation problem’ and solved using metroid theory and graph

analysis in GPPH, although a unique solution is not guaran-

teed.40,42 A simpler alternative method based on graph analysis

is employed by DPPH.43 Since empirical data may violate the

prefect phylogeny assumption,44 the assumption is relaxed in

the ‘perfect phylogeny’ model implemented in HAPH44 and

BPPH.45 HAPH constructs haplotypes within LD blocks using

a maximum likelihood method.

Methods based on likelihood theory: the majority of pro-

grams that could be located are rooted in likelihood theory.

Methods that exploit likelihood theory can be further broken

down into maximum likelihood and Bayesian methods. The

expectation maximisation (EM) algorithm is the most widely

used haplotyping algorithm based on likelihood theory. In

1995, three research groups separately implemented and

published EM-based haplotyping programs, 3locus.PAS,46

HAPLOH47 and MLHAPFRE.48 Excoffier and Slatkin48

present a discussion of the challenges and limitations of applying

the EM algorithm to haplotype analysis. In brief, the EM

method has two parts, a likelihood function using initial

parameter inputs and estimating sets of haplotypes thatmaximise

the posterior probabilities of given genotypes. The estimates

are iteratively updated to maximise the likelihood function.

The EM algorithm has been shown to be accurate via

simulations,49 and produces haplotype frequency estimates

comparable to molecular haplotype frequencies.23,29,30 More-

over, much of the error in haplotype frequency estimation

associated with the EM algorithm has been found to be due to

sampling error.29,40 The EM algorithm may occasionally

miscall rare or low frequency haplotypes.29,30,49,50 Accuracy of

the EM algorithm improves with increasing sample size.49 The

EM algorithm does have some limitations: it may converge to

a non-global maximum, requiring restarts to ensure that a

global maximum is reached48,49 and it can make demands on

memory requirements that may limit its utility with large

numbers of subjects and datasets.48,51

Variants of the EM algorithm have been developed that

allow the EM algorithm to overcome some of these

constraints. The SNPHAP program handles the limitations by

progressively expanding the subsets of markers and eliminating

low frequency haplotypes from consideration at each step

(refereed to as posterior and prior ‘trimming’).52 The

THESIAS program uses a stochastic variant of the EM

algorithm to overcome many of its limitations.53 Alternatively,
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the PL-EM program combines a partition-ligation (PL) strat-

egy with the EM algorithm to allow haplotyping of hundreds

of loci.54–56 The HPLUS program combines the EM likeli-

hood function with an estimating equation and the PL model

to efficiently handle construction of large haplotypes with

missing data.55

The second class of likelihood algorithms are based on

Bayesian estimators and Bayesian-based numerical strategies,

such as Gibbs sampling.51,57–61 Bayesian methods use different

models or prior assumptions to model haplotype frequencies,

and as such can be tailored to different settings, thereby

improving its accuracy. Bayesian haplotype analysis methods

can be further subdivided into ‘simple’ and ‘coalescent-based’

methods. The simple methods make no assumption about the

history of the populations from which samples of individuals

have been drawn. Simple Bayesian programs include HAPLO-

TYPER and HAPLOREC. HAPLOTYPER uses a statistical

method similar to EM.57 HAPLOREC implements a

Bayesian method using a Variable Length Markov Chain

chain approach.62 The coalescent-based Bayesian methods

essentially take similarities between and among haplotypes into

account. This class includes the widely-used program,

PHASE. The latest version of PHASE (v2.0) incorporates an

updated algorithm to improve accuracy and the PL algorithm

to improve performance time.59 A modified model, the neu-

tral coalescent model, is implemented in SLHAP v1.0.58

SLHAP v1.0 builds on PHASE v1.0 to include modifications

to improve computation time and to accommodate missing

data.58 Finally, Arlequin (version 3.0) draws on the coalescent

model, exploiting a relaxed definition for similar haplotypes

in an adaptive window approach.60

Accuracy. The accuracy of available programs was assessed

through consideration of published articles investigating hap-

lotype frequency estimation and assignment accuracy, includ-

ing comparisons to molecular and simulated haplotype data.

The measurement of the accuracy of a haplotyping method

necessitates a comparison, comparing observed haplotype

assignments and/or frequency estimates to expected haplo-

types. The ‘gold standard’ for comparison is DNA sequence-

derived haplotype information. The advantage of using

accurate molecular haplotype data is that no assumptions,

guiding, for example, simulations, are specified. The accuracy

of a specific program is not influenced or biased by assump-

tions imposed in simulated data. Additional testing, including

the discrimination of program performance under a variety of

situations and assumptions is facilitated with use of simulated

data.

