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Abstract
The use of genomic technologies in biogerontology has the potential to greatly enhance our understanding of human ageing.

High-throughput screens for alleles correlated with survival in long-lived people have uncovered novel genes involved in age-associated

disease. Genome-wide longevity studies in simple eukaryotes are identifying evolutionarily conserved pathways that determine longevity.

It is hoped that validation of these ‘public’ aspects of ageing in mice, along with analyses of variation in candidate human ageing genes,

will provide targets for future interventions to slow the ageing process and retard the onset of age-associated pathologies.
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Introduction

The study of the biology of ageing (biogerontology) has seen

a reawakening in recent years. Modern molecular techniques

are being applied in an effort to understand both the changes

that occur as people age and, perhaps more importantly, to

identify the genes that determine how quickly these age-

associated changes progress. In addition, as life expectancy

has increased in developed nations, an ageing population has

contributed to a great societal (and financial) interest in

understanding the human ageing process and in ameliorating

age-associated physical and cognitive declines.

The genomics revolution, in particular, has begun to have a

profound impact on the way that biogerontologists approach

the study of ageing. Global gene expression profiling has been

used to characterise transcriptional changes associated with

age and longevity, as discussed in several recent reviews.1–6

Proteomics and metabolomics technologies are also now

being applied to ageing-related problems7,8 and, as these

technologies continue to mature, will certainly be used more

extensively. One particularly important application of these

technologies will be the identification of diagnostic biomarkers

of ageing and ageing rate.9–12

This review will describe the use of genomics methods to

identify genes that influence human ageing. Two types of

approaches will be discussed: genome-wide studies of allelic

variants that correlate with longevity in people and high-

throughput life span studies in lower eukaryotes. The synthesis

of these approaches is beginning to uncover highly conserved

aspects of the ageing process and to identify candidate gene

targets for future intervention into human ageing and

age-associated disease.

Searching for allelic variants that
determine longevity in humans

The long life span enjoyed by most people presents a difficulty

for researchers wishing to study the genetic and environ-

mental factors that influence ageing and age-associated disease

in people. The lack of accepted biomarkers of ageing rate

means that there is no diagnostic test which can be used to

determine whether a particular mutation or environmental

change is likely to have an impact on longevity.13 The search

for such biomarkers is an ongoing process. For now, however,

alternative, methods are being developed to address these

questions.

One approach for identifying genetic features that influence

longevity is the study of individuals that achieve extreme

longevity.14,15 Centenarians represent just such a group,

with approximately 1 in 10,000 people reaching their

100th birthday.16 There is substantial evidence that genetic

components influence human longevity and that centenarians

are people who have escaped the common age-associated

diseases which account for a large fraction of the mortality in

the overall population.15,17,18 In a pioneering effort to identify

genetic polymorphisms over-represented among centenarians,

Puca and colleagues used linkage analysis to scan the genomes

of 308 individuals belonging to 137 sibships displaying

extreme longevity.19 From this analysis, significant linkage
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was noted for a locus on chromosome 4,19 which was

subsequently mapped to the gene coding for microsomal

triglyceride transfer protein (MTP).20 Alleles of MTP are

associated with abetalipoproteinaemia and familial hypobeta-

lipoproteinaemia in humans.21,22 It therefore seems likely

that the longevity-associated allele identified by Puca and

colleagues represents an allele that is protective against

heart disease.20

An alternative to studying extremely long-lived cohorts is

to identify genetic polymorphisms that change in frequency

across a population as a function of age. For example, a high-

throughput single nucleotide polymorphism (SNP)-typing

approach—where allele frequencies are determined for a large

number of SNPs from individuals of many different ages—

has the potential to uncover alleles that influence longevity.

Under such a design, alleles that result in disease susceptibility

should decrease in frequency with donor age, while alleles

that are important for longevity should increase in frequency.

