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Abstract
For population case-control association studies, the false-positive rates can be high due to inappropriate controls, which can occur if there is

population admixture or stratification. Moreover, it is not always clear how to choose appropriate controls. Alternatively, the parents or

normal sibs can be used as controls of affected sibs. For late-onset complex diseases, parental data are not usually available. One way to

study late-onset disorders is to perform sib-pair or sibship analyses. This paper proposes sibship-based Hotelling’s T 2 test statistics for high-

resolution linkage disequilibrium mapping of complex diseases. For a sample of sibships, suppose that each sibship consists of at least one

affected sib and at least one normal sib. Assume that genotype data of multiple tightly linked markers/haplotypes are available for each

individual in the sample. Paired Hotelling’s T 2 test statistics are proposed for high-resolution association studies using normal sibs as

controls for affected sibs, based on two coding methods: ‘haplotype/allele coding’ and ‘genotype coding’. The paired Hotelling’s T 2 tests take

into account not only the correlation among the markers, but also take the correlation within each sib-pair. The validity of the proposed

method is justified by rigorous mathematical and statistical proofs under the large sample theory. The non-centrality parameter approxi-

mations of the test statistics are calculated for power and sample size calculations. By carrying out power and simulation studies, it was

found that the non-centrality parameter approximations of the test statistics were accurate. By power and type I error analysis, the test

statistics based on the ‘haplotype/allele coding’ method were found to be advantageous in comparison to the test statistics based on the

‘genotype coding’ method. The test statistics based on multiple markers can have higher power than those based on a single marker. The test

statistics can be applied not only for bi-allelic markers, but also for multi-allelic markers. In addition, the test statistics can be applied to

analyse the genetic data of multiple markers which contain double heterozygotes — that is, unknown linkage phase data. An SAS macro,

Hotel_sibs.sas, is written to implement the method for data analysis.
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Introduction

In recent years, there has been great interest in the research of

association studies of complex diseases.1–6 By association

studies, we mean linkage disequilibrium (LD) mapping of

genetic traits. For population case-control studies, the marker

allele frequency in cases can be compared with that of controls

using x 2 test statistics.7–11 If there is association between one

marker and the trait locus, it is expected that the x 2 tests would

lead to significant results. Essentially, this method can be applied

to analyse the data for one marker at a time. For multiple

markers, the linkage phase may be unknown,12 and the method

cannot be applied simultaneously to analyse the data of multiple

markers which contain double heterozygotes. With the devel-

opment of dense maps such as single nucleotide polymorphisms

(SNPs), haplotype maps and high-resolution micro-satellites

in the human genome, enormous amounts of genetic data

on human chromosomes are becoming available.13–15 It is

interesting when building appropriate models and useful

algorithms in association mapping of complex diseases to have

the ability to use multiple markers/haplotypes simultaneously.

For tightly linked genetic markers, one may perform

association studies of complex diseases based on the Hotelling’s

T 2 test statistics.16 For population case-control data,

Xiong et al. proposed two sample Hotelling’s T 2 test statistics

to analyse genotype data of multiple bi-allelic markers such as

SNPs;17 in addition, logistic regression models were pro-

posed.2,18 To analyse the multi-allelic micro-satellite or hap-

lotype data, Fan and Knapp extended Xiong et al. method

using two coding methods — ‘haplotype/allele coding’

and ‘genotype coding’.19 For the genetic data of nuclear

families or parent–offspring pairs, paired Hotelling’s T 2 test
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statistics were proposed, in order to perform association studies

based on multiple markers/haplotypes.20

For late-onset complex diseases, parental data are usually not

available. One way to study late-onset disorders is to perform

sib-pair or sibship analyses.21,22 This paper proposes sibship-

based paired Hotelling’s T 2 test statistics for high-resolution LD

mapping of complex diseases. For a sample of sibships, suppose

that each sibship consists of at least one affected sib and at least

one normal sib. Assume that genotype data for multiple mar-

kers are available for each individual in the sample. Paired

Hotelling’s T 2 test statistics are proposed for high-resolution

association studies, using normal sibs as controls for affected

sibs. The paired Hotelling’s T 2 tests not only take the corre-

lation among the markers into account, but also the correlation

within each sib-pair. The validity of the proposed method is

justified by rigorous mathematical and statistical proofs under

the large sample theory. The non-centrality parameter

approximations of the test statistics are calculated for power

calculations and comparisons; these are included in the section:

Supplementary information: Non-centrality parameters. Type I

error rates are calculated by simulations to evaluate the per-

formance of the proposed test statistics. In the section: Sup-

plementary information: Simulation study, the results from the

simulation study are presented, to show that the non-centrality

parameter approximations of the test statistics are accurate. An

SAS macro, Hotel_sibs.sas, was written to implement the

method and can be downloaded from the authors’ website

(http://www.stat.tamu.edu/, rfan/software.html/).

Methods

We assume that a disease locus D is located in a chromosome

region. Suppose that the disease locus has two alleles D and d.

Allele D is disease susceptible and d is normal. Assume that the

disease-susceptible allele D has population frequency PD, and

the normal allele d has population frequency Pd.

Paired Hotelling’s T 2 test statistics
In the region of the disease locus D, assume that J tightly

linked markers H1; . . .;HJ are typed. By tightly linked, we

mean that the markers are so close to each other that the

recombination fractions among markers are 0. Let us denote

the alleles of marker Hj by Hj1; . . .;Hjnj ; where nj denotes the

number of its alleles. Here, markers can be micro-satellites or

di-allelic markers such as SNPs or haplotypes. If H1; . . .;HJ

are phase-known haplotypes, the methods developed in this

paper are still valid, since the haplotypes can be treated as

markers; but the related terminology needs to be changed

accordingly. Usually, haplotypes consist of phase-unknown

markers; in these cases, we prefer to analyse the genotype

marker data directly, instead of estimating the haplotypes first

and then analysing the haplotype data. The method developed

in this paper can be used to analyse phase-unknown genotype

data directly. Consider N sib-pairs, each consisting of an

affected sibling and a normal sibling. We define coding vectors

X
ðAÞ
i and Y

ðUÞ
i for the affected sibling and normal sibling of the

i-th sib-pair, respectively, by one of the following two ways.19,20

(i) Haplotype/allele coding: For the affected sibling of the

i-th sib-pair, let G
ðAÞ
ij be his/her genotype at marker Hj.

Define X
ðAÞ
i ¼ ðz

ðAÞ
i11 ; . . .; z

ðAÞ
i1ðn121Þ; ; . . .; z

ðAÞ
iJ1 ; . . .; z

ðAÞ
iJðnJ21ÞÞ

t;

where z
ðAÞ
ijk is the number of alleles Hjk for the affected sibling

of the i-th sib-pair — that is,

z
ðAÞ
ijk ¼

2 if G
ðAÞ
ij ¼ HjkHjk

1 if G
ðAÞ
ij ¼ HjkHjl; l – k

0 else

8>><
>>:

Here and hereafter, the superscript t denotes the transposition

of a matrix or a vector. The dimension of X
ðAÞ
i is

ðn1 2 1Þ þ · · · þ ðnJ 2 1Þ ¼
PJ

j¼1nj 2 J ; which is usually

smaller than dimension
PJ

j¼1njðnj þ 1Þ=2 2 J of the following

genotype coding method.

(ii) Genotype coding: Note that G
ðAÞ
ij can be one of

nj(nj þ 1)/2 possible choices: nj homozygous genotypes

HjkHjk, and nj(nj 2 1)/2 heterozygous genotypes HjkHjl,k , l.

Depending on the genotype, let us define an indicator

vector X
ðAÞ
ij ¼ ðx

ðAÞ
ij1 ; . . .; x

ðAÞ
ijðnj21Þ; x

ðAÞ
ij12; . . .; x

ðAÞ
ij1nj

; . . .; xðAÞijðnj21Þnj
Þt:

Here, x
ðAÞ
ijk is the indicator variable of genotype HjkHjk

defined by x
ðAÞ
ijk ¼

1 if G
ðAÞ
ij ¼ HjkHjk

0 else

(
; and x

ðAÞ
ijkl ; k , l

is the indicator variable of genotype HjkHjl defined by

x
ðAÞ
ijkl ¼

1 ifG
ðAÞ
ij ¼ HjkHjl

0 else
:

(
The dimension of X

ðAÞ
ij is

nj(nj þ 1)/2 2 1 — that is, the total number nj(nj þ 1)/2 of

genotypes of marker Hj minus 1 to remove the redundancy.

Let X
ðAÞ
i ¼ ðX

ðAÞt

i1 ; . . .;X ðAÞt

iJ Þt be the combined genotype

coding of the J markers H1; . . .HJ : The dimension of X
ðAÞ
i

is
PJ

j¼1njðnj þ 1Þ=2 2 J:

For the unaffected sibling of the i-th sib-pair, let G
ðU Þ
ij be

his/her genotype at marker Hj. One may define a vector Y
ðUÞ
i

in the same way, based on either the ‘genotype coding’ or

‘haplotype/allele coding’ method. Table 1 in reference 19

gives an example of ‘genotype coding’ and ‘haplotype/allele

coding’ for a marker with three alleles, to illustrate the above

two coding methods.

Let �X ðAÞ ¼
PN

i¼1X
ðAÞ
i =N and �Y ðUÞ ¼

PN
i¼1Y

ðUÞ
i =N be

average coding vectors of affected and unaffected siblings,

respectively. Intuitively, �X ðAÞ and �Y ðUÞ should be similar vec-

tors if the disease locus D is not associated with markers Hj,

j ¼ 1; . . .; J: In the Appendix we prove that the expected value

of �X ðAÞ 2 �Y ðUÞ is 0 if there is no association. Hence, one may

build a test statistic based on the difference �X ðAÞ 2 �Y ðUÞ to test

the association between disease locus D and markers Hj. To do
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this, one needs to consider the variance–covariance matrix of
�X ðAÞ 2 �Y ðUÞ: Since siblings’ marker genotypes are related to

each other, �X ðAÞ and �Y ðUÞ are not independent. Moreover,

X
ðAÞ
i and Y

ðUÞ
i are paired with each other in a sib-pair.

Therefore, paired T 2 test statistics can be used to test the

association between disease locus D and markers Hj as follows.

Define a paired-sample variance–covariance matrix by

S¼
1

N21

XN
i¼1

½ðX
ðAÞ
i 2Y

ðUÞ
i Þ2 ð �X ðAÞ2 �Y ðU ÞÞ�½ðX

ðAÞ
i 2Y

ðU Þ
i Þ

2 ð �X ðAÞ2 �Y ðUÞÞ�t

¼
1

N21

XN
i¼1

ðX
ðAÞ
i 2 �X ðAÞÞðX

ðAÞ
i 2 �X ðAÞÞt

"

2
XN
i¼1

ðX
ðAÞ
i 2 �X ðAÞÞðY

ðU Þ
i 2 �Y ðUÞÞt

2
XN
i¼1

ðY
ðUÞ
i 2 �Y ðUÞÞðX

ðAÞ
i 2 �X ðAÞÞt

þ
XN
i¼1

ðY
ðUÞ
i 2 �Y ðUÞÞðY

ðUÞ
i 2 �Y ðUÞÞt

#
:

A paired Hotelling’s T 2 statistic can be defined as

T 2 ¼ N ð �X ðAÞ 2 �Y ðUÞÞtS21ð �X ðAÞ 2 �Y ðUÞÞ:16,23 Let us denote

the above Hotelling’s T 2 statistic for ‘haplotype/allele coding’

as TH, and the Hotelling’s T 2 statistic for ‘genotype coding’ as

TG. Assume that the sample size N is sufficiently large that the

large-sample theory applies. Under the null hypothesis of no

association, the statistic TH (or TG) is asymptotically distrib-

uted as central x 2 with
PJ

j¼1nj 2 J ðor
PJ

j¼1njðnj þ 1Þ=2 2 JÞ

degrees of freedom. Under the alternative hypothesis of

association, TH (or TG) is asymptotically distributed as

non-central x 2. For power calculation and comparison, the

non-centrality parameter of statistic TH or TG can be derived

under the alternative hypothesis of association.