Comparison of accuracy between haplotyping programs is a

taxing venture, complicated by a variety of issues. A significant

challenge is that most programs have not been directly com-

pared with each other (Supplemental Table S-A provides a

brief overview of retrieved articles that compared accuracy and

performance of programs). Only a small set of programs are

compared in each individual paper. Comparison of accuracy

and performance of these select programs is often carried out

with different datasets and under varying conditions.

A further challenge is that numerous measures have been

used to assess accuracy, and these vary across publications,

which are described in the reviewed literature. In brief, several

measures of global accuracy of frequency estimates/assignments

were found: discrepancy, error rate, mean square error (MSE),

similarity index If and similarity index IS, in addition to several

measures comparing similarity of incorrect haplotype assign-

ments to true haplotypes: hamming distance ‘error rate H’,

similarity index IG, single site error rate and switch accuracy

(see Supplemental Table S-B for detailed accuracy definitions).

Divergent results may be attributable to the method of accuracy

measurement. Unfortunately, a comparison of the different

accuracy measures was not identified in reviewed literature.

To illustrate this, a relatively simple example of four articles

that all focus on comparing the PHASE (v1.0) program to

EM-based programs is provided here. An original publication

describing PHASE (v1.0) reported that the program out-

performed other haplotyping methods, reducing MSE rates by

more than 50 per cent relative to the HAPINFREX program

and a program with a standard EM algorithm.51 A subsequent

comparison35 between PHASE v1.0 and a standard EM pro-

gram comparing accuracy, measured by discrepancy error

rates, showed that average error rates did not differ statistically

between EM-based methods and PHASE v1.0. This finding

was seen across simulated and phase-known data.35 In rebuttal,

Stephens et al.63 showed that PHASE v1.0 outperforms

HAPLOTYPER and PL-EM, with lower error rates on data

simulated to fit a coalescent model. The results were reversed

when a dataset of molecular haplotypes was used, where

HAPLOTYPER and PL-EM were comparable, with both

outperforming PHASE v1.0.57

As this example demonstrates, characteristics inherent to a

specific dataset whether molecular or simulated data, influence

the performance and accuracy of a program. This may influ-

ence the perceived accuracy and performance of a haplotyping

program. Moreover, the studies did not compare identical set

of programs. Both Stephens et al.51 and Zhang et al.35

employed their own standard versions of the EM algorithm,

which should be comparable but may not have identical spe-

cifications. A further challenge is that, while PL-EM is an

EM-based program, it is one of several EM programs that have

been modified to overcome performance problems of the EM

algorithm, as discussed previously. Therefore, the improve-

ment in the performance of the EM-based program, PL-EM,

versus PHASE may not necessarily be generalisable to all

EM-based programs. To overcome these problems, Stephens

et al59 compared their updated version of PHASE (v2.0)

with several programs, using the same datasets and measures

of accuracy as published comparisons of PHASE v1.0 to other

programs.57,58

Overall, programs based on the Bayesian principles, EM

algorithm and imperfect phylogeny performed similarly with
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sequence-derived and simulated haplotype data. As shown

previously,31 no program or algorithm clearly distinguished

itself from the rest. While Clark’s intuitive method has shown

utility, the present assessment of the literature suggests that

other methods offer distinct advantages. The performance of

all programs is affected by model assumptions and population

genetic parameters. The impact of these assumptions is

discussed below.

Assumptions. This section focuses on several common

assumptions incorporated in haplotyping programs. Depar-

tures from or violations of these assumptions may affect pro-

gram accuracy and performance. The assumptions are related

to each other; violation of one assumption may lead to vio-

lation of a second. For ease of evaluation and discussion, each

assumption is addressed separately. Program assumptions

(HWE, LD, population history, etc) are noted in Tables 1

and S1.

Hardy-Weinberg equilibrium: as described in Tables 1

and 4, many programs — including all EM algorithm-based

programs — assume HWE. Algorithms that assume HWE

may be sensitive to departures from this assumption. Depar-

tures from HWE arise either from excess homozygosity or

heterozygosity at a locus in a population. Measures evaluating

departures from HWE have been shown to correlate with

haplotype frequency estimation and assignment inference

accuracy.57 Increases in homozygosity tend to decrease the

number of ambiguous individuals (ie individuals whose phase

cannot be determined with certainty) and have been shown to

have little impact on the accuracy of the EM-based method, as

measured by the MSE.49,64 By contrast, accuracy decreases

with HWE departures resulting from increased heterozygosity.

