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Abstract

Neurofibromatosis type-1 (NF1), resulting from NF1 gene loss of function, is characterized by an increased risk of
developing benign and malignant peripheral nerve sheath tumors (MPNSTs). Whereas the cellular heterogeneity of
NF1-associated tumors has been well studied, the molecular heterogeneity of MPNSTs is still poorly understood.
Mutational heterogeneity within these malignant tumors greatly complicates the study of the underlying
mechanisms of tumorigenesis. We have explored this molecular heterogeneity by performing loss of heterozygosity
(LOH) analysis of the NF1, TP53, RB1, PTEN, and CDKN2A genes on sections of 10 MPNSTs derived from 10 unrelated
NF1 patients. LOH data for the TP53 gene was found to correlate with the results of p53 immunohistochemical
analysis in the same tumor sections. Further, approximately 70% of MPNSTs were found to display intra-tumoral
molecular heterogeneity as evidenced by differences in the level of LOH between different sections of the same
tumor samples. This study constitutes the first systematic analysis of molecular heterogeneity within MPNSTs
derived from NF1 patients. Appreciation of the existence of molecular heterogeneity in NF1-associated tumors is
important not only for optimizing somatic mutation detection, but also for understanding the mechanisms of
NF1 tumorigenesis, a prerequisite for the development of specifically targeted cancer therapeutics.
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Introduction
Neurofibromatosis type 1 (NF1) (MIM 162200) is an au-
tosomal dominant disorder affecting approximately 1 in
4,000 people worldwide [1]. NF1 is characterized by vari-
able clinical features including benign cutaneous neuro-
fibromas and plexiform neurofibromas in addition to
pigmentary abnormalities comprising café-au-lait mac-
ules, Lisch nodules of the iris, and axillary and inguinal
freckling. Learning difficulties and orthopedic problems
also occur in up to 50% of individuals with NF1 [2]. Ma-
lignant complications are a less frequent but potentially
much more serious manifestation of NF1. These often
lead to premature death in individuals with NF1 and
include malignant peripheral nerve sheath tumors
(MPNSTs) which occur in approximately 10% to 15% of
patients [3], pheochromocytomas, brain tumors, optic
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gliomas, gastrointestinal stromal tumors, and breast car-
cinomas [4].
The NF1 gene, located at 17q11.2, encodes neurofibro-

min, a 2818 amino acid protein which is expressed at a
high level in the brain and central nervous system [4].
Neurofibromin is a highly conserved RAS-GAP which
negatively regulates Ras signaling [5-7] and the multiple
downstream effectors activated by Ras, such as the PI3K
and the MAPK (mitogen-activated kinase) signaling cas-
cades that are involved in regulating cell proliferation,
DNA synthesis, and apoptosis. The loss of neurofibro-
min function due to NF1 gene inactivation therefore
results in the constitutive activation of many of these
down-regulated systems leading to increased cell prolif-
eration and an increased likelihood of tumorigenesis.
In line with the tumor suppressor role of the NF1

gene, mutational inactivation of both NF1 alleles is
required to change the phenotype of the cell: a first
(inherited) mutation in one NF1 allele is followed by the
somatic loss of the remaining wild-type NF1 allele via a
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number of different mutational mechanisms. Loss of
heterozygosity (LOH), for example, represents a com-
mon form of loss of function of the wild-type NF1 allele
in somatic cells such as Schwann cells which form
neurofibromas, owing to the presence of an inherited
NF1 gene lesion on the other allele. [8,9] LOH is known
to be caused by a number of mechanisms including dele-
tions of genetic material and the loss of a whole chromo-
some by nondisjunction with or without reduplication.
However, mitotic recombination has been demonstrated
to be the most common event accounting for LOH in
NF1-associated tumors [9].
In addition to NF1 gene mutations, a number of other

loci are also known to be involved in the process of NF1
tumorigenesis. Thus, additional somatic mutations have
been identified in NF1-associated MPNSTs that affect
several genes encoding proteins involved in cell cycle
regulation: TP53, RB1, CDKN2A [10-17], and PTEN
[18]. Alterations in TP53 and RB1 have also been identi-
fied in plexiform neurofibromas [19] and more recently
in cutaneous neurofibromas from patients with a high
tumor burden [20]. These genetic alterations act so as to
promote cellular proliferation as a consequence of
CDKN2A loss and to bring about abnormal cell cycle ar-
rest mediated by DNA damage and aberrant apoptosis
as a consequence of the loss of TP53 and RB1.
Tumor heterogeneity is a notoriously challenging as-

