
Protein–protein interaction databases:
Keeping up with growing interactomes
Benjamin Lehne and Thomas Schlitt*

Department of Medical and Molecular Genetics, Kings College London, 8th Floor Tower Wing, Guy’s Campus,

London, SE1 9RT, UK

*Correspondence to: Tel: þ44 20 7188 9072; Fax: þ44 20 7188 2585; E-mail: thomas.schlitt@genetics.kcl.ac.uk

Date received (in revised form): 30th January 2009

Abstract
Over the past few years, the number of known protein–protein interactions has increased substantially. To make

this information more readily available, a number of publicly available databases have set out to collect and store

protein–protein interaction data. Protein–protein interactions have been retrieved from six major databases,

integrated and the results compared. The six databases (the Biological General Repository for Interaction

Datasets [BioGRID], the Molecular INTeraction database [MINT], the Biomolecular Interaction Network

Database [BIND], the Database of Interacting Proteins [DIP], the IntAct molecular interaction database [IntAct]

and the Human Protein Reference Database [HPRD]) differ in scope and content; integration of all datasets is

non-trivial owing to differences in data annotation. With respect to human protein–protein interaction data,

HPRD seems to be the most comprehensive. To obtain a complete dataset, however, interactions from all six

databases have to be combined. To overcome this limitation, meta-databases such as the Agile Protein Interaction

Database (APID) offer access to integrated protein–protein interaction datasets, although these also currently

have certain restrictions.
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The nature of protein–protein
interaction data

Proteins do not act independently but in a network

of complex molecular interactions. Therefore, it is

important to identify physical interactions between

proteins. Different experimental techniques have

been developed to measure physical interactions

between proteins; these methods vary considerably,

not least in terms of the data they produce.

To give some examples, two widely used methods

adapted for high-throughput approaches are the yeast

two-hybrid (Y2H) system1 and affinity purification

followed by mass spectrometry (AP-MS).2

The Y2H system assays whether two proteins

physically interact with each other (Figure 1).

Genetically modified yeast strains are used to

express a ‘bait’ and a ‘prey’ protein, which, if they

interact, trigger the expression of a reporter gene.

The method has been used for large-scale screening

studies of a variety of model organisms, including

yeast, fly and humans.

In an AP-MS experiment, a protein of interest is

fused to a protein fragment (the ‘tag’), which

allows its purification (Figure 2). This modified or

tagged protein is expressed and purified from the

cell extract using the tag — for example, by anti-

bodies binding specifically to the tag. Proteins

binding the tagged protein are co-purified and

subsequently identified by MS. The most widely

used variation of the AP-MS method is tandem

affinity purification followed by mass spectrometry

(TAP-MS). In TAP-MS, the protein of interest is

attached to a larger protein tag, which allows two
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consecutive affinity purification steps.2 Large-scale

TAP-MS experiments have been performed for

yeast and human proteins.3–5 Currently, several

variations of these two methods, as well as a

number of other methods, are used to identify

protein–protein interactions (PPIs).6–8

PPI datasets are often visualised as graphs.9,10

Proteins are represented as nodes, and interactions

as connections between nodes. For example, if the

interaction between two proteins is detected by a

Y2H experiment, we represent this physical inter-

action by an undirected connection between the

two nodes. In a more detailed representation, we

could make a distinction between bait and prey

proteins and use a directed connection to represent

the interaction between two proteins, using an

arrow pointing from bait to prey. The use of graphs

to describe the experimental results of AP-MS

protein interaction screens is not always as straight-

forward as for Y2H data. Due to the nature of an

AP-MS experiment, which identifies a whole

protein complex rather than pairwise interactions,

its results can be represented as a graph, using

either the matrix or the spokes model (Figure 3).

The matrix model assumes that all proteins of a

purified complex interact; therefore, in the

graph each protein is connected to each other.

The spokes model assumes no additional inter-

actions between proteins in a complex other than

between the tagged protein and each co-purified

protein.