Comparing the performance of HAPINFREX, EM-DEC-

ODER, PHASE v1.0 and HAPLOTYPER in simulated data

with varying HWE departures found that all methods showed

increased error levels with excess heterozygosity.57 HAPI-

NFREX was most vulnerable to HWE departures, particularly

underperforming in situations with low numbers of homo-

zygotes. Performance improves rapidly with increasing pro-

portions of homozygotes in a population.57 In data with a

significant proportion of homozygous individuals, HAPI-

NFREX outperformed PHASE v1.0.57 In an evaluation of

HPLUS on simulated data with HWE departures, accuracy

improved with increasing sample size, although little benefit

was achieved with samples beyond 100 subjects.55

Linkage disequilibrium and recombination: research

suggests that recombination hotspots — that is, chromosomal

segments with high levels of recombination — tend to be

separated by extended LD or haplotype ‘blocks’ exhibiting

little recombination and strong LD. This structuring of LD

blocks may be common in the human genome.16-18,65 Highly

variable recombination rates in a small genomic region may

violate assumptions of the current coalescent-based pro-

grams;51,58 however, all methods may have problems con-

structing haplotypes across regions with high levels of

recombination57,60 and low LD.36 While a majority of

programs do not make explicit assumptions about LD, the

performance of both EM methods29,36,48,64 and PHASE

v1.051 has been shown to improve with increasing LD. Com-

parisons of the accuracy of PHASE v1.0, HAPLOTYPER

and Arlequin v3.0, showed that accuracy was adversely affected

by increases in the recombination rate.60Doubling in theta (u)—
that is, the mutation rate per locus — results in a 5–10 per

cent decrease in accuracy for both Arlequin v3.0 and PHASE

v1.0. By contrast, the global accuracy of HAPLTOYPER

increased with theta in some situations.60 In this comparison,

Arlequin v3.0 demonstrated the highest accuracy in the pre-

sence of recombination, by using a sliding windows approach

to phase loci. Performance measured by a similarity index for

HPLUS declined with increasing number of single nucleotide

polymorphisms (SNPs) for a simulated dataset with recombi-

nation, although this trend was not observed with MSE.55

The PL method used by HAPLOTYPER was shown to be

insensitive to the presence of recombination hotspots,

although extensive recombination may be problematic.57

Accuracy improves when hotspots are used as the partition

sites, however.54,57 PL-EM allows users to specify the partition

size, thereby allowing partitioning at the hotspot. Focusing on

DNA segments in LD offers a method to overcome the

challenges and errors related to haplotyping in the presence of

recombination hotspots. Since the recombination hotspots are

not known in advance, automating the identification of LD

block boundaries, haplotyping within blocks may offer sig-

nificant benefits40,57 Several programs, notably HAPH,

SLHAP v1.0 and PHASE v2.0, have exploited this method-

ology. SLHAP v1.058 and HAPH have been reported to

improve the accuracy of inferred haplotypes. A related

approach limits haplotype analysis to segments in LD.

HAPLOREC based on the variable-length chains allows the

program to obtain different length haplotype fragments in

different regions, based on the LD strength.62 A drawback of

these methods is that it may lead to a loss of phase infor-

mation.66 PHASE v2.0 incorporates a separate algorithm to

accommodate recombination, based on the method proposed

by Fearnhead and Donnelly.67

Evaluation of linkage and recombination is an important first

step in haplotype analysis. The HAPH and HAPLOVIEW pro-

grams identify haplotype blocks in a graphical display. Data that

contain recombination hotspots may pose a challenge to hap-

lotyping software that assumes no recombination. Decreases in

LDare correlatedwith increasing estimation error36 andmagnify

the effects of genotyping error;68 thus, although haplotyping

with loci whose alleles are in low LD is important, haplotype

estimates from such data may be unreliable. Further study in this

area is required, particularly in situations of intermediate LD

levels; the influence of LD level on accuracy and determination

of the LD level that, if surpassed, improves accuracy. This is

not trivial, especially if many loci are considered, each with

varying degrees of LD by comparison with the others.
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As one would expect, recombination leads to an increase in