For general sibships each containing at least one affected

sibling and at least one normal sibling, the Hotelling’s T 2 test

statistics TH and TG above can be generalised as follows.

Assume that N sibships are available. In the i-th sibship, assume

that ni siblings are affected and mi siblings are normal. Let �X
ðAÞ
i

and �Y
ðUÞ
i be average coding vectors of affected and normal

siblings, respectively. To be precise, let X
ðAÞ
ij ; j ¼ 1; · · ·; ni

be the coding vectors of the affected siblings of the i-th sibship.

Then, �X
ðAÞ
i ¼

Pni
j¼1X

ðAÞ
ij =ni; �Y

ðUÞ
i is defined, accordingly.

Utilising �X
ðAÞ
i to replace X

ðAÞ
i and �Y

ðUÞ
i to replace Y

ðUÞ
i in the

above paragraph and defining �X ðAÞ ¼
PN

i¼1
�X
ðAÞ
i =N and

�Y ðUÞ ¼
PN

i¼1
�Y
ðUÞ
i =N ; we may define the related Hotelling’s

T 2 test statistics TH and TG.

Non-centrality parameters
The derivation of non-centrality parameters of sib-pairs is

provided in the section Supplementary information:

Non-centrality parameters.

Results

Type I errors
Tables 1, 2 and 3 show type I error rates of test statistics

TH and TG at a significance level a ¼ 0.01, using one marker

H1 or two markers H1 and H2. Three models are considered.

In model I, one marker H1 is used in analysis: H1 is a

bi-allelic marker with equal allele frequency P(H11) ¼

P(H12) ¼ 0.50. In model II, two bi-allelic markers H1

and H2 are used in analysis, where P(Hij) ¼ 0.5, i, j ¼ 1, 2,

Table 1. Type I error rates of N ¼ 200 or 300 sib-pairs at a significance level a ¼ 0.01 using one marker, H1, or two markers, H1 and H2.

In model I, one bi-allelic marker H1 is used, P(H11) ¼ P(H12) ¼ 0.50. In model II, two bi-allelic markers H1 and H2 are used, P(Hij) ¼ 0.5,

i, j ¼ 1, 2, DH11H21
¼ 0:05: In model III, one quadric-allelic marker H1 is used, P(H21) ¼ P(H22) ¼ 0.35, P(H23) ¼ P(H24) ¼ 0.15.

Abbreviations: df ¼ degrees of freedom; Std Dev ¼ standard deviation.

Model Test df # type I

error rates

Mean Std Dev Minimum Maximum

I TH 1 100 0.010808 0.0014264 0.0066 0.0140

N=200 TG 2 100 0.011240 0.0013923 0.0082 0.0152

II TH 2 100 0.011286 0.0014717 0.0070 0.0146

N=200 TG 4 100 0.012352 0.0015899 0.0088 0.0160

III TH 3 100 0.011660 0.0014348 0.0078 0.0146

N=200 TG 9 100 0.014352 0.0018710 0.0102 0.0196

III TH 3 100 0.011186 0.0015669 0.0074 0.0160

N=300 TG 9 100 0.013076 0.0017027 0.0084 0.0176
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DH11H21
¼ 0:05: In model III, one marker H1 is used in

analysis, where H1 is a quadri-allelic marker with allele fre-

quencies P(H21) ¼ P(H22) ¼ 0.35, P(H23) ¼ P(H24) ¼ 0.15.

Each time, 5,000 simulated datasets are generated and each

dataset contains N ¼ 200 or 300 sibships under the assumption

that there is no association between the marker(s) and the

disease locus; a type I error rate is then calculated as the

proportion of the 5,000 datasets for which the empirical test

statistics are greater than, or equal to, the cut-off point at the

significance level a ¼ 0.01. The process is repeated 100 times.

Thus, 100 type I error rates are calculated. The mean, standard

deviation, minimum and maximum of the 100 type I error

rates are presented in the entries of Tables 1, 2 and 3. Since the

disease locus is not associated with the marker(s), the empirical

test statistics which are greater than or equal to the cut-off

point at the significance level a ¼ 0.01 are treated as false

positives. Thus, the type I error rates of Tables 1, 2 and 3 are

empirical results.

Table 2. Type I error rates of N ¼ 200 or 300 sibships at a significance level a ¼ 0.01 using one marker, H1, or two markers, H1 and H2.

The number of sib-pairs is equal to N/2; in each sib-pair, one sibling is affected and the other is normal. The number of sibships of size 3

is N/2; in each of N/4 sibships of size 3, one is affected and the other two are normal; in the remaining N/4 sibships of size 3, two are

affected and the other one is normal. The other parameters of each model are the same as those of Table 1. Abbreviations: df ¼ degrees

of freedom; Std Dev ¼ standard deviation.

Model Test df # type I

error rates

Mean Std Dev Minimum Maximum

I TH 1 100 0.010642 0.0014406 0.0062 0.0134

N=200 TG 2 100 0.011278 0.0015023 0.0076 0.0154

II TH 2 100 0.011096 0.0014418 0.0078 0.0154

N=200 TG 4 100 0.012138 0.0014825 0.0082 0.0154

III TH 3 100 0.011536 0.0014156 0.070 0.0158

N=200 TG 9 100 0.014202 0.0016562 0.096 0.0182

III TH 3 100 0.011098 0.0015214 0.0076 0.0152

N=300 TG 9 100 0.012790 0.0016883 0.0086 0.0186

Table 3. Type I error rates of N ¼ 200 or 300 sibships at a significance level a ¼ 0.01 using one marker, H1, or two markers, H1 and H2.

The number of sib-pairs is equal to N/2; the number of sibships of size 3 is N/5; and the number of sibships of size 4 is 3N/10. In each sib-

pair, one sibling is affected and the other is normal. In each of N/10 sibships of size 3, one is affected and the other two are normal; in the

remaining N/10 sibships of size 3, two are affected and the other is normal. In each of N/10 sibships of size 4, one is affected and the

other three are normal; in each of N/10 sibships of size 4, two are affected and the other two are normal; in the remaining N/10 sibships

of size 4, three are affected and the other one is normal. The other parameters of each model are the same as those of Table 1. Abbrevi-

ations: df ¼ degrees of freedom; Std Dev ¼ standard deviation.

Model Test df # type I

error rates

Mean Std Dev Minimum Maximum

I TH 1 100 0.010670 0.0014040 0.0072 0.0136

N=200 TG 2 100 0.011156 0.0015397 0.0066 0.0142

II TH 2 100 0.011218 0.0014678 0.0078 0.0166

N=200 TG 4 100 0.012304 0.0011921 0.0092 0.0156

III TH 3 100 0.011518 0.0014639 0.0082 0.015

N=200 TG 9 100 0.014356 0.0015381 0.0102 0.018

III TH 3 100 0.011228 0.0013312 0.0078 0.0160

N=300 TG 9 100 0.012544 0.0015203 0.0086 0.0182
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In Table 1, only sib-pairs are used in the calculations.

In each sib-pair, one sibling is affected and the other one is

normal. In Table 2, combinations of both sib-pairs and sibships

of size 3 are used: the number of sib-pairs is equal to N/2; the

number of sibships of size 3 is N/2; in each of N/4 sibships of

size 3, one is affected and the other two are normal; in the

remaining N/4 sibships of size 3, two are affected and the

other one is normal. In Table 3, combinations of sib-pairs and

sibships of sizes 3 and 4 are used: the number of sib-pairs is

equal to N/2; the number of sibships of size 3 is N/5; and the

number of sibships of size 4 is 3N/10; in each of N/10 sibships

of size 3, one is affected and the other two are normal; in the

remaining N/10 sibships of size 3, two are affected and the

other one is normal; in each of N/10 sibships of size 4, one is

affected and the other three are normal; in each of N/10

sibships of size 4, two are affected and the other two are

normal; in the remaining N/10 sibships of size 4, three are

affected and the other one is normal.

From the results presented in Tables 1, 2 and 3, it is clear

that TH has a lower type I error than TG. That is, the test

statistic of the ‘haplotype/allele coding’ method has a lower

type I error than the test statistic of the ‘genotype coding’

method. The ‘haplotype/allele coding’ method leads to more

robust and reliable test statistics. The type I error rates of the

test statistic of the ‘haplotype/allele coding’ method are

reasonable for models I, II and III when N ¼ 200. In addition,

the type I error rates of the test statistic of the ‘genotype

coding’ method are reasonable for models I and II when

N ¼ 200. The type I error rates of the test statistic for the

‘genotype coding’ method are slightly higher than the nominal

level 0.01 for model III when N ¼ 200 and become lower

when N ¼ 300. Note that the number of degrees of freedom

for tests TG and TH is 3 and 9, respectively, for model III.

Hence, the number of degrees of freedom for test TG is large

for model III. When the number of degrees of freedom for

tests is large, the asymptotic criteria can be problematic. In this

case, a large sample is necessary to keep the type I error rates in

a reasonable range.

The results are similar in Tables 1, 2 and 3. Thus, the type I

error rates are little affected by the varying structure of the

sibships. The reason for this is that we basically take averages of

the coding vectors for sibships whose size is larger than 2.

Power calculation and comparison
To make power comparisons, we consider four genetic models:

heterogeneous recessive, heterogeneous dominant, additive

and multiplicative. For optimistic models, Table 4 gives

penetrance probabilities taken from Nielsen et al. or Fan and

Knapp.11,19 For less optimistic models, Table 5 lists penetrance

probabilities taken from Fan and Knapp.19 For j ¼ 1; . . .; J ; let

us denote the measures of LD between allele Hjk of the marker

Hj and the disease locus D by Djk ¼ P(HjkD) 2 P(Hjk)PD, k ¼

1; . . .; ni: Here, P(HjkD) is the frequency of haplotype HjkD,

and P(Hjk) is the frequency of allele Hjk. For two bi-allelic

markers H1 and H2, let DH1H2
¼ PðH11H21Þ2 PðH11ÞPðH21Þ

be the measure of LD between the two markers, where

P(H11H21) is the frequency of haplotype H11H21. Assume that

the two markers H1 and H2 flank the disease locus D in the

order H1DH2. Let D1D2 ¼ PðH11DH21Þ2 PðH11ÞD21 2

PDDH1H2
2 PðH21ÞD11 2 PðH11ÞPDPðH21Þ be the measure of

the third order LD.24 Here, P(H11DH21) is the frequency of

haplotype H11DH21.

Figure 1 shows power curves of TH and TG against the

measure of LD D11 at a significance level a ¼ 0.05 using two

bi-allelic marker H1 and H2, when P(Hi1) ¼ P(Hi2) ¼ 0.50,

i ¼ 1, 2, PD ¼ 0.15 and N ¼ 200 sib-pairs for the first set of

parameters of the four genetic models of Table 4. The power

curves of TH1 and TG1 are calculated based on one marker H1.

In the graphs, Delta_11 ¼ D11; the other parameters are given

in the legend of the Figure. Figure 2 shows power curves of

TH and TG against the measure of LD D11 at a significance

level a ¼ 0.05 using two bi-allelic marker H1 and H2, when

P(Hi1) ¼ P(Hi2) ¼ 0.50, i ¼ 1, 2, PD ¼ 0.15 and N ¼ 600

sib-pairs for the second set of parameters of the four genetic

models listed in Table 5. Similarly to Figure 1, the power

curves of TH1 and TG1 are calculated based on one marker H1.