Graph representation allows the data to be ana-

lysed using a graph-theoretical framework. Many

graph analysis algorithms have been applied to PPI

datasets; these approaches have been reviewed in

detail elsewhere.11–16

Figure 1. The yeast two-hybrid experiment. The yeast

two-hybrid system utilises the DNA binding domain and the

activation domain of a yeast transcription factor. The bait

proteins A and C are fused to a DNA binding domain, allowing

them to bind to a binding site in the promoter region of a

reporter gene. The prey protein B is fused to an activation

domain that can activate the expression of a gene. (a) Protein B

does not bind to protein A, therefore, the reporter gene is not

activated. (b) Protein B binds to protein C, thereby activating

the reporter gene.

Figure 2. An affinity purification experiment followed by mass

spectrometry. The protein of interest, F (red circle), is fused to

a protein fragment — the ‘tag’ (red rectangle). The tag allows

this protein to be purified biochemically. Proteins binding to the

tagged protein (blue) are co-purified, whereas proteins not

binding to protein F (yellow) are discarded. The purified

proteins can be released using enzymatic cleavage (scissors) or

other methods, depending on the nature of the tag. These

proteins are then identified by mass spectrometry.
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PPI databases

The primary resources for PPI data are individual

scientific publications. Several public databases

collect published PPI data and provide researchers

access to their curated datasets. These usually refer-

ence the original publication and the experimental

method that determined every individual inter-

action. Database designers choose to represent these

data in different ways, and the wide spectrum of

experimental methods makes it difficult to design a

single data model to capture all necessary experi-

mental detail. To overcome this problem, the

International Molecular Exchange (IMEx; http://

imex.sourceforge.net/) consortium was formed.

IMEx aims to enable the exchange of data and to

avoid the duplication of the curation effort. To that

end, an XML-based proteomics standard, termed

the proteomics standards initiative – molecular

interaction (PSI-MI) has been developed.17 At the

time of writing, however, no data had yet been

exchanged, and it was therefore necessary to

combine PPI data from all available databases using

the authors’ own scripts to obtain as comprehensive

a network as possible.

Here, the focus is on six databases: the Biological

General Repository for Interaction Datasets

(BioGRID),18 the Molecular INTeraction database

(MINT),19 the Biomolecular Interaction Network

Database (BIND),20 the Database of Interacting

Proteins (DIP),21 the IntAct molecular interaction

database (IntAct)22 and the Human Protein

Reference Database (HPRD)23 (see Table 1).

These databases report only experimentally verified

interactions.

DIP, IntAct and MINT are active members of

the IMEx initiative; the curation accuracy of these

three databases was assessed recently by Cusick

et al.24 HPRD focuses entirely on human proteins,

providing not only information on protein inter-

actions, but also a variety of protein-specific

information, such as post-translational modifi-

cations, disease associations and enzyme–substrate

relationships. One of the first interaction databases,

BIND, initiated in 2001 by the University of

Toronto and the University of British Columbia, is

part of the Biomolecular Object Network

Databank (BOND) and was subsequently acquired

by the company Thomson Reuters.

The following comparison is based on complete

sets of binary interactions that were downloaded

from the individual databases in May 2008. IntAct

Table 1. PPI databases

Database URL Proteins Interactions Publications Organisms

BioGRID http://www.thebiogrid.org 23,341 90,972 16,369 10

MINT http://mint.bio.uniroma2.it/mint 27,306 80,039 3,047 144

BIND http://bond.unleashedinformatics.com 23,643 43,050 6,364 80

DIP http://dip.doe-mbi.ucla.edu 21,167 53,431 3,193 134

IntAct http://www.ebi.ac.uk/intact 37,904 129,559 3,166 131

HPRD http://www.hprd.org 9,182 36,169 18,777 1

Figure 3. Spokes and matrix models. In order to represent

the complexes identified by the AP-MS methods as binary pairs,

the spokes model (a) or the matrix model (b) can be used. In

the spokes model, it is assumed that only the tagged protein

interacts with the other proteins in the complex. In the matrix

model, it is assumed that all proteins in a complex interact with

each other. While the spokes model probably leads to an

underestimate of the real interactions, the matrix model leads

to an overestimate.
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and MINT derive binary interactions from protein

complexes using the spokes model. No other data-

base provided any information on which model is

applied. Only ‘physical interactions’ are considered

here, although most databases also provide ‘genetic

interactions’ — that is, two non-essential genes that

lead to a non-viable phenotype if they are knocked

out simultaneously. Furthermore, interactions were

only accepted if a publication identifier was pro-

vided along with the interacting proteins.