the number of haplotypes, including low frequency haplotypes

that are difficult to estimate accurately.36,49,53 Increasing

sample size may improve haplotyping accuracy in the presence

of high recombination.39 Finally, analysing chromosome seg-

ments on either side of a recombination hotspot is most likely

to be the only current viable option.8

Population evolutionary history: several programs impose

assumptions on the evolutionary history of the populations

from which samples have been obtained to improve program

efficiency and accuracy and simplify haplotype analysis. The

PHASE program is the best-known example of a program that

incorporates a population evolutionary history model — in

this case the coalescent model.51,59 Moreover, the SLHAP

v1.058 and Arlequin v3.060 programs are based on variants of

the coalescent model. Several programs exploit the ‘perfect

phylogeny’ concept. These programs (GPPH, DPPH and

BPPH) are reported to be fast and accurate and to accom-

modate large numbers of markers.40,42,43,45 The HAPH pro-

gram uses a relaxed model — imperfect phylogeny — to make

the model more amenable to what is currently known about

population evolutionary history.44

The benefit of incorporating an evolutionary model, such

as the coalescent model, is to take advantage of similarities

between haplotypes; it is thought to result in more accurate

haplotypes than other methods.51,59 The disadvantage is that

the behaviour of alleles in the short-term evolution of

chromosomes may violate the model, potentially leading to

errors. By contrast, HAPLOTYPER, HAPINFREX and

HAPAR impose no population evolutionary history assump-

tions. Program performance and accuracy may be affected

when data fit or do not fit the program’s population assump-

tion. To illustrate, Stephens et al.51 note that PHASE v1.0, by

comparison with EM algorithm-based methods, would reduce

error rates by 50 per cent when data fit the coalescent model.

When compared to PL-EM, using similar data, the improve-

ment in error rate was 26 per cent lower than that shown by

Stephens et al. for data that fit the coalescent model.54

The coalescent model is appropriate for stable populations

that have evolved over long periods of time, but is less suitable

for populations with past gene flow, stratification and/or

population migration. There is disagreement as to whether

haplotyping programs based on the coalescence model are the

most appropriate for accurate haplotyping.35,51,57 Even when

data do not fit the coalescent model, the performance of

PHASE v1.0 is suggested to be no worse than that of EM

methods.63 Using simulated data that violate the coalescent

model, Niu et al.57 showed that HAPLTOYPER and

EM-DECODER are more accurate than PHASE v1.0 and

HAPINFREX. The decline in performance of PHASE v1.0

in at least one of the instances may have been due to insuffi-

cient updates rather than model assumptions.59 The findings of

Niu et al. were supported in a subsequent comparison of

PHASE v1.0, HAPLOTYPER and Arlequin v3.0.60 Arlequin

v3.0 had the highest accuracy of the three programs when the

coalescent model was violated. In a comparison of PHASE

v1.0, HAPINFREX, HAPAR and HAPLOTYPER using

data modelled to fit the coalescence model, PHASE v1.0

yielded the lowest error rate, followed by HAPAR.39 The

updated version of PHASE v2.0 demonstrated improved

performance with molecular haplotype data, exceeding the

performance of HAPLOTYPER, SLHAP v1.0 and the earlier

version of PHASE.59 An additional study assessed performance

of PHASE v1.0, HAPAR and HAPLOTYPER using data

simulated to fit the phylogeny model, an evolutionary model

related to the coalescence model. The comparison found that

PHASE v1.0 had the lowest error rate, followed by HAPAR

and HAPLOTYPER. Error rates became similar for the three

programs as sample size increased.39 In summary, programs

that assume a population evolutionary history of data should

be used with care, since departures from model assumptions

may have a significant impact on the accuracy of haplotype

assignments and estimates. This should in no way detract from

the utility and flexibility of these programs, but serves to

illustrate that model assumptions should be considered when

these programs are used.

Genotyping error. Genotyping error is a form of misclassi-

fication which can lead to deleterious effects on the power of

association analyses,69–72 LD measurements69 and erroneous

haplotype analysis.60,68,73,74 The power of SNP association

studies decreases with even relatively small genotyping error

rates.71 A similar trend may exist for haplotype association

studies, although further examination is required. Sample size

requirements of varying SNP error rates and power levels can

be examined at the Power for Association with Error (PAWE)

website70,71 (see Tables 2 and S2).