The other parameters are the same as those of Figure 1.

From Figures 1 and 2, it is clear that TH generally has a

higher power than that of TG. This is consistent with the

results of Fan and Knapp for population case-control studies

and Fan et al. for nuclear family data.19,20 This is most likely

due to the large number of degrees of freedom of the test

statistic TG. The power of TH (or TG) based on two markers

H1 and H2 is generally higher than that of TH1 (or TG1),

which is only based on one marker H1. Hence, it is advan-

tageous to use two markers rather than one marker in the

analysis. This observation can be generalised — that is, it is

Table 5. Second set of parameters of simulated genetic models.

Model type fDD fDd fdd

Heterogeneous recessive 0.16 0.04 0.04

Heterogeneous dominant 0.08 0.08 0.02

Additive 0.108 0.0675 0.027

Multiplicative 0.12 0.06 0.03

Table 4. First set of parameters of simulated genetic models.

Model type fDD fDd fdd

Heterogeneous recessive 1.00 0.05 0.05

Heterogeneous dominant 1.00 0.95 0.05

Additive 1.00 0.50 0.0

Multiplicative 0.81 0.045 0.0025
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advantageous to use multiple tightly linked markers in analysis.

Note that the number of degrees of freedom of test statistic TG

can increase rapidly as the number of markers increases. This

is particularly true when multi-allelic markers are used in

analysis; but the number of degrees of freedom of TH only

increases by one if one more bi-allelic marker is added to the

analysis. Thus, TH has the advantage of high power when

multiple markers are used; in addition, the number of degrees

of freedom of TH would be not very large. For optimistic

models in Table 4, the sample sizes required to achieve certain

power levels are lower than those of the less optimistic models

in Table 5.

Not only can the test statistics TH and TG be applied to

analyse the genetic data of the bi-allelic markers, but they can

also be applied to analyse the genetic data of the multi-allelic

markers. Figure 3 shows the power curves of TH and TG against

the measure of LD D11 at a significance level a ¼ 0.05 using a

quadri-allelic marker H1, when P(H11) ¼ P(H12) ¼ 0.35,
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Figure 1. Power curves of TH and TG at a significance level a ¼ 0.05, using two bi-allelic markers H1 and H2, when

P(Hi1) ¼ P(Hi2) ¼ 0.50, i ¼ 1,2, PD ¼ 0.15, and N ¼ 200 sib-pairs for the first set of parameters of the four genetic models of Table 4.

The power curves of TH1 and TG1 are calculated based on one marker H1. In the graphs, Delta_11 ¼ D11 ¼ P(H11D) 2 P(H11)PD is a

measure of linkage disequilibrium (LD) between marker H1 and disease locus D; in addition, the other parameters are given by

D21 ¼ P(H21D) 2 P(H21)PD ¼ D11, DH1H2
¼ PðH11H21Þ2 PðH11ÞPðH21Þ ¼ 0:05; and D1D2 ¼ PðH11DH21Þ2 PðH11ÞD21 2 PDDH1H2

2

PðH21ÞD11 2 PðH11ÞPDPðH21Þ ¼ D11=3 .
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P(H13) ¼ P(H14) ¼ 0.15, PD ¼ 0.15 and N ¼ 200 sib-pairs for

the first set of parameters of the four genetic models of Table 4.

The other parameters are given in the legend of the Figure.

Figure 4 shows power curves ofTH andTG at a significance level

a ¼ 0.05 using a quadri-allelic marker H1, when

P(H11) ¼ P(H12) ¼ 0.35, P(H13) ¼ P(H14) ¼ 0.15, PD ¼ 0.15

and N ¼ 600 sib-pairs for the second set of parameters of the

four genetic models of Table 5. Similarly to Figures 1 and 2, TH

generally has a higher power than that of TG.

In addition to the power curves of TH and TG, which are

based on sib-pair data, Figures 3 and 4 show the simulated

power curves of STH and STG, which are based on sibships

of varying structures. In Figure 3, combinations of both sib-

pairs and sibships of size 3 are used to calculate the simulated

power curves of STH and STG: the number of sib-pairs is

equal to N/2 ¼ 100; the number of sibships of size 3 is

N/2 ¼ 100; in each of N/4 ¼ 50 sibships of size 3, one is

affected and the other two are normal; in the remaining
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Figure 2. Power curves of TH and TG at a significance level a ¼ 0.05, using two bi-allelic markers H1 and H2, when

P(Hi1) ¼ P(Hi2) ¼ 0.50, i ¼ 1,2, PD ¼ 0.15 and N ¼ 600 sib-pairs for the second set of parameters of the four genetic models of Table 5.

The power curves of TH1 and TG1 are calculated based on one marker H1. In the graphs, Delta_11 ¼ D11 ¼ P(H11D) 2 P(H11)PD is a

measure of linkage disequilibrium (LD) between marker H1 and disease locus D; in addition, the other parameters are given by

D21 ¼ P(H21D) 2 P(H21)PD ¼ D11, DH1H2
¼ PðH11H21Þ2 PðH11ÞPðH21Þ ¼ 0:05; and D1D2 ¼ PðH11DH21Þ2 PðH11ÞD21 2 PDDH1H2

2

PðH21ÞD112 PðH11ÞPDPðH21Þ ¼ D11=3 .
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N/4 ¼ 50 sibships of size 3, two are affected and the other

one is normal. In Figure 4, combinations of sib-pairs and

sibships of sizes 3 and 4 are used to calculate the simulated

power curves of STH and STG: the number of sib-pairs is equal

to N/2 ¼ 300; the number of sibships of size 3 is N/5 ¼ 120;

and the number of sibships of size 4 is 3N/10 ¼ 180; in each

of N/10 ¼ 60 sibships of size 3, one is affected and the

other two are normal; in the remaining N/10 ¼ 60 sibships

of size 3, two are affected and the other one is normal; in

each of N/10 ¼ 60 sibships of size 4, one is affected and the

other three are normal; in each of N/10 ¼ 60 sibships of size 4,

two are affected and the other two are normal; in the

remaining N/10 ¼ 60 sibships of size 4, three are affected

and the other one is normal.

To calculate the simulated power curves STH and STG ,

the interval (0, 0.045) of the LD measure D11 of LD is
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Figure 3. Power curves of TH and TG at a significance level a ¼ 0.05 using a quadric-allelic marker H1, when P(H11) ¼ P(H12) ¼ 0.35,

P(H13) ¼ P(H14) ¼ 0.15 PD ¼ 0.15 and N ¼ 200 sib-pairs for the first set of parameters of the four genetic models of Table 4.

Delta_11 ¼ D11 ¼ P(H11D) 2 P(H11)PD is a measure of linkage disequilibrium (LD) between marker H1 and disease locus D. In addition,

D12 ¼ 2D11, D13 ¼ 2D14 ¼ D11/2. The simulated power curves of STH and STG are calculated using combinations of both sib-pairs

and sibships of size 3: the number of sib-pairs is equal to N/2 ¼ 100; the number of sibships of size 3 is N/2 ¼ 100; in each of N/4 ¼ 50

sibships of size 3, one is affected and the other two are normal; in the remaining N/4 ¼ 50 sibships of size 3, two are affected and the

other one is normal.
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uniformly divided into 20 subintervals in Figures 3 and 4.

Correspondingly, the 20 subintervals lead to 21 endpoints.

For each endpoint, there is a set of parameters for each power

curve. Using the set of parameters, 2,500 datasets are simulated

for each endpoint. For each dataset, the empirical statistics

TH and TG were calculated. The simulated power is the

proportion of the 2,500 simulated datasets for which the

empirical statistic is larger than the cut-off point of the

corresponding x 2-distribution at a 0.05 significance level.

From Figures 3 and 4, it can be seen that the simulated

power STH is generally higher than the power of TH, and the

simulated power STG is generally higher than the power of
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Figure 4. Power curves of TH and TG at a significance level a ¼ 0.05 using a quadric-allelic marker H1, when P(H11) ¼ P(H12) ¼ 0.35,

P(H13) ¼ P(H14) ¼ 0.15, PD ¼ 0.15 and N ¼ 600 sib-pairs for the second set of parameters of the four genetic models of Table 5.

Delta_11 ¼ D11 ¼ P(H11D) 2 P(H11)PD is a measure of linkage disequilibrium (LD) between marker H1 and disease locus D. In addition,

D12 ¼ 2D11, D13 ¼ 2D14 ¼ D11/2. The simulated power curves of STH and STG are calculated using combinations of both sib-pairs

and sibships of size 3 and sibships of size 4; the number of sib-pairs is equal to N/2 ¼ 300; the number of sibships of size 3 is

N/2 ¼ 120; and the number of sibships of size 4 is 3N/10 ¼ 180; in each of N/10 ¼ 60 sibships of size 3, one is affected and the other

two are normal; in the remaining N/10 ¼ 60 sibships of size 3, two are affected and the other one is normal; in each of N/10 ¼ 60

sibships of size 4, one is affected and the other three are normal; in each of N/10 ¼ 60 sibships of size 4, two are affected and the

other two are normal; in the remaining N/10 ¼ 60 sibships of size 4, three are affected and the other one is normal.
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TG. Intuitively, sibships of large size contain more information

than that of a sib-pair. The test statistics TH and TG can

accurately capture the information contained in sibships of

large size. Moreover, it can also be seen in Tables 1, 2 and 3

that the type I error is not inflated by including sibships of

varying structure.

Simulation study
To evaluate the accuracy of the non-centrality parameter

approximations, we performed simulations for the power

curves in Figures 1, 2, 3 and 4. The results are presented in the

section: Supplementary information: Simulation study. It can

be seen that the approximations are excellent.

Discussion

The goal of this study was to develop sibship-based Hotelling’s

T 2 test statistics for high-resolution association mapping of

complex diseases. This extends our previous research of paired

Hotelling’s T 2 test statistics of nuclear family data or parent–

offspring pairs.20 For late-onset complex diseases, parental data

are usually not available. This motivated us to perform sib-pair

or sibship analyses to study late-onset disorders. Based an two

coding methods—‘haplotype/allele coding’ and ‘genotype

coding’—paired Hotelling’s T 2 test statistics TH and TG are

proposed for high-resolution association studies, using normal

sibs as controls for affected sibs. The test statistics can be

applied to any number of markers, which can be either bi-

allelic or multi-allelic. After power calculation and compari-

son, it was found that it is advantageous to use two markers

rather than one marker in the analysis. This observation can be

generalised — that is, it is advantageous to use multiple tightly

linked markers in analysis. The test statistic TH based on the

‘haplotype/allele coding’ method is generally more powerful

than the test statistic TG based on the ‘genotype coding’

method. This is most likely due to the large number of degrees

of freedom of TG. Moreover, the type I error rates of the test

statistic TH are lower than those of test statistic TG.

For population case-control association studies, false-posi-

tive rates can be high due to inappropriate controls, which can

occur if there is population admixture or stratification.25

Moreover, it is not always clear how to choose the appropriate

controls. Alternatively, the parents or normal sibs can be used as

controls of affected sibs.22,26–29 For parental/sibling controls,

the methods proposed by Fan and Knapp19 and Xiong et al.17

are not valid, since cases and controls are correlated with each

other. The two sample Hotelling’s T 2 test statistics only take

into account the correlation among markers.17,19 For sibship

data, not only the correlation among the markers but also

the correlation within each sib-pair needs to be taken

into account. The paired Hotelling’s T 2 test statistics TH

and TG developed in this paper correctly take both the

correlation among the markers and the correlation within

each sib-pair into account. The proposed method is potentially

useful in association mapping of late-onset complex diseases.