This approach was used successfully to identify an isoleucine

to valine polymorphism in the protein kinase A (PKA)

anchoring protein AKAP2, which correlates with decreased

longevity and cardiac disease.23 PKA activity has been linked

to ageing in simple eukaryotes.10,24–26Mice with altered levels

of PKA have phenotypes consistent with an ageing-related

role, such as decreased adipose tissue, protection against

obesity and elevated expression of uncoupling proteins.27–29

Surprisingly, no additional large-scale searches for age-related

changes in SNP frequencies have been described. As tech-

nologies for SNP discovery and quantitative analysis

continue to improve, this approach may warrant further

attention.

Difficulties in using humans to study
human longevity

Both examples of age-correlated polymorphisms highlighted

above (AKAP2 and MTP) demonstrate one of the difficulties

associated with identifying genes that influence the rate of

ageing from genetic studies of longevity in people: the pro-

found effect of a relatively small number of age-associated

diseases on human mortality. A majority of deaths in devel-

oped nations occur as a result of a relatively small number

of age-associated diseases, including cardiovascular disease,

cancer, stroke and diabetes. Thus, one of the prerequisites

for achieving extreme longevity is a reduced risk for these

diseases, and polymorphisms conferring reduced risk to one

or more of these diseases can have a significant effect on

individual longevity. In the examples of MTP and AKAP2, the

observed effects on longevity are almost certainly due to an

altered risk of cardiovascular disease.20,23 Does this mean that

individuals with the longevity-associated allele of MTP are

ageing more slowly? Not necessarily. The risk for one or more

age-associated phenotypes is reduced; however, there is no

evidence that many or all age-associated phenotypes are also

retarded in such individuals. Other alleles have also been

correlated with life span in people (Table 1), and in almost

every case can be attributed to delayed onset of one, or a

few, age-associated disease(s).

A second difficulty in population-based studies of human

longevity is controlling for population-specific factors.50 For

example, the prevalence of specific age-associated diseases is

variable in different populations. This can be due to any

combination of cultural (eg diet), historical (eg famine),

environmental (eg exposure to toxic chemicals) or genetic

components, and can have a profound impact on the types of

genotypic variants that influence survival to old age. Recently,

it has been suggested the role of MTP as a longevity-related

locus may be specific for the cohort used in the study from

which it was initially identified.50,51 Simply designing an

appropriately controlled human longevity study is challenging,

and care must be taken to avoid population stratification.

Thus, it will be important to test any candidate human

longevity locus in multiple populations to determine the

generality of the correlation.

A third potential barrier to identifying genetic variants that

have a significant impact on human ageing may be that such

variants carry a large selective disadvantage and have been

culled from the gene pool. To date, no genetic variant has

been definitively shown to slow the rate of human ageing,

although rare mutations can accelerate at least some aspects

of the ageing process, resulting in progeria syndromes.52

Abundant evidence from model organisms, however, suggests

that mutations in single genes can dramatically slow the rate

of ageing and the onset of many (perhaps all) age-associated

phenotypes. On the surface, it may seem surprising that, if

such ‘master regulators’ of ageing exist in people, no alleles

have been identified that confer extreme longevity. The

examples from simpler eukaryotes, however, also demonstrate

quite clearly that these types of mutations often come with

significant fitness and reproductive costs.53–55 Thus, strong

longevity-enhancing alleles in genes that influence ageing

rate are likely to have been selected against during recent

human evolution, perhaps making their detection by large-

scale polymorphism studies impossible.

Genome-wide approaches to
identifying ‘public’ pathways of ageing

The use of model systems for ageing-related research provides

an avenue for getting around many of the difficulties associated

with human studies. Both mice and rats are commonly-used

mammalian models for ageing and longevity studies. Several

simple eukaryotic models have also been developed, including

the budding yeast Saccharomyces cerevisiae, the nematode

Caenorhabditis elegans and the fruit fly Drosophila melano-

gaster.56 Perhaps the greatest advantage afforded by model
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organisms for ageing-related studies is that the relatively short

life spans of these organisms allows for controlled longevity

studies to determine whether a particular mutation or

environmental change alters ageing rate. In particular, inter-

ventions that increase population life span are of interest

because they either slow the rate of ageing, delay the onset

of ageing or both. Several dozen single-gene mutations that

significantly increase life span have been identified from studies

in model organisms.57 More recently, genome-wide screens

for longevity have been carried out in both yeast and worms,

resulting in a wealth of data and a better understanding of

the degree to which the genetic basis of ageing has been

conserved.