pect of cancer biology, responsible for introducing very
significant complexity into both the study of the under-
lying mechanisms of tumor development and the thera-
peutic context [21-23]. Tumor heterogeneity has been
modeled using a number of different biomarkers to iden-
tify the extent of heterogeneity at the cellular, molecular,
and genome architectural levels [24,25]. Cellular hetero-
geneity is a well-established feature of NF1-associated
tumors, particularly in benign cutaneous neurofibromas
in which only the Schwann cells harbor NF1 mutations,
although the tumors also contain fibroblasts, mast cells,
perineural cells, and axons [26]. The tumor microenvir-
onment is also known to impact upon the development
of NF1-associated tumors, with mast cells a likely con-
tributor to neurofibroma development [27]. As with be-
nign neurofibromas, malignant NF1-associated tumors
are known to be heterogeneous in nature, invariably
containing diverse subpopulations of tumor cells, includ-
ing benign and malignant cells, fibroblasts, and infiltrat-
ing inflammatory cells [26]. At the molecular level,
malignant tumors are recognized as being highly hetero-
geneous in terms of both their accumulated genetic
mutations and their phenotypic [CDKN2A, TP53, RB1]
expression profiles [13,15,16].
Analysis of molecular and cellular heterogeneity using

a variety of methods promises to generate important new
insights into tumor biology as well as the underlying
processes of tumorigenesis. This is the first study to com-
prehensively determine the level of molecular heterogen-
eity in a panel of MPNSTs derived from patients with
NF1. It is hoped that this will provide further under-
standing of the molecular heterogeneity of malignant
tumors in the context of the underlying background
cellular and genome architectural heterogeneity. Fur-
thermore, such studies may allow both therapeutic
sensitivities and the efficacy of potential drug treat-
ments to be comprehensively evaluated.

Materials and methods
Patients
Ten unrelated patients, all exhibiting the NIH diagnostic
criteria for NF1 (reviewed by Upadhyaya [1]) were ana-
lyzed in this study. Germline mutations have been
detected in 7 of the 10 patients (Table 1); however, full
clinical details were not available from all patients. A
total of 10 MPNSTs derived from these patients were
carefully and individually macrodissected to yield clean
sections which were in turn further subdivided. The
number and size of the various sections and subsections
were mainly dependent upon the size of the original
tumor (Table 1 and Additional file 1: Supplementary
Figure S1). DNA was extracted from all sections of tumor
samples and corresponding constitutional (blood) sam-
ples by means of the phenol/chloroform extraction
method [28]. This study obtained approval from the ap-
propriate institutional review boards. All patients in-
volved provided their informed consent.

LOH analysis
LOH analysis was performed on all sections derived
from the 10 MPNSTs and their corresponding lympho-
cyte DNA samples with a panel of fluorescently tagged
microsatellite markers located within the five genes
investigated: NF1 (D17S799, J1J2, IVS27, EV120, IVS38,
30NF1-1, D17S798, D17S250, and D17S1822) [28], TP53
(D17S796, TP53 Inv, TP53 c.72, TP53 Exon 6, D17S938,
and D17S804) [29,30], RB1 (D13S118, D13S153, D13S917,
RB1.2, RB1.26, and D13S119) [31,32], CDKN2A (D9S1751,
D9S942, D9S304, and D9S748) [33,34], and PTEN
(D10S2491, D10S215, exon 3, and exon 8) [35]. Mo-
lecular heterogeneity was assessed by noting differ-
ences in the level of LOH between different sections
of the same tumor sample.
Markers were analyzed by means of an ABI 3100 gen-

etic analyzer using Genotyper and Genescan software
(Applied Biosystems, Warrington, UK) [28]. Allele loss
in a tumor was scored if the area under one allelic peak
in the tumor section was reduced relative to the other
allele, after correction of the relative peak areas against
the corresponding lymphocyte DNA sample. For LOH
to be confirmed, at least two adjacent markers were



Table 1 Analysis of molecular heterogeneity with respect to NF1, TP53, RB1, CDKN2A, and PTEN in 10 MPNSTs