Most genotyping errors are due to allelic dropout (missing

data) and the inability to score heterozygotes, resulting in an

increased proportion of homozygotes.73,75 Non-random

distributions of missing genotypes represent an error in geno-

type assignments. Programs that deal with missing data often

do so by assuming that data are missing at random. Spurious

haplotypes may be introduced if loci with genotype errors are

included in haplotype analysis.60 Error rates of 5 per cent may

bias haplotype estimates by as much as 30 per cent.72 Geno-

typing error leads to a substantial loss in haplotype accuracy,

particularly when LD is low and many rare haplotypes exist.74

Haplotyping methods that favour similar haplotypes may be

less sensitive to genotyping error.60 Recently, Zou and Zhao72

introduced an EM-based program that corrects haplotype

frequency estimates for known genotype error rates, although

determining genotyping error can be difficult in unrelated

populations.76–78 A common strategy is to genotype a subset

of the study population twice, to determine error rates.

Genotyping as few as 25 individuals has been shown to be

sufficient for determining genotyping error in a simulation

study.76 Testing assay specificity and HWE deviations of loci

are established methods for reducing genotyping error rates.79
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Finally, the accuracy and power of association analyses may be

improved by incorporating genotyping uncertainty in haplo-

type inference to negate the effects of genotyping errors, as in

GS-EM.73

Missing data. Current genotyping methods often result in

missing data, owing to a variety of factors, including, for

example, polymerase chain reaction dropouts, inability to

score loci and systematic genotyping technology errors.

Missing data complicate haplotype inference by increasing the

difficulty and uncertainty of haplotype estimates. Missing data

decrease the available information and may bias the haplotype

assignment. The majority of programs score poorly in this

area, as they are unable to accommodate any missing data

(see Tables 1 and 4 for programs that accommodate missing

data). Some of these programs deal with missing data by

ignoring subjects with any missing marker data, leading to a

loss of data. Most programs assume that missing data are

missing at random (see the section above, on genotyping

error).

Accommodating missing data results in a performance

decline, with increased memory requirements, longer run

times and increased uncertainty. Several strategies have been

proposed and implemented for dealing with haplotyping in the

presence of missing data. The EM algorithm can be set to

accommodate missing data; a discussion focusing on EM

haplotyping and missing data is provided elsewhere.80 Among

EM-based programs, LOGINSERM_ESTIHAPLOE includes

the option of ignoring individuals with missing data or of

using them in haplotype inference, depending on research

objectives,80 whereas PL-EM allows users to specify the

number of possible haplotype sets with a probability above a

specific level.54 By contrast, HAPH ignores missing markers in

haplotype construction, and uses a maximum likelihood

method to infer missing allele(s) to match common haplo-

types.44 The accuracy of HAPH was maintained with up to 10

per cent missing data. Arlequin v3.0 does not try to impute

missing data in haplotype analysis, but rather ignores missing

loci in the process.60 This approach is sensitive to the amount

of missing data, with small decreases in accuracy with up to 2

per cent missing data becoming more noticeable at 4 per cent.

Moreover, the addition of a subset of individuals with large

amounts of missing data (20 per cent) has been shown to have

a detrimental effect on haplotype analysis on the larger group

with complete data.60

A limitation of the original version of PHASE (v1.0) was

that it could not accommodate missing data.51 SLHAP v1.0,

based on of PHASE v1.0’s methods, includes modifications

that allow accommodation of missing data.58 The updated

version of PHASE v2.0 was also adapted to accept missing

data; phase at unknown positions is randomised and any

missing genotypes are imputed with random guesses.59 The

HAPLOREC program also handles missing data by matching

haplotypes with missing data to known haplotypes, although

missing alleles are not imputed.62 Finally, the performance

of HAPLOTYPER was shown to be stable in the presence of

missing data, although caution should be exercised when

missing data are included.57 Excellent discussions of the chal-

lenges of haplotyping with missing data are presented else-

where.57,81 The inclusion of individuals with too much

missing data (.10 per cent) may have a detrimental effect on
the reconstruction of phase of individuals without missing

data. Finally, markers with non-random patterns of genotyping

failure should be redesigned or dropped from the haplotyping

set.57,80

Software characteristics. In this section, issues related to

usability of programs are discussed. User-friendliness is an

important issue in the selection of appropriate haplotyping

programs, especially in terms of practical usability of programs.

Relevant issues include computer system requirements, data

format, interface, marker characteristics, run time and sample

size.

Computer system requirements: as detailed in the ‘plat-

form’ column in Tables 1 and 4, not all programs are available

for use with all computer operating systems. The selection of a

haplotyping program may necessitate investment in new

computer equipment and training. Compiling programs to run

on new operating systems poses similar challenges.

Data input format: unfortunately, there is no standard data

input format. Nearly all of the programs use a unique data

input format. Manipulating data from one format to work

with another is cumbersome and difficult. HIT and

HAPLOSCOPE are platform programs, incorporating several

haplotyping programs in one interface. These programs

facilitate comparisons of programs on the same datasets.

