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estimated that about 20% of birth defects are caused by 
genetic factors [3]. There are in general three general 
categories of genetic causes: chromosomal abnormali-
ties, single-gene defects, and multifactorial influences [4]. 
Efforts have been made to identify genetic causes of birth 
defects [5]. The role of rare variants in disease genet-
ics has been unraveled with the development of whole 
exome sequencing (WES) and whole genome sequencing 
(WGS) technologies. In this review, we exclusively focus 
on the statistical methods that can be applied to de novo 
single nucleotide variants (SNVs) and small insertions/
deletions (indels). They are referred to as de novo variants 
(DNVs), within the purview of birth defects research. 
Compared to other rare variants, DNVs represent an 
extreme case, given their very low occurrence and large 
effect size. On average, an individual may carry approxi-
mately 100 DNVs in the genome, with about 1 variant 
affecting the exome [6–9]. DNVs have been considered 
strong supporting evidence for pathogenicity based on 
the American College of Medical Genetics and Genomics 
classification guidelines and provide important insights 
into the genetic cause of diseases [10].

Introduction
Birth defects are structural changes present at birth that 
can affect one part or several parts of the body, such as 
the heart and brain [1]. They pose significant challenges 
for both individual health and public health. Learning 
about the causes of birth defects is crucial for improving 
the quality of support and resources to help individuals 
and families affected. It is estimated that around 240,000 
infants globally do not survive past their first 28 days 
every year due to birth defects, with these conditions also 
leading to the deaths of an additional 170,000 children 
aged one month to five years [2]. There are several pos-
sible causes of birth defects, including genetic changes, 
adverse reactions to medications, exposure to substances 
or chemicals, or complications during pregnancy. It is 

Human Genomics

*Correspondence:
Hongyu Zhao
hongyu.zhao@yale.edu
1Department of Biostatistics, Yale School of Public Health, 60 College 
Street, New Haven, CT 06520, USA
2Department of Genetics, Yale School of Medicine, New Haven, CT  
06520, USA

Abstract
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Mounting evidence has pinpointed the importance of 
conducting DNV analyses to identify risk genes for birth 
defects such as congenital heart disease (CHD), congeni-
tal diaphragmatic hernia (CDH), orofacial cleft (OFC) 
[9, 11–15], and some early onset neurodevelopmental 
disorders such as autism [16–19]. In the study of WES 
data from 2,645 proband-parent trios by the Pediatric 
Cardiac Genomics Consortium (PCGC), Jin et al. found 
that DNVs accounted for 8% of cases and inferred that 
DNVs in about 440 genes contributed to CHD [13]. In 
the largest genetic exploration of coding DNVs affected 
by nonsyndromic OFCs to date, Bishop et al. analyzed 
the contribution of coding DNVs from WGS to OFC 
risks in 756 proband-parent trios and identified multiple 
promising genes that had not been reported before, such 
as ZFHX3 and ZFHX4 [9]. In 2021, Qiao et al. conducted 
an analysis of coding DNVs sequenced from 827 CDH 
proband-parent trios. They confirmed an overall enrich-
ment of damaging DNVs in constrained genes (ExAC 
[20] pLI score > 0.5) and identified LONP1 and ALYREF 
as candidate CDH-associated genes with a false discovery 
rate (FDR) of 0.05 [15]. These results shed new insights 
into the disease etiology of birth defects, call upon the 
application of statistical methods that can analyze the 
enrichment of DNV in other birth defect cohorts, and 
motivate the development of novel statistical methods to 
improve the power of identifying genes associated with 
birth defects.

In this review, we first summarize the general workflow 
of conducting DNV analysis, including data preprocess-
ing, mutation rate calculation, and DNV enrichment 
analysis. Next, we introduce several integrative statistical 
methods that can further incorporate DNVs with other 
types of variants or biological information to boost the 
power of risk gene identification (Table  1). In addition, 
we discuss several potential future directions for DNV 
analysis in birth defects.

General workflow of DNV analysis
In this section, we summarize the general workflow of 
DNV analysis into three steps: data preprocessing, muta-
tion rate calculation, and enrichment analysis. An illus-
tration of the general workflow from step 1 to step 3 is 
shown in Fig. 1.

Step 1: data preprocessing
After samples are sequenced via WES or WGS, DNVs 
need to be called from unmapped sequencing reads. In 
2021, Diab et al. published a detailed protocol for ana-
lyzing germline DNVs from WES [21]. Briefly, two steps 
are needed before trio DNV analysis. In the first step, 
binary alignment/map (BAM) files are generated from 
unmapped sequencing reads. In the second step, vari-
ants are called based on the GATK best practices [22]. 