Tumor Tumor number Tumor section Tumor subsection NF1 TP53 RB1 PTEN CDKN2A

1 T196.22 A 1 LOH LOH LOH LOH LOH

2 LOH LOH LOH LOH LOH

3 LOH LOH 50% LOH LOH LOH

4 1 2 1 2 1 2 1 2 1 2

5 LOH LOH 50% LOH LOH LOH

6 LOH LOH LOH LOH LOH

7 LOH LOH LOH LOH LOH

8 LOH LOH 50% LOH 50% LOH LOH

9 1 2 LOH 1 2 LOH LOH

10 1 2 LOH 1 2 LOH LOH

B 1 LOH 50% LOH 50% LOH 50% LOH 1 2

2 LOH 50% LOH 50% LOH 50% LOH 1 2

3 LOH 50% LOH 50% LOH 50% LOH 1 2

4 LOH 50% LOH 50% LOH 50% LOH 1 2

5 50% LOH 50% LOH 50% LOH 50% LOH 1 2

6 LOH 50% LOH 50% LOH 50% LOH 1 2

7 LOH 50% LOH 50% LOH 50% LOH 1 2

8 LOH 50% LOH 50% LOH 50% LOH 1 2

9 LOH 50% LOH 50% LOH 50% LOH 1 2

10 LOH 50% LOH 50% LOH 50% LOH 1 2

C 1 LOH LOH 50% LOH LOH 1 2

2 LOH LOH 50% LOH LOH 1 2

3 LOH LOH 50% LOH LOH 1 2

4 LOH LOH 50% LOH LOH 1 2

5 1 2 LOH 1 2 50% LOH 50% LOH

6 LOH LOH 50% LOH LOH 50% LOH

7 LOH LOH 50% LOH LOH 50% LOH

8 LOH LOH 50% LOH LOH 50% LOH

9 LOH LOH 50% LOH LOH 50% LOH

10 LOH LOH 50% LOH LOH 50% LOH

D 1 LOH LOH 50% LOH LOH 50% LOH

2 LOH LOH 50% LOH 50% LOH 1 2

3 LOH LOH 50% LOH LOH LOH

4 LOH LOH 50% LOH LOH LOH

5 LOH LOH 50% LOH LOH LOH

6 LOH LOH 50% LOH LOH LOH

7 LOH LOH 50% LOH LOH LOH

8 LOH LOH 50% LOH LOH LOH

9 LOH LOH 50% LOH LOH LOH

10 LOH LOH 50% LOH LOH LOH

E 1 LOH 1 2 1 2 1 2 1 2

2 LOH 1 2 1 2 50% LOH 1 2

3 50% LOH 1 2 1 2 1 2 1 2

4 LOH 1 2 1 2 50% LOH 1 2

5 1 2 1 2 1 2 0% 1 2

6 50% LOH 1 2 1 2 50% LOH 1 2

7 50% LOH 1 2 1 2 0% 1 2
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Table 1 Analysis of molecular heterogeneity with respect to NF1, TP53, RB1, CDKN2A, and PTEN in 10 MPNSTs
(Continued)