A question that is often raised when considering the use-

fulness of model organisms in ageing research is whether the

ageing process has been sufficiently evolutionarily conserved

that the mechanisms of ageing are shared between lower

eukaryotes and people, or even between non-human mammals

and people. While this question is impossible to answer at

this time, there is reason to think that at least some aspects

of ageing are highly conserved.58–60 For example, all of the

model organisms used for ageing-related research display an

approximately exponential increase in mortality with age

(Gompertz-Makeham-like mortality), consistent with the idea

that important aspects of the underlying ageing process is

conserved.61 Perhaps the most compelling reason to think

that ageing is highly conserved is the recent identification

of several conserved determinants of longevity — orthologous

genes (or similar environmental changes) that determine

ageing rate in evolutionarily divergent organisms (Table 2).

These conserved longevity determinants are likely to regulate

‘public mechanisms of ageing’84 that have been maintained

Table 1. Selected genes for which polymorphisms have been

reported to correlate with human longevity. Obvious life span-

shortening disease alleles have been excluded. It should be noted

that, in many cases, the reported correlation with longevity has

been disputed by subsequent work.

Gene Gene function Reference

3’ APOB-VNTR Apolipoprotein B 30

5HTT Serotonin transporter 31

ACE Angiotensin-converting

enzyme

32

APOE Apolipoprotein E 32

CETP Cholesteryl ester transfer

protein

33,34

GH1 Growth hormone 35

IGF-1R Insulin-like growth factor

(IGF)-I receptor

36

IL-10 Interleukin 10 37

KLOTHO Insulin/IGF-I-repressing

hormone

38–40

MTND2 Mitochondrial NADH

dehydrogenase

41

MTP Microsomal triglyceride

transfer protein

20

NR3C1 Glucocorticoid receptor 42

PI3KCB Phosphatidylinositol 3-kinase

catalytic subunit

36

PPARG Peroxisome proliferator-

activated

receptor gamma 2

43

SHC1 SHC-transforming protein 1 44

SIRT3 Sirtuin protein deacetylase 45

TH Tyrosine hydroxylase 46

TLR4 Toll-like receptor 4 47

TP53 Tumour suppressor p53 48,49

Abbreviations: NADH ¼ the reduced form of nicotinamide adenine dinucleotide;
SHC ¼ Src homology 2 domain-containing.

Table 2. Potential conserved determinants of longevity. Genes

shown have been reported to increase life span when mutated in

more than one organism.

Gene family Description

Catalase Increased catalase activity increases life

span in yeast62 and mice63

Insulin/insulin-like

growth factor-I

receptor

Mutation of insulin and insulin-like growth

factor-I receptor genes increases life span

in worms,64,65 flies66 and mice67,68

Rpd3 Deletion of RPD3 increases life span in

yeast69 and flies70

Sch9/Akt Decreased SCH9/AKT activity increases

life span in yeast25,26,62,71 and worms72–74

Sir2 Increased expression of Sir2-family

proteins increases life span in yeast,75

worms76 and flies.77 A variant allele of a

human homolog, SIRT3, is reported to

correlated with longevity78,45

Superoxide

dismutase

Increased superoxide dismutase activity

increases life span in yeast62 and flies79

TOR Decreased TOR activity increases life span

in yeast,26,80 worms81,82 and flies83
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through evolution and which determine longevity in response

to environmental cues, such as nutrient availability.