Compared with other types of variant calling, DNVs are 
required to be jointly called in trios, where pedigree files 
for trios will be generated. For each trio, VCF files are 
generated based on GATK best practices and further pro-
cessed, including steps such as splitting multi-allelic sites 
and left normalization by BCFtools [23]. Then, the gener-
ated variants are annotated and filtered based on minor 
allele frequencies and alternate allele ratios in probands 
and parents. After the above analyses, all candidate DNV 
calls are manually verified using the integrative genomics 
viewer (IGV) [24]. Before proceeding with enrichment 
analysis, variants are further classified into loss of func-
tion (LoF), damaging missense (Dmis), and other groups 
using annotation tools such as ANNOVAR [25, 26]. Step-
by-step procedures can be referred to in the original pro-
tocol [21].

Step 2: mutation rate calculation
After variant calling is completed, the next step is to esti-
mate the per gene mutation rate. In 2012, Neale et al. [27] 
developed a statistical model for estimating the expected 
mutation rate in the exome. They assess the mutation 
rates of all possible trinucleotide contexts within the 
intergenic region of the human genome. They consid-
ered variations in two ways: comparing the fixed genomic 
difference to chimpanzees and baboons [28], and varia-
tions identified through the 1000 Genomes Project [29]. 
The mutation rate for the exome was estimated by sum-
ming up the mutation rates for all bases captured by the 
exome, and that of each functional annotation class was 
determined by summing the mutation rates of variants 
belonging to that class.

In 2014, Samocha et al. extended Neal’s framework to 
calculate each gene’s expected rate for different types 
of mutation [30]. There are two steps of the framework. 
First, the sequence context is used to estimate the prob-
ability of each base mutating to another base. Second, 
based on the change of trinucleotide, the outcome of each 
type of base change is identified, including synonymous, 
missense, nonsense, essential splice site and frameshift 
mutations. These probabilities are added up to obtain a 
mutation rate per gene for different types of mutations. 
The input includes bed files where each row represents a 
specific genomic region from exome capture, trio infor-
mation, and sequencing coverage of WES samples that 
can be calculated using Mosdepth [31]. More specifically, 
bed files should be first converted into sequence data that 
contain four base information (ATCG) and subsequently 
transformed into a probability table. Then, annotations 
are added to the table using ANNOVAR. Next, the per-
base mutation rate is adjusted by sequencing depth. 
For each base, the number of trios with 10x or greater 
coverage is counted. The numbers are adjusted with a 
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coefficient ranging from 0.9 to 1, which assigns greater 
weights to bases with higher sequence depths.

Step 3: enrichment analysis of DNVs
Enrichment analysis of DNVs aims to find elevated or 
excessive gene burden due to DNVs. The goal is to assess 
whether there is a significant accumulation or enrich-
ment of DNVs within specific genes. Statistical methods 
for enrichment analysis test whether the observed DNVs 
occur more frequently than expected by chance in a gene.

Current methods for DNV enrichment analysis are 
mostly developed based on a Poisson framework, which 
assumes the number of observed DNV counts follows a 
Poisson distribution. Some methods focus only on DNVs, 
and others can incorporate information from other 
types of variants or other biological information. Among 
methods that focus on DNVs, Ware et al. proposed one 
of the first models based on the statistical framework of 
Samocha et al. to analyze coding DNVs and named the 
R package of the model DenovolyzeR [8, 30]. The frame-
work assumes the number of observed DNV counts in a 
single gene (m ) follows a Poisson distribution, and a cer-
tain type of variants (e.g. LoF) with the expected counts 
calculated as two times the product of sample size and 
mutation rate of the corresponding type. It uses a Poisson 
exact test to compare the observed counts of the type of 
variants with the expected counts:

 m ∼ Poisson (λ) ,

where λ  is the mean of the distribution.
DenovolyzeR provides a pre-calculated mutability table 

from Samocha et al. that can be used to conduct four 
types of enrichment analyses [8, 30]. These include (1) 
assessment of genome-wide burden of different types of 
DNVs, (2) assessment of burden of genes with multiple 
DNVs, (3) assessment of whether a single gene carries 
an excess number of mutations, and (4) assessment of 
whether a gene set is enriched with DNVs. Details of the 
analysis step can be found in the original protocol [8].

DeNovoWEST (De Novo Weighted Enrichment Simu-
lation Test) is another method proposed for DNV enrich-
ment analysis that uses a simulation-based statistical 
test to detect gene-specific enrichment of DNVs [32]. It 
includes two components: an overall enrichment test that 
includes all nonsynonymous DNVs and a clustering test 
that assesses the enrichment of missense variants. The 
overall enrichment test is a simulation-based test that 
calculates the probability of observing the severity of a 
gene higher than expected, considering all possible num-
bers of DNVs per gene:
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P (S ≥ s) ≈

250∑

k=0

P (S ≥ s|k )P (K = k)

,where S  denotes the gene severity score, s  denotes the 
observed severity score, and K  is the number of DNVs 
in the gene. The severity score of each DNV is an empiri-
cally estimated positive predictive value of being patho-
genic based on its predicted protein consequence, CADD 
score, and selective constraint against heterozygous pro-
tein truncating variants in the gene, and it is calculated 
by summing the severity scores of mutations within this 
gene. The upper limit of k is chosen as 250 as this number 
is far larger than the observed DNV counts in real data. 
When k = 0,1, P (S ≥ s|k )P (K = k)  can be calculated 
analytically. When k ≥ 2, P (K = k) can be calculated 
analytically under the null assumption that DNVs follow 
a Poisson distribution, and P (S ≥ s|k)  can be estimated 
using a simulation-based approach. The estimated value 
of the probability P (S ≥ s)is defined as pEnrich.