8 LOH 1 2 1 2 1 2 1 2

9 LOH 1 2 1 2 1 2 1 2

10 LOH 1 2 1 2 1 2 1 2

2 T516 A 1 LOH 50% LOH 1 2 1 2 1 2

2 1 2 50% LOH 1 2 1 2 1 2

B 1 50% LOH 50% LOH 1 2 1 2 1 2

2 50% LOH 50% LOH 1 2 1 2 1 2

C 1 1 2 1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2

3 T517 A 1 LOH 50% LOH 1 2 1 2 1 2

2 LOH 50% LOH 1 2 1 2 1 2

B 1 LOH 50% LOH 1 2 1 2 1 2

2 1 2 1 2 50% LOH 1 2 1 2

4 T518 A 1 1 2 50% LOH 50% LOH 1 2 1 2

2 LOH 1 2 50% LOH 1 2 50% LOH

B 1 LOH 50% LOH 1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2

C 1 1 2 1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2

5 T519 A 1 1 2 50% LOH 50% LOH 1 2 1 2

2 50% LOH 50% LOH 50% LOH 1 2 1 2

B 1 50% LOH 50% LOH 1 2 1 2 1 2

2 50% LOH 50% LOH 50% LOH 1 2 1 2

6 T521 A 1 LOH 1 2 1 2 1 2 1 2

2 LOH 1 2 1 2 1 2 1 2

B 1 LOH 1 2 1 2 1 2 1 2

2 LOH 1 2 1 2 1 2 1 2

7 T522 A 1 LOH 1 2 1 2 1 2 1 2

2 LOH 1 2 1 2 1 2 1 2

8 T523 A 1 LOH 1 2 1 2 1 2 1 2

2 LOH 1 2 1 2 LOH 1 2

9 T524 A 1 LOH 1 2 1 2 1 2 LOH

2 LOH 1 2 1 2 1 2 LOH

10 T525 A 1 LOH 1 2 1 2 1 2 1 2

2 LOH 1 2 1 2 1 2 1 2

B 1 LOH 1 2 1 2 1 2 LOH

2 LOH 1 2 1 2 1 2 LOH

LOH denotes samples in which approximately 100% LOH of the second allele has occurred; 50% LOH denotes samples in which approximately 50% of the second
allele was lost; 1 2 denotes samples in which the marker was clearly present in the heterozygous state, denoting the absence of LOH. The results represent the
summed data for all markers analyzed at each genetic loci (NF1, TP53, RB1, CDKN2A and PTEN).
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required to exhibit a reduced signal by at least 50%.
Samples were deemed to display LOH when complete
(approximately 100%) loss of the second allele was evi-
dent. Samples exhibiting between approximately 50%
and 99% loss of the second allele were termed ‘50%
LOH’, whereas a marker which demonstrated no LOH
(approximately 0% to 49%) was simply classed as hetero-
zygous (‘1 2’).
p53 Immunohistochemical analysis
Immunohistochemical (IHC) analysis of p53 was per-
formed on five sections derived from five MPNSTs
(T196.22, T516, T517, T518, and T519) which were
found by LOH analysis to exhibit molecular heterogen-
eity with respect to the TP53 gene (Table 1). Immuno-
histochemistry was performed using a standard protocol
[9]. Briefly, 5-μm-thick slides were cut from blocks of
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formalin-fixed paraffin-embedded MPNST tissue using a
microtome (Leica Microsystems, Wetzlar, Germany).
Deparaffination was completed in ethanol and xylene
prior to antigen recovery which was performed using
boiling citrate buffer. Endogenous peroxidase was blocked
with 3% hydrogen peroxide, while goat serum (Vector
Labs, Peterborough, UK) was used in the blocking step.
A 100-μl pre-diluted mouse anti-p53 monoclonal pri-
mary antibody (Launch Diagnostics, Kent, UK) was used
as supplied and added to each slide and incubated at 4 °C
overnight. Each slide was then incubated with 100 μl sec-
ondary antibody (Vector Labs) for 30 min and subse-
quently with 100 μl ABC peroxidase (Vector Labs) for
30 min. DAB (Vector Labs) was added to each slide to
allow the color to develop. Slides were dehydrated and
mounted with DPX (VWR).

Results
LOH analysis
Varying sizes of 10 MPNST tumors, derived from 10 dif-
ferent individuals, were independently sectioned, and the
LOH of five genes (NF1, TP53, RB1, CDKN2A, and
PTEN) was analyzed for each section. Germline muta-
tions were detected in 7 of the 10 patients. Although this
is a relatively small sample, the germline mutation does
not appear to correlate with the level of molecular het-
erogeneity. LOH of the NF1 gene was identified in all 10
tumors. In addition, LOH was noted for the TP53 gene
(five tumors: T196.22, T516, T517, T518, and T519), the
RB1 gene (four tumors: T196.22, T517, T518, and T519),
the CDKN2A gene (four tumors: T196.22, T518, T524,
and T525), and the PTEN gene (two tumors: T196.22
and T523) (Table 1, Figure 1, and Additional file 2: Sup-
plementary Table S1). In only 2 of the 10 tumors (T521
and T522) was LOH not found in at least one of the four
loci other than NF1 (i.e. TP53, RB1, CDKN2A or PTEN).
Further, 7 of the 10 tumors (70%) were found to exhibit
intra-tumoral molecular heterogeneity with respect to at
least one gene, as defined by a varying level of LOH
within the same tumor (T196.22, T516, T517, T518,
T519, T523, T525; i.e., between the subsections). Add-
itional cytogenetic analysis was not available to confirm
the LOH identified.
Some of the larger tumors (e.g., T521) were found to

exhibit no molecular heterogeneity, whereas some smal-
ler tumors (e.g., T523) displayed molecular heterogeneity
albeit only with respect to a specific gene. Additionally,
five of the tumors analyzed in this study were known to
be high grade (T196.22, T517, T519, T522, and T525).
Four of these high grade tumors in our cohort exhibited
molecular heterogeneity (viz. T196.22, T517, T519, and
T525), whereas such heterogeneity was absent in the re-
maining sample graded as high (T522). For the remaining
samples, details on the grade of tumor were unknown.
The extent of LOH in the NF1 gene was also found to
vary between sections of the same tumor. Thus, some
sections displayed LOH over the entire NF1 gene and
surrounding regions, whereas other sections of the same
tumor only exhibited LOH within a portion of the NF1
gene. Details of the extent of LOH in each tumor are
given in Additional file 2: Supplementary Table S1.