Genome-wide studies of
ageing in worms

C. elegans has proven to be one of the most important model

organisms for ageing-related research, providing the first well-

characterised model for the role of insulin/insulin-like

growth factor I (IGF-1) in ageing. Several components of this

pathway have been shown to regulate longevity in worms,

including an insulin-like receptor (Daf-2),64,65 a phosphatidyl-

inositol 3-kinase (Age-1),85,86 proteins orthologous to Akt

kinases (Akt-1, Akt-2 and Sgk-1)72–74 and a FOXO-family

transcription factor (Daf-16).87,88 Global gene expression

profiling by microarray has further elucidated some of the

downstream components of this pathway, which are involved

in antimicrobial, oxidative and other stress responses.89,90

The true power of C. elegans as a model for ageing-related

research has become apparent with the development of RNA

interference (RNAi) as a technology for gene expression

knock-down in worms. The typical food source provided to

C. elegans is live Escherichia coli grown on a solid medium. E. coli

expressing a plasmid-encoded double-stranded RNA corres-

ponding to a C. elegans open reading frame (ORF) knocks

down expression of the targeted gene.91 An RNAi library

corresponding to 17,000 unique genes (,85 per cent of
C. elegans ORFs) has been constructed,92 and two indepen-

dent genome-wide RNAi screens have been carried out for

genes that influence longevity in worms.73,93–95 Genes that

increase life span when knocked down can be grouped into

functional categories, the largest being genes important for

mitochondrial respiration and genes involved in insulin/IGF-I

signalling. Several uncharacterised genes were identified as

well, suggesting that important aspects of the ageing process

remain uncharacterised, even in simple eukaryotes.

A multi-organism approach to
identifying public pathways
regulating longevity

Recently, a genomic approach to uncovering genetic deter-

minants of longevity that have been conserved from yeast to

mammals has been described, based on the hypothesis that

protein families which function to determine ageing rate in

both yeast and worms are likely to play a similar role in

mammals.10,96 The first phase of this proposal involves geno-

mic analysis of ageing in yeast.97 Two types of ageing are

commonly studied in yeast: replicative life span, which refers

to the number of times a yeast cell can divide prior to senes-

cence,98 and chronological life span, measured by the length

of time a cell can survive in a non-dividing state.99 High-

throughput assays for both replicative and chronological ageing

have been developed,26,100 which will allow for life span

determination of approximately 4,800 single-gene deletion

strains contained in the yeast ORF deletion collection.101

For each yeast ageing gene identified from these screens, the

homologous genes in C. elegans (if any) will be examined by

measuring life span in response to RNAi-mediated knock-

down. Those orthologue pairs that determine longevity in

both yeast and C. elegans will then be candidates for further

study in a mammalian system. Conditional and tissue specific

knockout of mouse genes orthologous to conserved yeast and

C. elegans ageing genes will be carried out and selected lines

subjected to life span analysis. Due to the costly nature of

rodent longevity studies, this is an exceptional method for

identifying high-interest candidates. Clearly, any gene family

found to determine life span in yeast, worms and mice will be

of great interest as a likely determinant of human longevity.

Even prior to life span studies in mice, the identification

of longevity determinants conserved in simple eukaryotes,

such as yeast and worms, will allow for SNP analysis of human

orthologues to determine whether there is a correlation of

certain alleles with longevity or age-associated disease. For

example, increased expression of Sir2-family proteins increases

life span in yeast,75 worms76 and flies,77 and alleles of a human

homolog, SIRT3, are reported to correlate with longevity in

people78 (Table 1). Likewise, mutation of the insulin/IGF-I

receptor homologues increase life span in worms64,65 and

flies,66 and it has been suggested that allelic variants in the

human IGF-I receptor correlate with longevity.36 The

nutrient-responsive kinases TOR (target of rapamycin), PKA

and Sch9/Akt represent additional high-interest candidates, for

which human longevity data have not been reported. More

subtle effects on human ageing, which may be masked by

disease alleles in genome-wide scans, can potentially be

uncovered by this type of targeted approach based on

knowledge gleaned from model organisms.

Conclusion

The further development and application of genomics methods

toward biogerontology has the potential to dramatically

enhance understanding of human ageing. Genomic approaches

have already uncovered genes important in the onset of human

age-associated disease. In simpler eukaryotes, genome-wide

studies are rapidly providing a detailed picture of the molecular

pathways that regulate ageing. The most effective future

studies may come from combining the genes identified in

simpler organisms with technologies to rapidly uncover

allelic variation in human orthologues which may influence

longevity and disease. There is ample reason for optimism that

these approaches will enhance our understanding of the

molecular biology of ageing and, ultimately, our ability to treat

age-associated disease.
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