User interface: the interface is an important component of

usability of a haplotyping program. Selection of a program will

depend heavily on current knowledge or ability to invest time

in learning about a computer system. The majority of ident-

ified programs are command prompt driven (see Tables 1

and 4). These interfaces tend to intimidate computer novices

or non-computer scientists. Fortunately, several programs with

a graphical user interface were identified, including: Arlequin,

HAPLOVIEW, HAPLOSCOPE and HPLUS. Finally, indi-

viduals familiar with SAS and S-PLUS may be interested in

the SAS Genetics module and HAPLO.STATS programs,

respectively.

Marker characteristics: many of the widely-used haplotyp-

ing programs are limited to biallelic loci. Programs that

accommodate multiallelic markers often experience longer

run times. Allele frequency is an important consideration in

the selection of markers. Low allele frequencies result in low

frequency haplotypes that may have little value in explaining

common disease variation.49 Moreover, low frequency hap-

lotypes, for a variety of reasons (eg sampling error, genotyping

error, recombination and low LD), are difficult to estimate

accurately.29,30,36,49,50,53

Output: in addition to haplotype frequency estimates and

assignments, many programs provide measures for evaluating
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the ‘goodness of fit’ of constructed haplotypes. A number of

EM-based programs provide posterior probabilities of haplo-

type assignments, including GENECOUNTING, HPLUS,

HAPLO.STATS, LDSUPPORT, MLOCUS, PL-EM and

SNPHAP. Posterior probabilities are helpful for evaluation of

haplotype assignment and any subsequent analyses. Moreover,

the probabilities can be used to weight and evaluate assigned

haplotypes and frequency estimates.25,82 Determination and

interpretation of posterior probabilities is difficult for

programs that use pseudo-Gibbs samplers, including Arlequin,

HAPLOTYPER and PHASE.51,57,60 Finally, Arlequin,

HAPLOH, HPLUS and PL-EM provide the variance estimates

for the estimated haplotype frequencies.

Run time: another issue in assessing the performance of

haplotyping programs involves the programs’ use of memory

and demands on the central processing unit. Run time is also

affected by the complexity of the haplotyping problem, which

increases with the number of loci.48,51 Although the present

EM algorithm can theoretically handle an infinite number of

polymorphic sites in a sample, it is limited in practice by its

exponentially increasing memory requirements.48,49 More-

over, EM methods may require multiple restarts to avoid local

convergence and non-global optimum, increasing the time

required to infer haplotypes.48 Using a Gibbs sampler, PHASE

v1.0 more efficiently determines phase than the EM algorithm

and constructs haplotypes with a larger number of markers,

although run times are lengthy.51,58 PHASE has been univer-

sally recognised as having several useful features, but a very

slow implementation.51,55,58,60 In the original article describ-

ing PHASE v1.0, it took minutes to hours to run, whereas an

EM program and HAPINFREX took seconds.51 Among

Bayesian-based programs, with 50 subjects and 14-119 loci,

HAPLOTYPER estimated haplotypes in seconds, Arlequin

v3.0 in minutes and PHASE v1.0 in hours.60 In comparisons

of several programs over complete datasets from Reich et al.,16

HPLUS and HAPLOTYPER completed analysis in under one

second, Arlequin v2.0 in less than one minute and PHASE

v2.0 in 11 minutes.55

Additional comparisons suggest that programs that

implement modified EM algorithms, such as SNPHAP and

PL-EM, had shorter run times than PHASE v1.0 on large

datasets. HAPLOREC has similar run times to the modified

EM programs.62 The updated version of PHASE (v2.0)

