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Abstract
In recent years, there has been an explosion in the range of software available for annotation enrichment analysis.

Three classes of enrichment algorithms and their associated software implementations are introduced here.

Their limitations and caveats are discussed, and direction for tool selection is given.
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What is enrichment analysis and
why is it useful?

The final stage of many proteomic, genetic or

metabolic analyses is the production of a list

of ‘interesting’ biomolecules. Prominent examples

of these include lists of genes ranked by differential

or co-expression investigated in microarray exper-

iments, lists of single nucleotide polymorphism

(SNP)-containing genes ranked by p-values deter-

mined by genetic association to a phenotype of

interest through a genome-wide association study,

and computationally generated lists of putative tran-

scription factor or miRNA targets ordered by

probability. Unfortunately, such ranked lists tend to

be devoid of structure and lacking in context. It is

difficult to determine how, or even if, the genes

and their protein products interact with each other

or influence the biological processes under study,

or even what their ‘normal’ behaviour might be,

by just reviewing them. Extensive exploration of

literature and databases is required to answer even

rudimentary questions such as: ‘What does this

gene and its protein product do? How and where

does it do it? Does it make sense to see it on this

list? Does it interact with other genes/proteins?

Does its behaviour change during disease, disorder or

therapy?’ Manual gene-by-gene searches, especially

across large lists of genes, are overwhelming and

frequently unachievable tasks. Equally, ranked lists

of genes do little to replicate the intricate reality of

biology, where genes and proteins work together

in complex interacting groups to create functioning

systems. Focusing on a collection of interesting

genes or proteins as a whole is not only more

biologically intuitive, but also tends to increase

statistical power and reduce dimensionality.

Understanding the functional significance of such

lists of genes, although overwhelming, is therefore a

critical task.

Annotation enrichment (sometimes called

pathway analysis1) has become the go-to secondary

analysis undertaken on collections of genes ident-

ified by high-throughput genomic methods owing

to its ability to provide valuable insight into the

collective biological function underlying a list of

genes. By systematically mapping genes and pro-

teins to their associated biological annotations (such

as gene ontology [GO] terms2 or pathway mem-

bership) and then comparing the distribution of

the terms within a gene set of interest with the

background distribution of these terms (eg all genes

represented on a microarray chip), enrichment

analysis can identify terms which are statistically
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over- or under-represented within the list of inter-

est.3 It is inferred that such enriched terms describe

some important underlying biological process or

behaviour. For example, if 10 per cent of the genes

on the ‘interesting’ list are kinases, compared with

1 per cent of the genes in the human genome (the

population background), by using common statisti-

cal methods (eg x2, Fisher’s exact test, binomial

probability or hypergeometric distribution), it is

possible to determine that kinases are enriched in

the gene list and therefore have important functions

in the biological study undertaken.3

Three classes of enrichment
algorithms — what does each
one do?

The field of enrichment research has exploded,

growing from 14 tools in 20051,4 to 68 cited in a

recent survey.5 This field is still very much under

active development, however, with no one ‘perfect’

method or gold standard protocol guaranteed to give

the best results. For this reason, it is useful to under-

stand the current state of the art, the caveats and pitfalls

associated with certain analyses and how to identify

software tools best suited to a particular dataset.

Owing to the large number of available enrich-

ment tools, it is helpful to use the nomenclature of

Huang et al.5 when discussing enrichment software.

Huang et al. classify enrichment tools as belonging

to at least one of three algorithmic categories:

singular enrichment analysis (SEA), gene set

enrichment analysis (GSEA) and modular enrich-

ment analysis (MEA).

The most traditional enrichment approach, SEA,

iteratively tests annotation terms one at a time

against a list of interesting genes for enrichment.

An enrichment p-value is calculated by comparing

the observed frequency of an annotation term with

the frequency expected by chance; individual terms

beyond some cut-off (eg p-value �0.05) are

deemed enriched.5 This is a simple, useful and

easy-to-use protocol. Tools belonging to this cat-

egory (eg Onto-Express,6 FuncAssociate 2.0,7

GOStat,8 BiNGO9 and EasyGO10) predominantly

rely on the GO4,11 as a source of annotation terms.