Currently, the most comprehensive database in

terms of individual interactions is IntAct, with

almost 130,000 unique interactions from up to 131

different organisms. Despite these large numbers, it

cites only about 3,000 different publications.

Whereas IntAct seems to be concentrating on high-

throughput studies, HPRD also takes into account

small-scale publications. Although being restricted

to human proteins, it reports over 36,000 unique

interactions from more than 18,000 publications.

Only BioGRID cites a similar number of publi-

cations (16,369); it is also the second largest data-

base in terms of the number of unique interactions.

It should be noted that the databases examine pub-

lications in different depth, and that higher

numbers of publications do not necessarily involve

a higher curation effort.

The majority of known protein interactions

account for proteins from Saccharomyces cerevisiae

and Homo sapiens. Individual high-throughput

interaction screens were carried out for some other

organisms; these high-throughput studies usually

account for the majority of all known interactions

in the corresponding organism. By contrast, known

protein interactions for S. cerevisiae and H. sapiens

are dispersed over numerous publications. For this

reason, the number of interactions for humans and

yeast can vary considerably between different data-

bases, depending on their coverage of the literature.

Differences between the PPI
databases

Ideally, every database would extract the same inter-

actions from a given publication. Unfortunately,

this is not the case. Of the 14,899 publications

shared by at least two databases, 5,782 (39 per cent)

were reported with a different number of inter-

actions in different databases. For example, for the

publication reporting the most interactions,25 a

minimum of 18,877 (BIND) and a maximum of

20,800 interactions (DIP) were reported.

According to the abstract, the number of inter-

actions is 20,405, which, again, is different from

the number reported by all five databases that cite

this publication. In this case, the variation is pre-

sumably due to problems with identifier mapping.

Many databases use different identifiers, which do

not always map in a perfect one-to-one relationship

to the originally published identifiers. BioGRID

(20,220 interactions) uses the original gene identi-

fiers, but still lacks 185 interactions.

As a second example, using a Y2H screen, Rual

et al. detected 2,754 interactions between human

proteins.26 The authors compared their experimen-

tal findings with a literature-curated PPI network

of 4,076 interactions. This resulted in a combined

network of 6,438 interactions. HPRD (2,371 inter-

actions), IntAct (2,671 interactions) and MINT

(2,463 interactions) report only experimentally

detected interactions for this reference. BioGRID

reports 6,295 interactions for this study, of which

2,594 quote Y2H as the detection method. These

also overlap with the interactions reported by the

other databases for this reference. The remaining

3,895 interactions quote affinity capture as the

detection method and possibly refer to the

literature-curated interactions.

For a number of other publications, differences

can be explained by different confidence sets or

thresholds27,28 or differences in the application of

the matrix or spokes model. Often, no obvious

reason for different numbers of interactions could

be found.

Integration of PPI data

Integration of data from the different databases is

not trivial. Although many databases provide their

interactions in the proteomics standards initiative-

molecular interactions (PSI-MI) format, its con-

trolled vocabulary is often not used or is used
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incorrectly. Furthermore, a variety of different gene

or protein identifiers are used, even within some of

the databases. Although a gene can give rise to

several different proteins (due to alternative spli-

cing), we mapped all identifiers to Ensembl gene

identifiers to avoid any ambiguities. This procedure

is based on mapping tables obtained from

UniProt.29 Only interactions in which both pro-

teins could be mapped to an Ensembl gene identi-

fier were considered for further analysis.

After unifying all identifiers for eukaryotic

organisms, the four model organisms Caenorhabditis

elegans, Drosophila melanogaster, S. cerevisiae and H.

sapiens showed the highest number of interactions

(Table 2). The focus here has been on PPIs in

eukaryotes, but the reader should note that high-

throughput datasets also exist for a variety of pro-

karyotes, including Escherichia coli, Campylobacter

jejuni and Helicobacter pylori. Previous studies

reported little overlap between individual PPI data-

sets.15 Likewise, there is little redundancy in the

combined set of interactions (Table 2). Between 1

per cent (D. melanogaster) and 18 per cent (H.

sapiens) of all interactions are reported by more

than one publication. Interestingly, the proportion

of interactions that were reported by different

methods reaches up to 25 per cent for yeast and 42

per cent for humans (Table 2). Although many

small-scale publications apply more than one

method to confirm an interaction, this number is

most likely an overestimate, because databases use

different nomenclature and spelling variations to

describe experimental detection methods.