Cordell and Clayton2 and Chapman et al.18 proposed

logistic regression models for population-based case control

studies or family studies. Both our proposed method and the

logistic regression models can be used in association studies of

multi-locus marker data. One advantage of the logistic

regression models is that it is easy to add covariates to model

the environmental effects, in addition to the genetic effects;

however, it is not clear how to incorporate the environmental

effects into our Hotelling’s T 2 test statistics. While we are able

to calculate the non-centrality parameters for our T 2 test

statistics for power and sample size calculations, it is not clear if

one might get similar results for the logistic regression models.

In the study by Cordell and Clayton,2 the authors mainly

discuss the analysis of SNP data and only briefly describe a way

to analyse the multi-allelic markers data. We feel that more

investigations are necessary in order for multi-allelic markers

data to be used in the logistic regression models. By contrast,

our proposed T 2 can be used to analyse either bi-allelic or

multi-allelic marker data, or both simultaneously. Moreover,

more investigations are needed to make power comparisons of

the two methods.

In Figures 3 and 4, we show that the power of test statistics

TH and TG based on combinations of sibships of varying

structures are generally higher than the power of the test

statistics based on sib-pairs. This is because the test statistics TH

and TG use the average coding vectors for sibships whose sizes

are larger than 2. This averaging strategy does not affect the

mean of the coding vectors �X ðAÞ and �Y ðU Þ; but it will lead

to a variance–covariance matrix S, which increases the test

statistics. Moreover, it can be seen from Tables 1, 2 and 3

that the type I error is not inflated by including sibships of

varying structure. Although the proposed test statistics benefit

from this, it is unlikely that they are optimal. One way

would be to use weighted sibships in constructing test statistics.

In this paper, we assume that there are no missing data. For

practical genotype data, genotypic information may be missing

at some markers for a portion of the sample.26 As a result,

the methods used here need to be updated to address the

problem of missing data. Another issue is that it is not clear

how to combine population data, the nuclear family data and

sibship data in one single analysis. In practice, the three

types of genetic data can be available. They can be analysed

separately, but it would be preferable to combine them in a

unified analysis, which may lead to higher power. These issues

needs more in-depth investigation.
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Appendix

Consider a sib-pair in which one sibling is affected and the

other is unaffected/normal. For convenience, assume that the

first sibling is affected and the second sibling is normal. Let us

denote A1 ¼ (the first sibling is affected), U2 ¼ (the second sibling

is unaffected). Let fDD, fDd ¼ fdD and fdd be the probabilities

that an individual with genotypes DD, Dd and dd is

affected with the disease, respectively. Since allele D is

disease susceptible, one may assume that fDD $ fDd $ fdd. Let
�fDD ¼ 1 2 f DD; �fDd ¼ 1 2 f Dd and �fdd ¼ 1 2 f dd: Denote the

disease prevalence in population by A ¼ f DDP
2
D þ

2f DdPDPd þ f ddP
2
d ; and �A ¼ �fDDP

2
D þ 2�fDdPDPd þ �fddP

2
d ¼

1 2 A: Assume that the affected status of an individual

depends only on his/her own genotype at the disease locus.

Let us denote the event (i IBD) ¼ the sib-pair share i gene

identical by descent (IBD) at the disease locus D. Then the joint

probability

PðA1;U2Þ ¼ PðA1;U2j2 IBDÞ=4 þ PðA1;U2j1 IBDÞ=2

þ PðA1;U2j0 IBDÞ=4

¼
1

4 s;t[{D;d}

X
f st �fstPsPt þ 2

s;t;q[{D;d}

X
f st �ftqPsPtPq

2
4

þ
s;t;q;r[{D;d}

X
f st �fqrPsPtPqPr

3
5

¼
1

4 s;t[{D;d}

X
f st �fstPsPt þ 2

s;t;q[{D;d}

X
f st �ftqPsPtPq þ A �A

2
4

3
5;
ð1Þ

where s, t, q, r take values of disease allele D and d. To calculate

the above equations, we consider the three partitions (2 IBD),

(1 IBD) and (0 IBD). These three partitions have probabilities

1/4, 1/2 and 1/4, respectively. Conditional on each partition,

the corresponding conditional probabilities are then calcu-

lated. The frequency of homozygous genotype HjkHjk in an

affected sibling is given by:

ajkk¼P½G
ðAÞ
ij ¼HjkHjkjA1;U2�

¼P½G
ðAÞ
ij ¼HjkHjk;A1;U2;ð2 IBDÞ<ð1 IBDÞ<ð0 IBDÞ�=

PðA1;U2Þ

¼
1

4 s;t[{D;d}

X
f st �fstPðHjksÞPðHjktÞ

2
4
þ

1

2 s;t;q[{D;d}

X
f st �ftqPðHjktÞPðHjksÞPq

þ
1

4 s;t[{D;d}

X
f stPðHjksÞPðHjktÞ �A

3
5=PðA1;U2Þ:

ð2Þ

Similarly, the frequency of homozygous genotype HjkHjk in

an unaffected sibling is given by:

�ajkk¼P½G
ðUÞ
ij ¼HjkHjkjA1;U2�¼P½G

ðUÞ
ij ¼HjkHjk;A1;U2;

ð2 IBDÞ<ð1 IBDÞ<ð0 IBDÞ�=PðA1;U2Þ

¼
1

4 s;t[{D;d}

X
�fst f stPðHjksÞPðHjktÞ

2
4
þ

1

2 s;t;q[{D;d}

X
�fst f tqPðHjktÞPðHjksÞPq

þ
1

4 s;t[{D;d}

X
�fstPðHjksÞPðHjktÞA

3
5=PðA1;U2Þ: ð3Þ

Note that �ajkk can be calculated by the formula for ajkk by

substituting fst with �fst and vice versa. Note that the haplotype

frequencies P(HjkD) ¼ Djk þ P(Hjk)PD, P(Hjkd) ¼ 2Djk þ

P(Hjk)Pd. Under the null hypothesis of no association

between the markers Hi, i ¼ 1; 2; . . .; J; and the disease locus

D — that is, Dij ¼ 0 for all j, the haplotype frequencies are

equal to the product of allele frequencies; for example,

P(HjkD) ¼ P(Hjk)PD and P(Hjkd) ¼ P(Hjk)Pd. From

equations (4) and (5), ajkk ¼ �ajkk ¼ PðHjkÞ
2:

Similarly, the frequency of the heterozygous genotype

HjkHjl, k – l, in an affected sibling can be calculated as follows:

ajkl¼P½G
ðAÞ
ij ¼HjkHjljA1;U2�¼P½G

ðAÞ
ij ¼HjkHjl;A1;U2;

ð2 IBDÞ<ð1 IBDÞ<ð0 IBDÞ�=PðA1;U2Þ

¼
1

4 s;t[{D;d}

X
f st �fstðPðHjksÞPðHjltÞþPðHjktÞPðHjlsÞÞ

2
4
þ

1

2s;t;q[{D;d}

X
f st �ftqðPðHjktÞPðHjlsÞþPðHjksÞPðHjltÞÞPq

þ
1

4s;t[{D;d}

X
f stðPðHjksÞPðHjltÞþPðHjktÞPðHjlsÞÞ �A

3
5=PðA1;U2Þ:

ð4Þ

The frequency of the heterozygous genotype HjkHjl, k – l,

in an unaffected sibling can be calculated as follows:

�ajkl¼P½G
ðUÞ
ij ¼HjkHjljA1;U2�¼P½G

ðUÞ
ij ¼HjkHjl;A1;U2;

ð2 IBDÞ<ð1 IBDÞ<ð0 IBDÞ�=PðA1;U2Þ

¼
1

4s;t[{D;d}

X
�fst f stðPðHjksÞPðHjltÞþPðHjktÞPðHjlsÞÞ

2
4
þ

1

2s;t;q[{D;d}

X
�fst f tqðPðHjktÞPðHjlsÞþPðHjksÞPðHjltÞÞPq

þ
1

4s;t[{D;d}

X
�fstðPðHjksÞPðHjltÞþPðHjktÞPðHjlsÞÞA

3
5=PðA1;U2Þ:

ð5Þ
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Note that �ajkl can be calculated by the formula for ajkl
by substituting fst using �fst and vice versa. Under the

null hypothesis of no association between the markers Hi,

i ¼ 1; 2; . . .; J ; and the disease locus D — that is, Dij ¼ 0

for all j, the haplotype frequencies are equal to the

product of the allele frequencies; for example, P(HjkD) ¼

P(Hjk)PD, P(Hjkd) ¼ P(Hjk)Pd, P(HjlD) ¼ P(Hjl)PD and

P(Hjld) ¼ P(Hjl)Pd. From equations (4) and (5),

ajkl ¼ �ajkl ¼ 2PðHjkÞPðHjlÞ: Therefore, the expectation

Eð �X ðAÞ 2 �Y ðUÞjA1;U2Þ ¼ 0 for the ‘genotype coding’

method.

For the ‘haplotype/allele coding’ method, equations (2),

(3), (4) and (5) imply

Eðz
ðAÞ
ijk jA1;U2Þ ¼ 2ajkk þ

l–k

X
ajkl;Eðz

ðUÞ
ijk jA1;U2Þ

¼ 2�ajkk þ
l–k

X
�ajkl: ð6Þ

From equation (6), expectation Eðz
ðAÞ
ijk 2 z

ðUÞ
ijk jA1;U2Þ ¼

2PðHjkÞ2 2PðHjkÞ ¼ 0 by ‘haplotype/allele coding’ method,

under the null hypothesis of no association between the

markers Hi, j ¼ 1; . . .; J and disease locus D.
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Supplementary information:
Non-centrality parameters

Consider N sib-pairs, each consisting of an affected sibling

and a normal sibling. For convenience, assume that the first

sibling is affected and the second sibling is normal in each sib-

pair. Let us denote A1 ¼ (the first sibling is affected), U2 ¼ (the

second sibling is unaffected). For ‘haplotype/allele coding’, the

coding vector of the affected sibling in the i-th sib-pair

is X
ðAÞ
i ¼ ðz

ðAÞ
i11 ; . . .; z

ðAÞ
i1ðn121Þ; . . .; z

ðAÞ
iJ1 ; . . .; z

ðAÞ
iJðnJ21ÞÞ

t: Similarly,

Y
ðUÞ
i ¼ ðz

ðUÞ
i11 ; . . .; z

ðUÞ
i1ðn121Þ; . . .; z

ðUÞ
iJ1 ; . . .; z

ðUÞ
iJðnJ21ÞÞ

t is the coding

vector of the normal sibling. Denote the variance–covariance

matrix of X
ðAÞ
i 2 Y

ðUÞ
i by Shap ¼ VarðX

ðAÞ
i 2 Y

ðUÞ
i jA1;U2Þ ¼

VarðX
ðAÞ
i jA1;U2Þ2 CovðX

ðAÞ
i ;Y ðUÞ

i jA1;U2Þ2

CovðY
ðUÞ
i ;X ðAÞ

i jA1;U2Þ þ VarðY
ðUÞ
i jA1;U2Þ: The elements

of the above variance–covariance matrices are given in

Appendices A, B, and C: VarðX
ðAÞ
i jA1;U2Þ and
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VarðY
ðUÞ
i jA1;U2Þ in Appendix A, and CovðX

ðAÞ
i ;Y ðUÞ

i jA1;U2Þ

in Appendices B and C. Using quantities of Eðz
ðAÞ
ijk jA1;U2Þ

and Eðz
ðUÞ
ijk jA1;U2Þ in the Appendix to the manuscript,

EðX
ðAÞ
i 2 Y

ðU Þ
i jA1;U2Þ can be calculated. The non-

centrality parameter lH of Hotelling’s statistics TH is given

by lH ¼ NEðX
ðAÞ
i 2 Y

ðUÞ
i jA1;U2Þ

t½Shap�
21EðX

ðAÞ
i 2 Y

ðUÞ
i j

A1;U2Þ:
For the ‘genotype coding’ method, the coding vector of

the affected sibling in the i-th sib-pair is X
ðAÞ
ij ¼

ðx
ðAÞ
ij1 ; . . .; x

ðAÞ
ijðnj21Þ; x

ðAÞ
ij12; . . .; x

ðAÞ
ij1nj

; . . .; xðAÞijðnj21Þnj
Þt j ¼ 1,. . .,J.