p53 Immunohistochemical analysis
IHC analysis of the tissue distribution of p53 was found
to correlate broadly with the results of the LOH analysis
(Figure 2). Thus, different sections of the five MPNST
tumors analyzed were found to display differences in
staining for p53 that closely matched the presence or ab-
sence of LOH for the TP53 gene (Table 1). For example,
sections A, C, and D of T196.22 displayed complete
LOH of the TP53 gene in the majority of MPNST sec-
tions, and this was reflected in higher p53 expression as
seen by IHC in these samples (Figure 2B,C). Conversely,
section E (T196.22) showed no p53 expression by IHC
peroxidase staining, and this section was found not to
display any LOH (Figure 2D). Additionally, section B
(T196.22) showed lower levels of staining (Figure 2B)
than that of T196.22 section C (Figure 2C) but more
than that of T196.22 section E (Figure 2D). These results
correlate with those of the LOH analysis in which sec-
tion T196.22 section B was found to have 50% LOH, but
section T196.22 section C had 100% LOH and section E
(T196.22) had no LOH. p53 Positivity by IHC has previ-
ously been reported in 60% of MPNSTs, whereas neuro-
fibromas are p53 immunonegative [36].

Discussion
Cellular heterogeneity is a well-known complication in
the analyses of NF1-associated tumors. By contrast, het-
erogeneity at the molecular level in NF1-associated
tumors has scarcely been addressed. In this study, we set
out to determine the extent of molecular heterogeneity
within and between 10 MPNSTs, derived from 10 unre-
lated NF1 patients, by determining the differences in the
levels of LOH at the NF1, TP53, RB1, CDKN2A, and
PTEN gene loci. The results of this study indicated that
70% of the MPNST tumors studied exhibit molecular
heterogeneity between sections of the same tumor sam-
ple. This heterogeneity was especially evident in the case
of those sections from the same tumor which were ana-
tomically adjacent to each other prior to dissection but
which had nevertheless been found to differ with respect
to the degree of LOH. Indeed, some sections were found
to be entirely devoid of LOH for all five gene loci ana-
lyzed but were located beside sections exhibiting com-
plete LOH for one or more of these genes (e.g., T196.22
section A4). Prior to dissection, in a number of the
MPNST tumor sections under study, there were clearly



Figure 1 LOH patterns in NF1, TP53, and PTEN within sections A to E derived from T196.22. All sections represents the overlaid LOH results
from all five sections (A to E) illustrating the different levels of gene-specific LOH observed within a single tumor. The results presented are
representative of LOH at each genetic loci and are derived from individual markers analyzed at each of these loci (NF1 - J1J2, TP53 - Alu1, and
PTEN - D10S2491).
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defined centrally located tumor portions (T196.22 sub-
section 5 A to E, T516 section B, T518 section B). These
areas corresponded to the sections in which different
levels of LOH and subsequently TP53 staining were iden-
tified (T196.22 section B5, T196.22 section C5, T196.22
section E5; Figure 2).
The observation that TP53 LOH correlates directly

with the p53 expression, as demonstrated here, has been
observed in previous studies [37,38]. However, the pre-
cise relationship between TP53 LOH and p53 protein
expression remains unclear since some studies have iden-
tified p53 expression in tumors which have no TP53 LOH.
This may be explicable in terms of the presence of two
TP53 alleles, one mutant and the other wild-type in a
given cell type, resulting in the production of both wild-
type and mutant p53 protein. As a consequence, p53
may be detected by IHC even in the absence of p53 func-
tion. This suggests that in the context of evaluating
tumor heterogeneity, IHC analysis is unlikely to be as re-
liable as the other molecular genotyping methods. IHC
analysis could therefore be replaced by more accurate
methods including AQUA [39,40] and tissue analysis
with multiplex quantum dots (QD) [25] to yield a digital
map of molecular and cellular heterogeneity to improve
the sensitivity of detection and the prediction of a thera-
peutic response.
p53 is associated with malignant transformation in