Therefore, more interactions appear to be con-

firmed by several methods than really are.

As mentioned above, databases focus their cura-

tion efforts on different publications. Consequently,

only a subset of all protein interactions can be

found in more than one database (Table 2). These

range from 42 per cent of yeast interactions and 51

per cent of human interactions to 72 per cent of fly

interactions and 86 per cent of worm interactions.

To assess these differences in more detail, the

relative pairwise overlap of human protein inter-

actions between databases was calculated (Table 3).

All databases have their highest relative overlap

when compared with HPRD, which reports the

most interactions. High overlaps were also found

between DIP and BioGRID (55 per cent) and

between MINT and IntAct (59 per cent). Even the

most abundant database (HPRD), however, covers

only two-thirds of all reported human protein

interactions.

Meta-databases

None of the existing PPI databases provides an

exhaustive dataset. Therefore, some groups have set

up meta-databases that provide protein interaction

data extracted and integrated from other databases.

Currently, one of the most comprehensive meta-

database appears to be the Agile Protein Interaction

Database (APID).30 APID extracts interactions from

the six databases described above, mapping all pro-

teins to UniProt identifiers.29 Via a web interface,

the user can query for proteins of interest. APID

references the database from which an interaction is

derived and provides the related information avail-

able in the original database, such as the detection

method and the publication identifier. In addition,

Table 2. Redundancy of PPIs. The total number of proteins and interactions (that could be mapped to Ensembl gene identifiers), as well

as the number of interactions reported by more than one publication, more than one method or more than one database, is shown.

Relative numbers were obtained through normalisation with the total number of interactions

Species Proteins Interactions >1 publication >1 method >1 database

C. elegans 3,173 5,300 668 (13%) 155 (3%) 4,536 (86%)

D. melanogaster 7,529 24,811 198 (1%) 298 (1%) 17,904 (72%)

H. sapiens 10,397 51,308 9,358 (18%) 21,036 (41%) 26,263 (51%)

S. cerevisiae 5,806 69,059 12,037 (17%) 17,219 (25%) 29,053 (42%)
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APID incorporates biological information from

various other databases, such as the Gene

Ontology31 and Pfam databases.32 Unfortunately, a

download of the complete dataset is currently not

possible due to licensing issues. APID is generally

in good agreement with the results of the authors’

data integration. For the time being, APID seems a

good source of interactome data.

Several other meta-databases exist, but these

usually focus on a single organism33 or incorporate

various other types of interactions, such as computa-

tionally predicted protein interactions and co-citation

of proteins.34 For a comprehensive list of available

databases, the reader is referred to the Pathguide.35

Conclusions

PPI databases not only report their data in different

ways, using different ontologies, but their curators

also report different PPIs when examining the same

publication. In addition, all databases include differ-

ent publications. It is therefore not surprising that

every database reports different PPIs. The pairwise

overlap among databases analysed here reaches up

to 75 per cent, but always falls short of a perfect

100 per cent. Similar results were obtained in

related studies.12,24 Until a data exchange between

databases is implemented, a comprehensive set of

interactions can only be obtained through data

integration of several databases. Meta-databases,

such as APID, provide access to more comprehen-

sive datasets, but do not always allow the download

of their complete data. Furthermore, by their very

nature, meta-databases will always be less up to date

than the original databases.

PPI databases have improved greatly over the past

couple of years, and important issues, such as data

exchange, are being currently addressed by some of

the databases described here. An important step

towards increasing the number and quality of

protein interaction data would be to introduce a

submission requirement — as, indeed, already exists

for sequence and microarray data. These data have

to be submitted to public databases prior to publi-

cation in a scientific journal, which ensures data

availability and consistent annotation, and enables

researchers to utilise the data with greatest efficiency.
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