Similarly, Y
ðUÞ
ij ¼ ðx

ðUÞ
ij1 ; . . .;xðU Þ

ijðnj21Þ;x
ðUÞ
ij12; . . .;x

ðUÞ
ij1nj

; . . .;xðUÞ
ijðnj21Þnj

Þt

is the coding vector of the normal sibling. Let ajkl and ājkl be

the frequencies of genotype HjkHjl in affected and unaffected

siblings given in the Appendix to the manuscript. Then,

E½X
ðAÞ
ij jA1;U2�¼ðaj11;...;ajðnj21Þðnj21Þ;aj12;...;aj1nj ;...;ajðnj21Þnj Þ

t;

ð1Þ

E½Y
ðUÞ
ij jA1;U2�¼ð�aj11;...;�ajðnj21Þðnj21Þ;�aj12;...; �aj1nj ;...; �ajðnj21Þnj Þ

t:

ð2Þ

Using E½X
ðAÞ
ij jA1;U2� and E½Y

ðUÞ
ij jA1;U2�; one may cal-

culate the expectation Eð �X ðAÞ 2 �Y ðUÞjA1;U2Þ ¼ ðE½X
ðAÞ
i1 2

Y
ðUÞ
i1 jA1;U2�

t; . . .;E½X ðAÞ
iJ 2 Y

ðUÞ
iJ jA1;U2�

tÞt: Let Sgeno ¼

CovðX
ðAÞ
i 2 Y

ðU Þ
i jA1;U2Þ ¼ VarðX

ðAÞ
i jA1;U2Þ2

CovðX
ðAÞ
i ;Y ðUÞ

i jA1;U2Þ2 CovðY
ðUÞ
i ;X ðAÞ

i jA1;U2Þ þ

VarðY
ðUÞ
i jA1;U2Þ be the variance–covariance matrix of

X
ðAÞ
i 2 Y

ðUÞ
i : Then the non-centrality parameter lG of

Hotelling’s statistics TG is given by lG ¼ NE½ �X ðAÞ 2
�Y ðUÞjA1;U2�

t½Sgeno�
21E½ �X ðAÞ 2 �Y ðU ÞjA1;U2�: The elements

of the above variance–covariance matrices are given in

Appendices D and E: VarðX
ðAÞ
i jA1;U2Þ and VarðY

ðUÞ
i jA1;U2Þ

in Appendix D, and CovðX
ðAÞ
i ;Y ðUÞ

i jA1;U2Þ in Appendix E.

Appendix A

Consider the ‘haplotype/allele coding’ method. The var-

iance–covariance matrices are

VarðX
ðAÞ
i jA1;U2Þ

¼Var½ðz
ðAÞ
i11 ;...;z

ðAÞ
i1ðn121Þ;...;z

ðAÞ
iJ1 ;...;z

ðAÞ
iJðnJ21ÞÞ

tjA1;U2�;

Var½Y
ðUÞ
i jA1;U2�

¼Var½ðz
ðU Þ
i11 ; . . .;z

ðUÞ
i1ðn121Þ; . . .;z

ðUÞ
iJ1 ; . . .;z

ðU Þ
iJðnJ21ÞÞ

tjA1;U2�:

The variance of the number of the alleles Hjk in the affected

sibling and unaffected sibling can be calculated as

Varðz
ðAÞ
ijk jA1;U2Þ ¼ E½ðz

ðAÞ
ijk Þ

2jA1;U2�2 ½Eðz
ðAÞ
ijk jA1;U2Þ�

2

¼ 4ajkk þ
l–k

X
ajkl 2 2ajkk þ

l–k

X
ajkl

2
4

3
5

2

;

Varðz
ðUÞ
ijk jA1;U2Þ ¼ E½ðz

ðUÞ
ijk Þ2jA1;U2�2 ½Eðz

ðUÞ
ijk jA1;U2Þ�

2

¼ 4�ajkk þ
l–k

X
�ajkl 2 2�ajkk þ

l–k

X
�ajkl

2
4

3
5

2

:

Similarly, the covariance between the number of alleles Hjk

and the number of alleles Hjl, l – k, in the affected sibling and

unaffected sibling can be calculated as

Covðz
ðAÞ
ijk ; z

ðAÞ
ijl jA1;U2Þ

¼ Eðz
ðAÞ
ijk z

ðAÞ
ijl jA1;U2Þ

2 Eðz
ðAÞ
ijk jA1;U2ÞEðz

ðAÞ
ijl jA1;U2Þ

¼ PðG
ðAÞ
ij ¼ HjkHjljA1;U2Þ

2 2ajkk þ
k0–k

X
ajkk0

2
4

3
5 2ajll þ

l0–l

X
ajll0

2
4

3
5

¼ ajkl 2 2ajkk þ
k0–k

X
ajkk0

2
4

3
5 2ajll þ

l0–l

X
ajll0

2
4

3
5;

Covðz
ðUÞ
ijk ; zðUÞ

ijl jA1;U2Þ

¼ Eðz
ðUÞ
ijk z

ðUÞ
ijl jA1;U2Þ

2 Eðz
ðUÞ
ijk jA1;U2ÞEðz

ðUÞ
ijl jA1;U2Þ

¼ �ajkl 2 2�ajkk þ
k0–k

X
�ajkk0

2
4

3
5 2�ajll þ

l0–l

X
�ajll0

2
4

3
5:

For j – g, assume that markers Hj and Hg flank disease locus

D in the order of HjDHg. Let P(HjkDHgh) be frequencies of

haplotype HjkDHgh. The frequencies of other haplotypes are

denoted accordingly. For the i-th sib-pair, let G
ðUÞ
iD be the

disease genotype of the unaffected sibling and G
ðAÞ
iD be

the disease genotype of the affected sibling. To calculate the

covariance between z
ðAÞ
ijk ; z

ðAÞ
igh ; denote for j – g, k – k0, h – h0,

g
ðA;jgÞ
kkhh ¼ E½1ðGðAÞ

ij ¼HjkHjkÞ
1ðGðAÞ

ig ¼HghHghÞ
jA1;U2�

¼ P½G
ðAÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh;A1;U2;

ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�=PðA1;U2Þ

¼
1

4 s;t[{D;d}

X
f st �fstP½G

ðAÞ
ij ¼ HjkHjk;

2
4
G

ðAÞ
ig ¼ HghHgh;G

ðAÞ
iD ¼ st;GðUÞ

iD ¼ st�

þ
1

2 s;t;q[{D;d}

X
f st �ftqP½G

ðAÞ
ij ¼ HjkHjk;

G
ðAÞ
ig ¼ HghHgh;G

ðAÞ
iD ¼ st;GðUÞ

iD ¼ tq�

þ
1

4s;t;q;r[{D;d}

X
f st �fqrP½G

ðAÞ
ij ¼ HjkHjk;

G
ðAÞ
ig ¼ HghHgh;G

ðAÞ
iD ¼ st;GðUÞ

iD ¼ qr�

#
=PðA1;U2Þ
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¼
1

4s;t[{D;d}

X
f st �fstPðHjksHghÞPðHjktHghÞ

2
4
þ

1

2 s;t;q[{D;d}

X
f st �ftqPðHjktHghÞPðHjksHghÞPq

þ
1

4s;t[{D;d}

X
f stPðHjksHghÞPðHjktHghÞ �A

3
5=PðA1;U2Þ

g
ðA;jgÞ
kkhh0 ¼ E½1ðGðAÞ

ij ¼HjkHjkÞ
1ðGðAÞ

ig ¼HghHgh0 Þ
jA1;U2�

¼ P½G
ðAÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh0 ;A1;U2;

ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�=PðA1;U2Þ

¼

"
1

4s;t[{D;d}

X
f st �fstP½G

ðAÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh0 ;

G
ðAÞ
iD ¼ st;GðU Þ

iD ¼ st�

þ
1

2 s;t;q[{D;d}

X
f st �ftqP½G

ðAÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh0 ;

G
ðAÞ
iD ¼ st;GðU Þ

iD ¼ tq�

þ
1

4s;t;q;r[{D;d}

X
f st �fqrP½G

ðAÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh0 ;

G
ðAÞ
iD ¼ st;GðU Þ

iD ¼ qr

#
=PðA1;U2Þ

¼

"
1

4 s;t[{D;d}

X
f st �fstðPðHjksHghÞPðHjktHgh0 Þ

þ PðHjktHghÞPðHjksHgh0 ÞÞ

þ
1

2s;t;q[{D;d}

X
f st �ftqðPðHjksHghÞPðHjktHgh0 Þ:

þPðHjktHghÞPðHjksHgh0 ÞÞPq

þ
1

4s;t[{D;d}

X
f stðPðHjksHghÞPðHjktHgh0 Þ

þPðHjktHghÞPðHjksHgh0 ÞÞ �A

#�
PðA1;U2Þ

g
ðA;jgÞ
kk0hh ¼E½1ðGðAÞ

ij ¼HjkHjk0 Þ
1ðGðAÞ

ig ¼HghHghÞ
jA1;U2�

¼P½G
ðAÞ
ij ¼HjkHjk0 ;G

ðAÞ
ig ¼HghHgh;A1;U2;

ð2IBDÞ< ð1IBDÞ< ð0IBDÞ�=PðA1;U2Þ

¼

"
1

4 s;t[{D;d}

X
f st �fstP½G

ðAÞ
ij ¼HjkHjk0 ;G

ðAÞ
ig ¼HghHgh;

G
ðAÞ
iD ¼ st;GðUÞ

iD ¼ st�

þ
1

2 s;t;q[{D;d}

X
f st �ftqP½G

ðAÞ
ij ¼HjkHjk0 ;G

ðAÞ
ig ¼HghHgh;

G
ðAÞ
iD ¼ st;GðUÞ

iD ¼ tq�

þ
1

4s;t;q;r[{D;d}

X
f st �fqrP½G

ðAÞ
ij ¼HjkHjk0 ;G

ðAÞ
ig ¼HghHgh;

G
ðAÞ
iD ¼ st;GðU Þ

iD ¼ qr

#
=PðA1;U2Þ

¼

"
1

4 s;t[{D;d}

X
f st �fstðPðHjksHghÞPðHjk0 tHghÞ

þPðHjktHghÞPðHjk0 sHghÞÞ

þ
1

2 s;t;q[{D;d}

X
f st �ftqðPðHjksHghÞPðHjk0 tHghÞ

þPðHjktHghÞPðHjk0 sHghÞÞPq

þ
1

4 s;t[{Dd}

X
f stðPðHjksHghÞPðHjk0 tHghÞ

þPðHjktHghÞPðHjk0 sHghÞÞ �A

#
=PðA1;U2Þ

g
ðA;jgÞ
kk0hh0 ¼E½1ðGðAÞ

ij ¼HjkHjk0 Þ
1ðGðAÞ

ig ¼HghHgh0 Þ
jA1;U2�

¼P½G
ðAÞ
ij ¼HjkHjk0 ;G

ðAÞ
ig ¼HghHgh0 ;A1;U2;

ð2IBDÞ< ð1IBDÞ< ð0IBDÞ�=PðA1;U2Þ

¼

"
1

4 s;t[{D;d}

X
f st �fstP½G

ðAÞ
ij ¼HjkHjk0 ;