As SEA considers each term independently,

however, it ignores the hierarchical relationships

between GO terms.11 This frequently results in

output lists of enriched terms numbering in the

hundreds because similar terms are treated as though

they were unique, leading to redundancy. Semantic

redundancy between terms can also dilute an

enriched biological concept due to difficulties in

identifying enrichment between different, yet

semantically similar, terms.4,5 A drawback to any

method relying on a single knowledge or annotation

source is that it will also inherit limitations of that

source. In the case of the GO, although it currently

contains 29,365 terms,12 it is a work in progress13

and its annotations remain incomplete and biased

towards well-studied genes.14

GSEA-based methods, such as GSEA/P-GSEA15,16

and GeneTrail,17 are similar in character to SEA,

but they consider all genes during analysis, not just

those deemed as interesting or significant by some

metric or threshold. GSEA methods work best in

scenarios in which phenotypic classes or time

points are assayed (eg tumour versus normal tissue,

or treated versus untreated state) because the

method requires a quantitative biological value

(such as fold change or degree of differential

expression) for each gene in order to rank them. A

maximum enrichment score (MES) is calculated

from the ranked list of all genes in a given annota-

tion category and an enrichment p-value deter-

mined by comparing the ranked annotation MES

to randomly generated MES distributions.5,16

Simply, GSEA determines if those genes sharing a

particular annotation (eg a biochemical pathway),

known as a gene set, are randomly distributed

throughout the larger ranked gene list and therefore

not significantly associated with any phenotypic

class, or if they tend to be over-represented towards

the top or bottom of the longer ranked gene list,

indicating an association between the gene set (ie

genes sharing the annotation of interest) and the

phenotypic classes under study.

Although many different annotation categories

can be used by GSEA methods, including biologi-

cal function (eg GO terms), physical position (eg

chromosomal location), regulation (eg co-expression)
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or any other attribute for which prior knowledge is

available, like SEA methods they are still considered

one at a time and treated independently, with no

consideration given to the semantic relationships

which may exist between the different annotation

terms. At times, it may be difficult to assign a

single value to a gene; for example, multiple SNPs

within a single gene may have differing p-values, or

comparisons may have been made across many time

points or conditions. In such instances,

GSEA-based methods may be inappropriate. It

should be noted, however, that recent modifications

to GSEA methods to cope with genome-wide

association study-derived datasets have been pro-

posed,18–21 and a novel GSEA method using

mixed-effects models has successfully identified

enriched GO terms in a time-course microarray

dataset.22,23 In addition, highly ranked genes (ie

those with larger fold changes) contribute greatly

to the enrichment p-value, the underlying assump-

tion being that genes with greater deregulation (ie

fold changes) contribute more to the observed phe-

notype. This assumption does not always hold true

in real biology, however.5

The final algorithmic class defined by Huang

et al., MEA, is the only class to use the relationships

that may exist between different annotation terms

during enrichment. As mentioned previously,

doing so can reduce redundancy and prevent the

dilution of potentially important biological con-

cepts. A number of tools (eg Ontologizer,24 topGO25

and GeneCodis26) claim to have improved sensi-

tivity and specificity by considering relationships

between GO annotation terms in this manner. The

use of composite annotation terms may therefore

be able to provide biological insight otherwise

lacking in analyses treating single terms as indepen-

dent entities.5 These tools, however, still focus on a

single annotation source — in this instance, the

GO. Many additional types of information or attri-

butes can be used during enrichment analysis and

by incorporating a range of annotation types in

concert, analysis can be more effective as increased

coverage increases analytical power and can provide

a more complete view of the biology underlying a

gene set of interest.

Functional enrichment tools such as DAVID3,27

and the recently released ConceptGen28 do exactly

that, not only considering relationships between

annotation terms (both within an annotation source

and between different sources), but also integrating

annotation terms from a range of sources, including

those representing protein–protein interactions,

protein functional domains (eg InterPro), disease

associations (eg OMIM), pathways (eg KEGG,

BioCarta), sequence features, homology, expression

patterns (eg GEO) and literature. By grouping

similar, redundant and homogeneous annotation

content from the same or different resources into

annotation groups, the burden of associating similar

and redundant terms is reduced, and the biological

interpretation of gene sets moves from a gene-

centric to a biological-module-centric approach,

which may provide a better representation of a bio-

logical process.4,5 These tools have also invested in

novel visualisation methods to support effective

exploration of results.28 One consideration when

using this seemingly comprehensive analysis proto-

col is that ‘orphan’ genes (ie terms without strong

relationships to other terms) may be overlooked,

requiring such genes to be investigated manually

through other methods.5

Understanding and overcoming
limiting factors aids effective analysis

Regardless of which specific tool or algorithmic

class is used in an annotation enrichment pro-

cedure, a number of potentially limiting factors

should be considered. First, the quality of any

enrichment result is highly dependent on the

quality of input. For SEA and MEA methods, this

is the gene list defined as being interesting. For

GSEA, it is the pre-computed annotated gene sets.