improves program performance, although it was found still to

be slower than the other programs.59 The phylogeny programs

(GPPH, DPPH, BPPH and HAPH) have remarkably fast run

times.40,43–45 HAPH was shown to run faster than both

HAPLOTYPER and PHASE v1.0 in a variety of situations.44

Run times for all programs increased in the presence of

missing data and multiallelic markers.54,60,62

Sample size: both sample size and the number of loci are

important components for the selection of haplotyping pro-

grams. Details on sample size and loci limits are listed in

Tables 1 and S1. As sample size increases, both in terms of the

number of markers and subjects, the run time increases. The

accuracy of EM-based programs has been shown to improve

with increasing sample size.4,53 Likewise, the accuracy of

HAPAR, HAPLOTYPER and PHASE v1.0 were also shown

to improve with increasing sample size.39 Accurate haplotyp-

ing of low frequency haplotypes improves with increasing

sample size.30

While standard EM-based programs have no theoretical

limit, in practice these programs are limited to fewer than

25 loci, due to memory and processing requirements.48,49,51

HAPINFREX, likewise, has no practical size limits, although

the program may fail to start with large numbers of markers.37

The parsimony program, HAPAR, overcomes HAPINFREX

limitations, with accuracy improving with increasing sample

size.39 Programs that accommodate large datasets often sacri-

fice performance. PL, a divide and conquer strategy, has been

proposed as an effective method of dealing with the con-

struction of large haplotypes.57 This and similar schemes have

been implemented in both EM-54–56 and Bayesian-based

programs.57,59,60,62 These programs are able to handle large

datasets, although performance varies (see run time discussion

above).

Hypothesis testing. Haplotyping in and of itself is usually

not the final outcome of interest. The research objective

dictates which subsequent analyses are needed. This section

will focus on programs that combine haplotyping with

hypothesis testing in genetic association studies (see Table 3

and Supplemental Table S3). All haplotype reconstruction

methods will encounter a degree of misclassification error or

uncertainty in haplotype assignments.7,81,83 If uncertainty of

assignments is ignored in subsequent analyses, it can lead to

biased parameter estimates and inflated false-positive rates for

statistically-based hypothesis tests.25,31,82,83 In situations where

inferred haplotypes had high reliability, biased estimates were

avoided, and found to be useful for hypothesis testing.83 The

imperfect phylogeny-based method in HAPH has been shown

to assign accurate haplotypes62 and has recently been updated

to include association analysis of discrete and continuous

phenotypes, although the potential for bias exists, due to

uncertainty of haplotype assignments. Several programs avoid

this pitfall by comparing estimated haplotype frequencies

between two groups,84,85 that is, a case-control model, these

include EH, EHPLUS, FASTEHPLUS, GENECOUNTING,

PHASE v 2.0, SAS Genetics module and SNPEM. Fallin

et al.10 demonstrated the advantages of this approach using the

SNPEM program.

This methodology has been extended to allow adjustment

for covariates. The Zaykin82 program uses a likelihood ratio

test statistic for association analysis of haplotypes and pheno-

types. HAPLO.STATS86,87 and THESIAS53 also include a test

for interaction with covariates using a score and likelihood

ratio statistic, respectively. The HPLUS program is limited to

qualitative phenotypes, and it provides odds ratio esti-

mates.55,83 The THESIAS program has recently been
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expanded to allow haplotype-based association analysis of

survival outcomes.88 Finally, Arlequin60,89 incorporates

numerous population genetics tests. Additional discussions on

hypothesis testing with haplotypes are available.82,86,90–94

Web-based programs. Several web-based haplotyping pro-

grams were identified and are presented in Table 2 and

supplemental Table S2. Web-based versions of haplotyping

programs help researchers to circumvent many of the issues

related to practical usability, discussed previously. Web-based

programs negate the need for the researcher to learn a com-

puter language(s), purchase computer hardware/software,

install and maintain programs or to have to troubleshoot

computer problems, thus allowing genetics researchers to focus

on what they do best. Moreover, web-based programs usually

employ graphical interfaces, allowing the computer layman

easily to use a haplotyping program. Additionally, many of the

identified web-based programs allow the user to select results

sent via e-mail. Finally, additional websites were identified

with links to programs, as well as the website for the sup-

plemental tables, also presented in Table 2.

Haplotyping in pooled data
Haplotype analysis using pooled samples is possible, but

requires that alleles are in strong LD, are severely limited to a

small number of individuals and that only a few of the possible

allele combinations are present.95 This requires actual geno-

typing of individuals to determine which haplotypes exist in

the population of interest before testing for differences in allele

frequencies in the two pooled samples.95,96 Three programs

for pooled samples were identified, as well as one technique,

none of which were web-based (see Table 4 and Supplemental

Table S4). All of the programs are only compatible with pools

of one to six individuals, in which each pool uniquely com-

prises cases or controls of unrelated individuals. There has been

some discussion as to the number of individuals and SNPs that

the pooling technique or algorithm can handle.95–99 Pools of

three to four individuals are optimal, in terms of accuracy and

efficiency. Accuracy begins to decline beyond four individ-

uals.12 Zou and Zhao72 point out that pooled samples are

particularly susceptible to genotyping error and that con-

sideration should be given to the impact of population strati-

fication in pooled samples.