G
ðAÞ
ig ¼HghHgh0 ;G

ðAÞ
iD ¼ st;GðUÞ

iD ¼ st�

þ
1

2 s;t;q[{D;d}

X
f st �ftqP½G

ðAÞ
ij ¼HjkHjk0 ;

G
ðAÞ
ig ¼HghHgh0 ;G

ðAÞ
iD ¼ st;GðUÞ

iD ¼ tq�

þ
1

4 s;t;q;r[{D;d}

X
f st �fqrP½G

ðAÞ
ij ¼HjkHjk0 ;

G
ðAÞ
ig ¼HghHgh0 ;G

ðAÞ
iD ¼ st;GðUÞ

iD ¼ qr�

#
=PðA1;U2Þ

¼

"
1

4 s;t[{D;d}

X
f st �fstðPðHjksHghÞPðHjk0 tHgh0 Þ

þPðHjktHghÞPðHjk0 sHgh0 Þ

þPðHjksHgh0 ÞPðHjk0 tHghÞþPðHjktHgh0 ÞPðHjk0 sHghÞÞ

þ
1

2 s;t;q[{D;d}

X
f st �ftqðPðHjksHghÞPðHjk0 tHgh0 Þ

þPðHjktHghÞPðHjk0 sHgh0 Þ

þPðHjksHgh0 ÞPðHjk0 tHghÞþPðHjktHgh0 ÞPðHjk0 sHghÞÞPq

þ
1

4 s;t[{D;d}

X
f stðPðHjksHghÞPðHjk0 tHgh0 Þ

þPðHjktHghÞPðHjk0 sHgh0 ÞþPðHjksHgh0 ÞPðHjk0 tHghÞ

þPðHjktHgh0 ÞPðHjk0 sHghÞÞ �A

#
=PðA1;U2Þ:

Sibship T2 association tests ReviewPRIMARY RESEARCH

q HENRY STEWART PUBLICATIONS 1479 – 7364. HUMAN GENOMICS . VOL 2. NO 2. 90–112 JUNE 2005 103



For k ¼ 1,. . .,nj 2 1 and h ¼ 1,. . .,ng 2 1, j – g, the

covariance

Covðz
ðAÞ
ijk ;z

ðAÞ
igh jA1;U2Þ

¼E½z
ðAÞ
ijk z

ðAÞ
igh jA1;U2�2E½z

ðAÞ
ijk jA1;U2�E½z

ðAÞ
igh jA1;U2�

¼4g
ðA;jgÞ
kkhh þ2

h0–h

X
g
ðA;jgÞ
kkhh0 þ2

k0–k

X
g
ðA;jgÞ
kk0hh

þ
k0–k

X
h0–h

X
g
ðA;jgÞ
kk0hh0 2

"
2ajkkþ

k0–k

X
ajkk0

#"
2aghhþ

h0–h

X
aghh0

#
:

Similarly, for k ¼ 1,. . .,nj 2 1 and h ¼ 1,. . .,ng 2 1, j – g, the

covariance

Covðz
ðUÞ
ijk ;zðUÞ

igh jA1;U2Þ

¼E½z
ðU Þ
ijk z

ðUÞ
igh jA1;U2�2E½z

ðUÞ
ijk jA1;U2�E½z

ðUÞ
igh jA1;U2�

¼4�g
ðU ;jgÞ
kkhh þ2

h0–h

X
�g
ðU ;jgÞ
kkhh0 þ2

k0–k

X
�g
ðU ;jgÞ
kk0hh

þ
k0–k

X
h0–h

X
�g
ðU ;jgÞ
kk0hh0 2 2�ajkkþ

k0–k

X
�ajkk0

2
4

3
5 2�aghhþ

h0–h

X
�aghh0

2
4

3
5:

where �g
ðU ;jgÞ
kkhh ; �g

ðU ;jgÞ
kkhh0 ; �g

ðU ;jgÞ
kk0hh and �g

ðU ;jgÞ
kk0hh0 are the expected genotype

frequencies in the normal sibling as follows:

�g
ðU ; jgÞ
kkhh ¼E½1ðGðUÞ

ij ¼HjkHjkÞ
1ðGðUÞ

ig ¼HghHghÞ
jA1;U2�;

g
ðU ; jgÞ
kkhh0 ¼E½1ðGðUÞ

ij ¼HjkHjkÞ
1ðGðUÞ

ig ¼HghHgh0 Þ
jA1;U2�;

g
ðU ; jgÞ
kk0hh ¼E½1ðGðUÞ

ij ¼HjkHjk0 Þ
1ðGðUÞ

ig ¼HghHghÞ
jA1;U2�;

g
ðU ; jgÞ
kk0hh0 ¼E½1ðGðUÞ

ij ¼HjkHjk0 Þ
1ðGðUÞ

ig ¼HghHgh0 Þ
jA1;U2�:

To calculate �g
ðU ; jgÞ
kkhh ; �g

ðU ; jgÞ
kkhh0 ; �g

ðU ; jgÞ
kk0hh and �g

ðU ; jgÞ
kk0hh0 ; one may use

the formulae of g
ðA; jgÞ
kkhh ; g

ðA; jgÞ
kkhh0 ; g

ðA; jgÞ
kk0hh and g

ðA; jgÞ
kk0hh0 by substituting

fst using �fst:

Appendix B

The conditional covariance

CovðY
ðUÞ
i ;X ðAÞ

i jA1;U2Þ ¼ E½Y
ðU Þ
i X

ðAÞt

i jA1;U2�

2 E½Y
ðUÞ
i jA1;U2�E½X

ðAÞt

i jA1;U2�

¼
E½Y

ðU Þ
i X

ðAÞt

i 1A1
1U2

�

PðA1;U2Þ

2 E½Y
ðUÞ
i jA1;U2�E½X

ðAÞt

i jA1;U2�:

For the ‘haplotype/allele coding’ method, the expectations

E½Y
ðUÞ
i jA1;U2� and E½X

ðAÞt

i jA1;U2� are given by two quan-

tities Eðz
ðAÞ
ijk jA1;U2Þ and Eðz

ðUÞ
ijk jA1;U2Þ (see Appendix to the

paper). To get E½Y
ðUÞ
i X

ðAÞt

i 1A1
1U2

�; we will calculate

E½z
ðUÞ
ijk z

ðAÞ
ijk 1A1

1U2
� and E½z

ðUÞ
ijk z

ðAÞ
ijl 1A1

1U2
�; l – k in this

Appendix. In Appendix C, we will calculate the expectation

E½z
ðUÞ
ijk z

ðAÞ
igh 1A1

1U2
� for j – g. Note that:

E½z
ðU Þ
ijk z

ðAÞ
ijk 1A1

1U2
�

¼E 2�1ðGðUÞ
ij ¼HjkHjkÞ

þ
l–k

X
1ðGðU Þ

ij ¼HjkHjlÞ

0
@

1
A

2
4

2�1ðGðAÞ
ij ¼HjkHjkÞ

þ
l–k

X
1ðGðAÞ

ij ¼HjkHjlÞ

0
@

1
A1A1

1U2

3
5:

ð3Þ

Since the siblings can share 2, 1 and 0 genes identical by

descent (IBD) at the disease locus D with probabilities 1/4,

1/2 and 1/4, respectively, the expectation

E½1ðGðUÞ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HjkHjkÞ

1A1
1U2

�

¼P½G
ðUÞ
ij ¼HjkHjk;G

ðAÞ
ij ¼HjkHjk;A1;U2;

ð2IBDÞ< ð1IBDÞ< ð0IBDÞ�

¼
1

4 s;t[{D;d}

X
�fst fstP½G

ðUÞ
ij ¼HjkHjk;G

ðAÞ
ij ¼HjkHjk;

G
ðUÞ
iD ¼ st;GðAÞ

iD ¼ st�

þ
1

2 s;t;q[{D;d}

X
�fst ftqP½G

ðU Þ
ij ¼HjkHjk;G

ðAÞ
ij ¼HjkHjk;

G
ðUÞ
iD ¼ st;GðAÞ

iD ¼ tq�

þ
1

4 s;t;q;r[{D;d}

X
�fst fqrP½G

ðUÞ
ij ¼HjkHjk;G

ðAÞ
ij ¼HjkHjk;

G
ðUÞ
iD ¼ st;GðAÞ

iD ¼ qr�

¼
1

4 s;t[{D;d}

X
�fst fstPðHjksÞPðHjktÞ

þ
1

2 s;t;q[{D;d}

X
�fst ftqPðHjktÞPðHjksÞPðHjkqÞ

þ
1

4 s;t;q;r[{D;d}

X
�fst f qrPðHjksÞPðHjktÞPðHjkqÞPðHjkrÞ: ð4Þ

For l – k, one may calculate the expectation

E½1ðGðUÞ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HjkHjlÞ

1A1
1U2

�

¼ P½G
ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ij

¼ HjkHjl;A1;U2; ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�

¼
1

4 s;t[{D;d}

X
�fst fstP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ij ¼ HjkHjl;G

ðUÞ
iD

¼ st;GðAÞ
iD ¼ st� þ

1

2 s;t;q[{D;d}

X
�fst f tqP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ij

¼ HjkHjl;G
ðUÞ
iD ¼ st;GðAÞ

iD ¼ tq�
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þ
1

4s;t;q;r[{D;d}

X
�fst fqrP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ij

¼ HjkHjl;G
ðUÞ
iD ¼ st;GðAÞ

iD ¼ qr�

¼
1

2 s;t;q[{D;d}

X
�fst ftq�2PðHjktÞPðHjksÞPðHjlqÞ

þ
1

4 s;t;q;r[{D;d}

X
�fst fqrPðHjksÞPðHjktÞ

h
PðHjkqÞPðHjlrÞ

þPðHjkrÞPðHjlqÞ
i
: ð5Þ

Similarly, one has the following expectation

E½1ðGðUÞ
ij ¼HjkHjlÞ

1ðGðAÞ
ij ¼HjkHjkÞ

1A1
1U2

�

¼
1

2 s;t;q[{D;d}

X
�fst ftq�2PðHjlsÞPðHjktÞPðHjkqÞ

þ
1

4 s;t;q;r[{D;d}

X
�fst fqr

h
PðHjksÞPðHjltÞ

þ PðHjktÞPðHjlsÞ
i
PðHjkqÞPðHjkrÞ:

ð6Þ

For l – k, one may calculate the expectation

E½1ðGðUÞ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HjkHjlÞ

1A1
1U2

�

¼ P½G
ðUÞ
ij ¼ HjkHjl;G

ðAÞ
ij

¼ HjkHjl;A1;U2; ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�

¼
1

4
s;t[{D;d}

X
�fst fstP½G

ðUÞ
ij ¼ HjkHjl;G

ðAÞ
ij ¼ HjkHjl;G

ðUÞ
iD

¼ st;GðAÞ
iD ¼ st� þ

1

2
s;t;q[{D;d}

X
�fst ftqP½G

ðU Þ
ij ¼ HjkHjl;G

ðAÞ
ij

¼ HjkHjl;G
ðUÞ
iD ¼ st;GðAÞ

iD ¼ tq� þ
1

4
s;t;q;r[{D;d}

X
�fst fqrP½G

ðUÞ
ij

¼ HjkHjl;G
ðAÞ
ij ¼ HjkHjl;G

ðUÞ
iD ¼ st;GðAÞ

iD ¼ qr�

¼
1

4
s;t[{D;d}

X
�fst fst½PðHjksÞPðHjltÞ þ PðHjktÞPðHjlsÞ�

þ
1

2
s;t;q[{D;d}

X
�fst ftq½PðHjktÞ½PðHjlsÞPðHjlqÞ� þ PðHjltÞ

� ½PðHjksÞPðHjkqÞ�� þ
1

4
s;t;q;r[{D;d}

X
�fst fqr½PðHjksÞPðHjltÞ

þ PðHjktÞPðHjlsÞ�½PðHjkqÞPðHjlrÞ

þ PðHjkrÞPðHjlqÞ�: ð7Þ

For l1 – l2, l1 – k and l2 – k, one may calculate the

expectation

E½1ðGðU Þ
ij ¼HjkHjl1

Þ1ðGðAÞ
ij ¼HjkHjl2

Þ1A1
1U2

�

¼ P½G
ðUÞ
ij ¼ HjkHjl1 ;G

ðAÞ
ij

¼ HjkHjl2 ;A1;U2; ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�

¼
1

4 s;t[{D;d}

X
�fst fstP½G

ðU Þ
ij ¼ HjkHjl1 ;G

ðAÞ
ij ¼ HjkHjl2 ;