In both instances, the possibility for bias and error

needs to be guarded against. For example, a prede-

fined gene set based on a curated pathway (eg

KEGG) is likely to be incomplete. Identifying

annotations that apply to all genes in a genome or

on a microarray, and that are also appropriate, is

also difficult. For example, chromosomal location

is an annotation common to all genes, but this is
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unlikely to be an appropriate, and informative

annotation for most analyses (barring cancer). Tools

such as WhichGenes29 and ConceptGen28 can be

used to aid gene set identification. In addition, for

enrichment to be successful, it must be possible to

map any gene or protein identifier used as input to

the corresponding annotation source used by a par-

ticular enrichment method. In many instances, the

NCBI EntrezGene database identifiers are recog-

nised and recommended for use. It is advisable to

check each tool’s preferences,5 however, due to the

large impact that identifier selection can have on

results. For example, annotation content can be sig-

nificantly enriched using the DAVID Gene Concept

procedure to re-agglomerate gene identifiers. This

procedure can increase the number of GO terms

assigned to genes by up to 20 per cent compared

with annotations in each individual source.30

Secondly, the selection of an inappropriate

background set can also heavily influence an

enrichment protocol, resulting in concepts and

genes appearing to be more significant than they

actually are, or appearing significant (ie biased)

when the bias is actually due to methodology

rather than biology. It is imperative to think care-

fully about the ‘world’ from which an interesting

subset of genes was taken. A good rule of thumb

for background selection is only to include those

genes or proteins that have a chance of making it

into the ‘interesting’ set and exclude all others.4,31

For example, during a microarray experiment the

background set of genes should include only those

genes for which corresponding probes are present

on the chip. Without a corresponding probe, it is

impossible for a gene to be identified as interesting,

no matter what post-processing is undertaken.

Finally, assumptions of independence and random

selection are frequently incorrect for biological

systems; for example, many genes display dependent

and correlated behaviour (discussed in detail by

Tilford and Siemers31). Additionally, our current

understanding, and therefore annotations, are also

biased towards more extensively studied genes, pro-

teins, pathways and disorders.14 The mixed-effect

model recently proposed by Wang et al. to identify

annotation enrichment in time-course data,

however, claims to model dependency accurately

between genes.22 As a footnote, it has been noted

that — due to these limitations — enrichment

analysis should be considered as an exploratory pro-

cedure rather than a definitive statistical solution,

since the user is heavily involved in result assessment,

in determining if results presented to them are of

use, and in determining useful p-value cut-offs.5

Conclusions and additional resources

By focusing on sets of genes that share biologically

important attributes, enrichment analysis can

support the discovery of biological functions that

may otherwise have been missed by moving the

analysis of biological function from the level of

single genes to that of biological processes

(reviewed by Curtis et al.1 and Khatri and

Draghici4). Currently, no enrichment method has

been identified as perfectly suitable under all analy-

sis scenarios, and no gold-standard test set exists for

effective comparative testing, making tool selection

confusing.5

This unavoidably brief paper, and the citations

and descriptions of tools within, aims to familiarise

the user with the different enrichment resources

available, the advantages and limitations of each and

methodologies to ensure that analyses undertaken

are comprehensive. A wealth of additional guidance

is available for the interested reader. A detailed

introduction to the field is provided by Tilford and

Siemers,31 while the statistical protocols underlying

different approaches are comprehensively expanded

upon and their performances compared by

Ackermann and Strimmer.32 For those requiring

hands-on guidance, the protocols paper by Huang

et al.3 offers a tutorial-style introduction to enrich-

ment using DAVID. An excellent review of cur-

rently available tools and remaining challenges in

the field of enrichment is also provided by Huang

et al.;5 it includes a useful set of questions to help

guide software selection depending on individual

needs and experience, as does the paper of Tilford

and Siemers.31 It is also recommended to try a

number of different tools on the same dataset to

enable direct comparison by the user.11
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