Discussion

While no single haplotyping program is ideal in all situations,

this review found that currently available haplotyping pro-

grams should accommodate the research needs of most

scientists. While the programs share many similarities, sig-

nificant differences were observed in their ability to handle

various data characteristics and population genetic parameters.

Each program had its own unique combination of features and

limitations. It is hoped that researchers interested in haplotype

analysis will use this paper as a guide for selecting the haplo-

type analysis program(s) most suitable for their research needs.

Moreover, it is anticipated that this review will be an impetus

for additional testing, development and improvement of hap-

lotyping software.

The selection of haplotyping programs should be based on

the research needs and characteristics of the data to be used for

analysis. These criteria include: research objectives, hypothesis

testing, data assumptions, genotyping error, missing data and

computer expertise to implement programs, if necessary.

A suitable haplotyping program is one that generates the

desired results (haplotype frequency estimates and/or assign-

ments) and analyses. For hypothesis testing, several programs

were identified that combine haplotype analysis with

hypothesis testing, which should facilitate analysis. The accu-

racy of haplotyping programs varied under different assump-

tions and situations. It was found that deviations from

assumptions often resulted in declines in the performance

of haplotyping programs, therefore, an important step in

selecting a haplotyping program is the evaluation of the

assumptions inherent to collection of the data. This should

identify programs that can accommodate limitations or

departures from assumptions of the data.

Selection of the appropriate haplotyping programs should

also take into account the usability of a program. Assessment of

this criterion is challenging because usefulness depends on a

number of sub-criteria, discussed previously. Web-based pro-

grams and those with graphical user interfaces will generally be

the easiest to use and have the best usability. Unfortunately,

only a short list of programs may suit the needs of researchers.

The usability of a program will also depend heavily on the

researcher’s computer expertise. In summary, the choice of

haplotyping program should be based on identifying research

needs and selecting a haplotyping program most appropriate to

accommodating those requirements. Awareness of program

assumptions and limitations should be an important factor

in the final decision.

All of the programs reviewed assume genetic homogeneity

of individuals in study populations. In brief, the basis of this

assumption is that all individuals in a study population share a

similar population history. Inclusion of individuals with dis-

similar population histories will result in incorrect haplotype

estimates due to, for example, LD differences and allele fre-

quency differences between the populations. As an example,

consider a hypothetical population of 200 individuals: half

being of African-American ancestry and half of European-

American ancestry. The resulting haplotyping estimates will

not be correct for either the African-American or European

American groups. To obtain accurate haplotype estimates and

assignments, the groups must be analysed separately. Further

discussions on this topic are available elsewhere.5,100–103

The majority of the reviewed programs are actively main-

tained and updated regularly. Haplotyping analysis is a

rapidly evolving field, with many new methods and programs
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emerging. Programs that are reviewed here may be modified

or even be completely revamped in the near future. Accurate

and updated information on existing haplotyping programs

will be maintained at http://polymorphism.ucsd.edu/Hap-

SoftwareReview/. An important limitation of this project is

that it relied on a review of literature to evaluate the programs.

Therefore, it was not possible to validate the accuracy, per-

formance and claims of all individual programs.

This review found that haplotype analysis programs have

increased in number and have improved rapidly over the past

decade. While existing haplotyping methods may accom-

modate research needs, many opportunities exist for improve-

ment of haplotyping programs. In particular, improvements

in accuracy (particularly for assignments), faster run time,

accommodation of larger sample sets and loci, handling

missing data, incorporating association testing and identifi-

cation and adjustment of haplotype estimates in the presence

of genotyping error. In addition, an emerging question is how

to construct haplotypes across large genomic regions —

especially with substantial numbers of loci. Available methods

include programs that use a block-based approach, methods

that build large haplotypes by adding one loci at a time (ie

SNPHAP) or programs that use the PL approach (ie HAPL-

OTYPER, PL-EM). Future studies are necessary to directly

evaluate the different measures of accuracy, assess the influence

of varying of LD levels on accuracy and further assess the

impact of departures of assumptions on program performance

and accuracy. Ideally, future studies would evaluate several of

the more commonly used programs in a standard fashion,

allowing comparison across studies. This would facilitate

comparison of programs and determination of the most

appropriate program. Moreover, adoption of a universal data

format would also be helpful. Finally, the use of a standardised

phase-known dataset(s), which developers of haplotyping

programs could assess for evaluating their programs, would

assist in the selection, improvement and development of

haplotyping programs. Potential sources include examples

from the literature4,18,65 and the HapMap project data (avail-

able at: www.hapmap.org).
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