G
ðU Þ
iD ¼ st; GðAÞ

iD ¼ st�

þ
1

2s;t;q[{D;d}

X
�fst ftqP½G

ðUÞ
ij ¼ HjkHjl1 ;G

ðAÞ
ij ¼ HjkHjl2 ;

G
ðU Þ
iD ¼ st; GðAÞ

iD ¼ tq�

þ
1

4s;t;q;r[{D;d}

X
�fst fqrP½G

ðUÞ
ij ¼ HjkHjl1 ;G

ðAÞ
ij ¼ HjkHjl2 ;

G
ðU Þ
iD ¼ st; GðAÞ

iD ¼ qr�

¼
1

2 s;t;q[{D;d}

X
�fst ftq�2PðHjktÞPðHjl1 sÞPðHjl2qÞ

þ
1

4s;t;q;r[{D;d}

X
�fst fqr½PðHjksÞPðHjl1 tÞ þ PðHjktÞPðHjl1 sÞ�

� ½PðHjkqÞPðHjl2 rÞ þ PðHjkrÞPðHjl2qÞ�: ð8Þ

By using equations (4), (5), (6), (7) and (8), we may calculate

E½z
ðUÞ
ijk z

ðAÞ
ijk 1A1

1U2
� in (3). If k – l, then

E½z
ðUÞ
ijk z

ðAÞ
ijl 1A1

1U2
�

¼ E

"
2�1ðGðU Þ

ij ¼HjkHjkÞ
þ

m–k

X
1ðGðUÞ

ij ¼HjkHjmÞ

0
@

1
A

� 2�1ðGðAÞ
ij ¼HjlHjlÞ

þ
n–l

X
1ðGðAÞ

ij ¼HjlHjnÞ

0
@

1
A1A1

1U2

#

¼ 4E½1ðGðUÞ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HjlHjlÞ

1A1
1U2

�

þ 2E½1ðGðU Þ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HjlHjkÞ

1A1
1U2

�

þ 2
n–k;l

X
E½1ðGðUÞ

ij ¼HjkHjkÞ
1ðGðAÞ

ij ¼HjlHjnÞ
1A1

1U2
�

þ 2E½1ðGðU Þ
ij ¼HjkHjlÞ

1ðGðAÞ
ij ¼HjlHjlÞ

1A1
1U2

�

þ 2
m–k;l

X
E½1ðGðUÞ

ij ¼HjkHjmÞ
1ðGðAÞ

ij ¼HjlHjlÞ
1A1

1U2
�

þ
m–k;l

X
E½1ðGðUÞ

ij ¼HjkHjmÞ
1ðGðAÞ

ij ¼HjlHjmÞ
1A1

1U2
�

þ
m–k;l

X
E½1ðGðUÞ

ij ¼HjkHjmÞ
1ðGðAÞ

ij ¼HjlHjkÞ
1A1

1U2
�

þ
m–k;l

X
n–m;k;l

X
E½1ðGðUÞ

ij ¼HjkHjmÞ
1ðGðAÞ

ij ¼HjlHjnÞ
1A1

1U2
�

þ E½1ðGðUÞ
ij ¼HjkHjlÞ

1ðGðAÞ
ij ¼HjlHjkÞ

1A1
1U2

�

þ
n–k;l

X
E½1ðGðU Þ

ij ¼HjkHjlÞ
1ðGðAÞ

ij ¼HjlHjnÞ
1A1

1U2
�:

ð9Þ
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First, one may calculate the expectation

E½1ðGðU Þ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HjlHjlÞ

1A1
1U2

�

¼ P½G
ðU Þ
ij ¼ HjkHjk;G

ðAÞ
ij ¼ HjlHjl;

A1;U2; ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�

¼
1

4 s;t[{D;d}

X
�fst fstP½G

ðU Þ
ij ¼ HjkHjk;G

ðAÞ
ij ¼ HjlHjl;

G
ðU Þ
iD ¼ st; GðAÞ

iD ¼ st�

þ
1

2 s;t;q[{D;d}

X
�fst ftqP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ij ¼ HjlHjl;

G
ðU Þ
iD ¼ st; GðAÞ

iD ¼ tq�

þ
1

4 s;t;q;r[{D;d}

X
�fst fqrP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ij ¼ HjlHjl;

G
ðU Þ
iD ¼ st; GðAÞ

iD ¼ qr�

¼
1

4 s;t;q;r[{D;d}

X
�fst fqrPðHjksÞPðHjktÞPðHjlqÞPðHjlrÞ ð10Þ

For n – k, l, one may have the following expectation

E½1ðGðUÞ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HjlHjnÞ

1A1
1U2

�

¼ P½G
ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ij ¼ HjlHjn;

A1;U2; ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�

¼
1

4 s;t[{D;d}

X
�fst fstP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ij ¼ HjlHjn;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ st�

þ
1

2 s;t;q[{D;d}

X
�fst ftqP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ij ¼ HjlHjn;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ tq�

þ
1

4 s;t;q;r[{D;d}

X
�fst fqrP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ij ¼ HjlHjn;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ qr�

¼
1

4 s;t;q;r[{D;d}

X
�fst fqrPðHjksÞPðHjktÞ½PðHjlqÞPðHjnrÞ

þ PðHjlrÞPðHjnqÞ�: ð11Þ

For m – k, l, one may have the following expectation

E½1ðGðUÞ
ij ¼HjkHjmÞ

1ðGðAÞ
ij ¼HjlHjlÞ

1A1
1U2

�

¼ P½G
ðUÞ
ij ¼ HjkHjm;G

ðAÞ
ij ¼ HjlHjl;

A1;U2; ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�

¼
1

4 s;t[{D;d}

X
�fst fstP½G

ðUÞ
ij ¼ HjkHjm;G

ðAÞ
ij ¼ HjlHjl;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ st�

þ
1

2 s;t;q[{D;d}

X
�fst ftqP½G

ðUÞ
ij ¼ HjkHjm;G

ðAÞ
ij ¼ HjlHjl;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ tq�

þ
1

4s;t;q;r[{D;d}

X
�fst fqrP½G

ðUÞ
ij ¼ HjkHjm;G

ðAÞ
ij ¼ HjlHjl;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ qr�

¼
1

4s;t;q;r[{D;d}

X
�fst fqr½PðHjksÞPðHjmtÞ

þ PðHjktÞPðHjmsÞ�PðHjlqÞPðHjlrÞ: ð12Þ

For m – k,l,n – m,k,l, one way have the following

expectation:

E½1ðGðUÞ
ij ¼HjkHjmÞ

1ðGðAÞ
ij ¼HjlHjnÞ

1A1
1U2

�

¼ P½G
ðUÞ
ij ¼ HjkHjm;G

ðAÞ
ij ¼ HjlHjn;

A1;U2; ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�

¼
1

4 s;t[{D;d}

X
�fst fstP½G

ðUÞ
ij ¼ HjkHjm;G

ðAÞ
ij ¼ HjlHjn;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ st�

þ
1

2 s;t;q[{D;d}

X
�fst ftqP½G

ðUÞ
ij ¼ HjkHjm;G

ðAÞ
ij ¼ HjlHjn;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ tq�

þ
1

4 s;t;q;r[{D;d}

X
�fst fqrP½G

ðUÞ
ij ¼ HjkHjm;G

ðAÞ
ij ¼ HjlHjn;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ qr�

�
1

4 s;t;q;r[{D;d}

X
�fst fqr½PðHjksÞPðHjmtÞ

þ PðHjktÞPðHjmsÞ�½PðHjlqÞPðHjnrÞ

þ PðHjlrÞPðHjnqÞ�: ð13Þ

Using equations (5) (6), (7), (8), (9), (10), (11) and (13), we

may calculate terms of equation (7).

Appendix C

For j – g, the expectation

E½z
ðUÞ
ijk z

ðAÞ
igh 1A1

1U2
�

¼E 2�1ðGðU Þ
ij ¼HjkHjkÞ

þ
k0–k

X
1ðGðUÞ

ij ¼HjkHjk0 Þ

0
@

1
A

2
4

� 2�1ðGðAÞ
ig ¼HghHghÞ

þ
h0–h

X
1ðGðAÞ

ig ¼HghHgh0 Þ

0
@

1
A1A1

1U2

3
5: ð14Þ
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Suppose that blocks/markers Hj and Hg flank disease locus

D in the order HjDHg. The expectation

E½1ðGðUÞ
ij ¼HjkHjkÞ

1ðGðAÞ
ig ¼HghHghÞ

1A1
1U2

�

¼ P½G
ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh;

A1;U2; ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�

¼
1

4 s;t[{D;d}

X
�fst f stP½G

ðU Þ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ st�

þ
1

2s;t;q[{D;d}

X
�fst f tqP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ tq�

þ
1

4s;t;q;r[{D;d}

X
�fst f qrP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ qr�

¼
1

4 s;t[{D;d}

X
�fst f stPðHjksHghÞPðHjktHghÞ

þ
1

2 s;t;q[{D;d}

X
�fst f tqPðHjktHghÞPðHjksÞPðqHghÞ

þ
1

4s;t;q;r[{D;d}

X
�fst f qrPðHjksÞPðHjktÞPðqHghÞPðrHghÞ:

ð15Þ

If h0 – h, the expectation

E½1ðGðU Þ
ij ¼HjkHjkÞ

1ðGðAÞ
ig ¼HghHgh0 Þ

1A1
1U2

�

¼ P½G
ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh0 ;

A1;U2; ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�

¼
1

4s;t[{D;d}

X
�fst f stP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh0 ;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ st�

þ
1

2s;t;q[{D;d}

X
�fst f tqP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh0 ;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ tq�

þ
1

4s;t;q;r[{D;d}

X
�fst f qrP½G

ðUÞ
ij ¼ HjkHjk;G

ðAÞ
ig ¼ HghHgh0 ;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ qr�

¼
1

4 s;t[{D;d}

X
�fst f st½PðHjksHghÞPðHjktHgh0 Þ

þ PðHjktHghÞPðHjksHgh0 Þ�

þ
1

2s;t;q[{D;d}

X
�fst f tq½PðHjktHghÞPðHjksÞPðqHgh0 Þ

þ PðHjktHgh0 ÞPðHjksÞPðqHghÞ�

þ
1

4s;t;q;r[{D;d}

X
�fst f qrPðHjksÞPðHjktÞ½PðqHghÞPðrHgh0 Þ

þ PðrHghÞPðqHgh0 Þ�: ð16Þ

If k – k0, the expectation

E½1ðGðUÞ
ij ¼HjkHjkÞ

1ðGðAÞ
ig ¼HghHghÞ

1A1
1U2

�

¼ P½G
ðUÞ
ij ¼ HjkHjk0 ;G

ðAÞ
ig

¼ HghHgh0 ;A1;U2; ð2 IBDÞ< ð1 IBDÞ< ð0 IBDÞ�

¼
1

4 s;t;[{D;d}

X
�fst f stP½G

ðUÞ
ij ¼ HjkHjk0 ;G

ðAÞ
ig ¼ HghHgh0 ;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ st�

þ
1

2s;t;q[{D;d}

X
�fst f tqP½G

ðUÞ
ij ¼ HjkHjk0 ;G

ðAÞ
ig ¼ HghHgh;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ tq�

þ
1

4s;t;q;r[{D;d}

X
�fst f qrP½G

ðUÞ
ij ¼ HjkHjk0 ;G

ðAÞ
ig ¼ HghHgh;