NF1-associated tumors [18] and LOH of the TP53 gene
was identified in 5 of the 10 tumors under study (Table 1,
Additional file 2: Supplementary Table S1). TP53 has
also been found to manifest in intra-tumoral molecular
heterogeneity with respect to its mutation in other tu-
mor types, including breast cancer [41,42]. In pancreatic
cancer, molecular heterogeneity is evident in cells with
different capacities for initiating metastasis [43] suggest-
ing that molecular heterogeneity may well prove to be



Figure 2 Immunohistochemical analysis of p53 on section 5 B,C and E (T196.22). (A) Positive control; breast carcinoma localized positive
stain for p53. (B) T196.22,B5; slight localized positive p53 staining in a few cells. (C) T196.22,C5; localized positive and negative staining for p53. (D)
T196.22,E5; Lack of p53 immunohistochemical staining.
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the rule rather than the exception. If the molecular het-
erogeneity identified in this set of tumors was to emerge
as relevant to MPNST development, we may have to re-
vise our view not only of MPNST tumor biology, but also
of the basic processes underlying MPNST tumorigenesis.
It might be assumed that, owing to the large size of

some of the MPNST tumors, they would be divisible
into a larger number of sections thereby allowing mo-
lecular heterogeneity to be assessed more clearly. How-
ever, the size of the tumor was not found to correlate
with the level of molecular heterogeneity detected. It is,
however, possible that intra-tumoral molecular hetero-
geneity could be related in some way to the grade of
tumor, at least for those tumor samples analyzed here. A
larger study is clearly warranted in order to determine
whether these results could be replicated in a larger set
of NF1-associated MPNSTs.
The pathological diagnosis of an MPNST is usually

held to represent the ‘gold standard’ for the purposes of
analysis and currently relies on the examination of not
just one but a number of different sections. The results
of this study, and from other previous studies on solid
tumors [44-46], are broadly illustrative of the importance
of careful dissection in the analysis of large tumors and
suggest that in the interest of diagnostic accuracy, mo-
lecular analysis should be performed on several tumor
sections alongside a pathological diagnosis. The clear
implication for those studies that involve microarray
analysis is that replicates across several sections would
be advisable.
The results of this study therefore have important
implications for molecular studies of NF1-associated
tumor specimens. For example, although molecular tech-
niques currently employed in mutation detection in large
solid tumors are adequate for identifying and characteriz-
ing the underlying molecular and genetic aberrations, the
potential for molecular heterogeneity means that a single
dissected piece of tumor should not be assumed to be
representative of the tumor as a whole; as a consequence,
some somatic mutations may well be missed.
Although MPNSTs only develop in approximately 15%

of NF1 patients, they represent a frequent cause of lethal
progression of the NF1 phenotype. The prognosis for
individuals diagnosed with an MPNST is usually very
poor; 5-year survival rates in patients with advanced non-
resectable and/or metastatic MPNSTs that have exhibited
a limited response to chemotherapy are in the order of
20% to 50%, while 10-year survival rates are as low as
7.5% [47]. Treatment options for MPNSTs are currently
rather limited, and complete surgical excision with clear
margins is the recommended therapy for MPNSTs. A lar-
ger study is required in order to determine the full extent
of molecular heterogeneity within MPNSTs in NF1 pa-
tients. However, such a study will be laborious and time-
consuming to set up especially as MPNSTs are quite rare.
Genomic instability and high intra-tumoral genetic

heterogeneity may synergize so as to accelerate the evolu-
tionary processes within the tumor leading to the develop-
ment of resistance to cytotoxic and targeted anticancer
drugs. Improvements clearly need to be made to the
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treatment regimes for patients with MPNSTs. The re-
sults from this study indicate that while drugs can be
developed in vitro and in vivo animal studies that would
be capable of targeting the genes involved in the genesis
of MPNSTs, the efficacy of these drugs is likely to be
somewhat limited unless the cellular, molecular, and
architectural heterogeneity of the tumor are considered
alongside the tumor microenvironment.
This study represents the first systematic analysis of

molecular heterogeneity in MPNSTs associated with
NF1. The molecular heterogeneity evident at a number
of different gene loci indicates that there is an urgent
need not only for the integration of molecular and
morphological biomarkers in cancer diagnosis, but also
for the development of specific treatments for NF1-
associated MPNSTs.

Additional files

Additional file1: Supplementary figure 1. Example of macrodissection
of tumor 1 (T196.22). The tumor was divided into five large sections (A to
E). These sections were then subdivided into 10 further sections (1 to 10).

Additional file 2: Supplementary table 1. Extent of LOH analysis in
5 genes (NF1, TP53, RB1, CDKN2A and PTEN) in 10 MPNSTs.
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