G
ðUÞ
iD ¼ st; GðAÞ

iD ¼ qr�

¼
1

4 s;t[{D;d}

X
�fst f st½PðHjksHghÞPðHjk0 tHghÞ

þ PðHjktHghÞPðHjk0 sHghÞ�

þ
1

2 s;t;q[{D;d}

X
�fst f tq½PðHjktHghÞPðHjk0 sÞPðqHghÞ

þ PðHjk0 tHghÞPðHjksÞPðqHghÞ�

þ
1

4s;t;q;r[{D;d}

X
�fst f qr½PðHjksÞPðHjk0 tÞ þ PðHjktÞPðHjk0 sÞ�

£ PðqHghÞPðrHghÞ: ð17Þ

If k – k0, h – h0 the expectation

E½1ðGðUÞ
ij ¼HjkHjk0 Þ

1ðGðAÞ
ig ¼HghHgh0 Þ

1A1
1U2

�

¼ P½G
ðUÞ
ij ¼HjkHjk0 ;G

ðAÞ
ig ¼HghHgh0 ;

A1;U2; ð2IBDÞ< ð1IBDÞ< ð0IBDÞ�

¼
1

4s;t[{D;d}

X
�fst f stP½G

ðUÞ
ij ¼HjkHjk0 ;G

ðAÞ
ig ¼HghHgh0 ;

G
ðUÞ
iD ¼ st;GðAÞ

iD ¼ st�

þ
1

2s;t;q[{D;d}

X
�fst f tqP½G

ðU Þ
ij ¼HjkHjk0 ;G

ðAÞ
ig ¼HghHgh0 ;

G
ðUÞ
iD ¼ st;GðAÞ

iD ¼ tq�

þ
1

4s;t;q;r[{D;d}

X
�fst f qrP½G

ðU Þ
ij ¼HjkHjk0 ;G

ðAÞ
ig ¼HghHgh0 ;

G
ðUÞ
iD ¼ st;GðAÞ

iD ¼ qr�
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¼
1

4s;t[{D;d}

X
�fst f st½PðHjksHghÞPðHjk0 tHgh0 Þ

þPðHjktHghÞPðHjk0 sHgh0 Þ þPðHjksHgh0 ÞPðHjk0 tHghÞ

þPðHjktHgh0 ÞPðHjk0 sHghÞ�

þ
1

2s;t;q[{D;d}

X
�fst f tq½PðHjktHghÞPðHjk0 sÞPðqHgh0 Þ

þPðHjk0 tHghÞPðHjksÞPðqHgh0 Þ þPðHjktHgh0 ÞPðHjk0 sÞPðqHghÞ

þPðHjk0 tHgh0 ÞPðHjksÞPðqHghÞ�

þ
1

4s;t;q;r[{D;d}

X
�fst f qr½PðHjksÞPðHjk0 tÞ

þPðHjktÞPðHjk0 sÞ�½PðqHghÞPðrHgh0 Þ þPðrHghÞPðqHgh0 Þ�:

ð18Þ

Appendix D

For the ‘genotype coding’ method, the coding vector of the

affected sibling in the i-th sib-pair is X
ðAÞ
ij ¼ ðx

ðAÞ
ij1 ; . . .; x

ðAÞ
ijðnj21Þ;

x
ðAÞ
ij12; . . .; x

ðAÞ
ij1nj

; . . .; xðAÞijðnj21Þnj
Þt, j ¼ 1,. . ., J. Similarly, Y

ðUÞ
ij ¼

ðx
ðUÞ
ij1 ; . . .; xðUÞ

ijðnj21Þ; x
ðUÞ
ij12; . . .; x

ðUÞ
ij1nj

; . . .; xðUÞ
ijðnj21Þnj

Þt j ¼ 1,. . ., J is

the coding vector of the normal sibling in the i-th sib-pair.

Using the expectations E½X
ðAÞ
ij jA1;U2� and E½Y

ðUÞ
ij jA1;U2�

given in equations (1) and (2), one may calculate the following

variance–covariance matrices:

VarðX
ðAÞ
ij jA1;U2Þ

¼ diagðaj11; . . .;ajðnj21Þðnj21Þ;aj12; . . .;aj1nj ; . . .;ajðnj21Þnj Þ

2 ½X
ðAÞ
ij jA1;U2�E ½X

ðAÞ
ij jA1;U2�

t;

VarðY
ðUÞ
ij jA1;U2Þ

¼ diag ð�aj11; . . .; �ajðnj21Þðnj21Þ; �aj12; . . .; �aj1nj ; . . .; �ajðnj21Þnj Þ

2E½Y
ðUÞ
ij jA1;U2�E½Y

ðUÞ
ij jA1;U2�

t: ð19Þ

The covariances between xijk, xijkk0 and xigh, xighh0 are given

by

Covðx
ðAÞ
ijk ; x

ðAÞ
igh jA1;U2Þ ¼ g

ðA;jgÞ
kkhh 2 ajkkaghh;

Covðx
ðAÞ
ijk ; x

ðAÞ
ighh0 jA1;U2Þ ¼ g

ðA;jgÞ
kkhh0 2 ajkkaghh0 ;

Covðx
ðAÞ
ijkk0 ; x

ðAÞ
igh jA1;U2Þ ¼ g

ðA;jgÞ
kk0hh 2 ajkk0aghh;

Covðx
ðAÞ
ijkk0 ; x

ðAÞ
ighh0 jA1;U2Þ ¼ g

ðA;jgÞ
kk0hh0 2 ajkk0aghh0 : ð20Þ

Similarly,

Covðx
ðUÞ
ijk ; xðUÞ

igh jA1;U2Þ ¼ �g
ðU ;jgÞ
kkhh 2 �ajkk�aghh;

Covðx
ðUÞ
ijk ; xðUÞ

ighh0 jA1;U2Þ ¼ �g
ðU ;jgÞ
kkhh0 2 �ajkk�aghh0 ;

Covðx
ðUÞ
ijkk0 ; x

ðUÞ
igh jA1;U2Þ ¼ �g

ðU ;jgÞ
kk0hh 2 �ajkk0 �aghh;

Covðx
ðUÞ
ijkk0 ; x

ðUÞ
ighh0 jA1;U2Þ ¼ �g

ðU ;jgÞ
kk0hh0 2 �ajkk0 �aghh0 : ð21Þ

Using results of equations (19), (20) and (21), one may

calculate VarðX
ðAÞ
i jA1;U2Þ and VarðY

ðUÞ
i jA1;U2Þ for the

‘genotype coding’ method.

Appendix E

In this Appendix, we calculate the following covariance matrix

for the ‘genotype coding’ method

CovðY
ðUÞ
i ;X ðAÞ

i jA1;U2Þ ¼ E ½Y
ðUÞ
i X

ðAÞt

i jA1;U2�

2 E ½Y
ðUÞ
i jA1;U2�E ½X

ðAÞt

i jA1;U2�

¼
E ½Y

ðUÞ
i X

ðAÞt

i 1A1
; 1U2

�

PðA1;U2Þ

2 E ½Y
ðUÞ
i jA1;U2�E ½X

ðAÞt

i jA1;U2�:

The probability P(A1, U2) is given in the Appendix

to the manuscript, and the components of expectations

E ½X
ðAÞ
i jA1;U2� and E ½Y

ðUÞ
i jA1;U2� are given in equations (1)

and (2). For E ½Y
ðUÞ
i X

ðAÞt

i 1A1
1U2

�; we note the following

results:

the expectation E ½1ðGðU Þ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HjkHjkÞ

1A1
1U2

� is given

by (4); For l – k, the expectation E ½1ðGðUÞ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼

HjkHjlÞ1A1
1U2

� is given by (5); For l – k, E½1ðGðUÞ
ij ¼HjkHjlÞ

1

ðG
ðAÞ
ij ¼HjkHjkÞ

1A1
1U2

� is given by (6); For l – k,

E ½1ðGðUÞ
ij ¼HjkHjlÞ

1ðGðAÞ
ij ¼HjkHjlÞ

1A1
1U2

� is given by (7); For l1 – l2,

l1 – k, l2 – k, E ½1ðGðUÞ
ij ¼HjkHjl1

Þ1ðGðAÞ
ij ¼HjkHjl2

Þ1A1
1U2

� is given

by (8); For l – k, E ½1ðGðUÞ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HjlHjlÞ

1A1
1U2

� is given

by (10); For l – k, n – k, l, E ½1ðGðU Þ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HjlHjnÞ

1A1
1U2

�

is given by (11); For l – k, m – k, l, E ½1ðGðU Þ
ij ¼HjkHjmÞ

1ðGðAÞ
ij ¼

HjlHjlÞ1A1
1U2

� is given by (12); For l – k, m – k, l, n – m,

k, l, E ½1ðGðU Þ
ij ¼HjkHjmÞ

1ðGðAÞ
ij ¼HjlHjnÞ

1A1
1U2

� is given by (13).

In addition, E ½1ðGðUÞ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HghHghÞ

1A1
1U2

� is given by

(15); E ½1ðGðUÞ
ij ¼HjkHjkÞ

1ðGðAÞ
ij ¼HghHgh0 Þ

1A1
1U2

� is given by (16);

E ½1ðGðUÞ
ij ¼HjkHjk0 Þ

1ðGðAÞ
ij ¼HghHghÞ

1A1
1U2

� is given by (17); Finally,

E ½1ðGðUÞ
ij ¼HjkHjk0 Þ

1ðGðAÞ
ij ¼HghHgh0 Þ

1A1
1U2

� is given by (18).

Supplementary information:
Simulation study

In order to evaluate the accuracy of the non-centrality

parameter approximations, we performed simulations for

power curves in Figures 1, 2, 3 and 4 of the paper. To do

this, we divided the interval (0, 0.065) (or (0, 0.045)) of

the LD measure D11 of LD uniformly into 20 subintervals

for Figures 1 and 2 (or Figures 3 and 4). Correspondingly,

the 20 subintervals lead to 21 endpoints. For each
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endpoint, there is a set of parameters for each power curve.

Using the set of parameters, 2,500 datasets are simulated

for each endpoint. For each dataset, the empirical statistics

TH, TG, TH1 and TG1 were calculated. The simulated

power is the proportion of the 2,500 simulated datasets

for which the empirical statistic is larger than the cut-off

point of the corresponding x 2-distribution at a 0.05

significance level.

From Figures 1, 2, 3 and 4, it can be seen that the theor-

etical power curves of TH, TG, TH1 and TG1 are perfectly close

to the simulated power curves. Thus, the non-centrality par-

ameter approximations are very accurate.
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Figure 1. The simulated power curves TH, TG, TH1 and TG1 are plotted. The corresponding parameters are the same as those

in Figure 1 of the paper. Abbreviation: LD ¼ linkage disequilibrium.
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Figure 2. The simulated power curves TH, TG, TH1 and TG1 are plotted. The corresponding parameters are the same as those

in Figure 2 of the paper. Abbreviation: LD ¼ linkage disequilibrium.
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Figure 3. The simulated power curves TH and TG are plotted. The corresponding parameters are the same as those of Figure 3 in the

paper. Abbreviation: LD ¼ linkage disequilibrium.
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Figure 4. The simulated power curves TH and TG are plotted. The corresponding parameters are the same as those of Figure 4 of the

paper. Abbreviation: LD ¼ linkage disequilibrium.
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