The missense enrichment test is performed the same 
as the overall enrichment test, except that only missense 
variants are included in the score calculation. The pro-
portion of the simulated scores for missense variants that 
are larger than the observed scores is defined as pMisEn-
rich. For the clustering test, the clustering distance is 
determined as the geometric mean coding distance 
between all potential pairs of DNVs [33]. The observed 
distance of missense DNVs is then compared with the 
expected distance from simulated missense DNVs, and 
the probability of missense variants being as or more 
clustered than the null model is defined as pClustering 

[34]. pMisEnrich and pClustering are then combined 
using Fisher’s method to obtain pMEC.

pMEC = combined (pMisEnrich, pClustering).
The final testing p-values for DeNovoWest are obtained 

by taking the minimum of pEnrich and pMEC. Bonfer-
roni correction is used to account for multiple testing 
comparisons.

pDeNovoWEST = min(pEnrich, pMEC).

Integrative analysis of DNVs and other types of 
variants
Studies on DNVs often lack statistical power due to 
their relatively low frequency. Efforts have been made to 
increase statistical power by incorporating other biologi-
cal information.

To integrate other types of variants with DNVs, He et 
al. proposed a hierarchical Bayesian framework named 
the transmission and de novo association (TADA) test 
to incorporate the information from both inherited and 
DNVs [17]. Assuming subjects can be classified as car-
rying two alleles, TADA denotes alleles with deleterious 
mutation as a, and alleles without as A, and γ  denotes 
the relative risk of Aa compared with AA. TADA tests the 
null hypothesis of γ = 1 against the alternative hypoth-
esis of γ �= 1 for all genes. TADA has gained success in 
its application in multiple studies [35–39]. However, it 
requires external information or prior knowledge to esti-
mate hyperparameters. In 2017, Nguyen et al. adopted 
a fully Bayesian framework to extend TADA and named 
their method extTADA [40]. However, both TADA and 

Fig. 1 General workflow of DNV analysis. In step 1, sequencing data from trios are preprocessed and annotated. In step 2, mutation rates are calculated 
for each gene. In step 3, enrichment analysis is conducted to identify risk genes
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extTADA do not consider the recessive mode of inheri-
tance in their models.

In 2021, Li et al. proposed a TADA-R model built upon 
TADA to include the recessive disease model, including 
both the cases of homozygotes and compound heterozy-
gotes [41]. By applying TADA-R to CHD, they identified 
15 significant genes, many of which were not implicated 
in previously published studies.

Multiple methods have been proposed to incorporate 
functional annotation to boost the statistical power of 
risk gene identification. fitDNM [42] is a method that 
tests the excess de novo load of genes by deriving score 
statistics from a retrospective likelihood that incorpo-
rates functional information quantitatively rather than 
classifies variants into different functional categories like 
TADA. They integrated the probabilities of a mutation 
functionally impacting the gene when characterizing the 
distribution of DNVs in an affected individual and esti-
mated these probabilities using scores that are predicted 
externally. Specifically, they defined the probability that 
the mutation is damaging to protein function when char-
acterizing the distribution of DNVs at a locus, and set the 
probability of LoF variants predicted by SnpEff [43] as 1, 
the probability of missense variants as their PolyPhen-2 
[28] scores, and that of synonymous variants as 0. It was 
observed that fitDNM had increased power compared 
to Poisson tests and TADA tests with DNVs only in the 
simulation studies and real data analyses.

Similar to fitDNM, Hu et al. developed a likelihood 
ratio test named VARPRISM that incorporates variant 
prioritization to test associations of DNVs [44]. Although 
VARPRISM shares a few features with fitDNM, it utilizes 
different strategies to incorporate functional informa-
tion. VARPRISM employs the likelihood ratio of a vari-
ant being damaging versus neural by incorporating a 
conservation-controlled amino acid substitution matrix 
(CASM) from VAAST 2.0 [45], while fitDNM requires 
probabilities of given mutations being damaging from 
an external resource instead of being estimated directly 
from data. Hu et al. showed that VARPRISM had better 
power than fitDNM with two simulated datasets.

Efforts have also been made to integrate information 
from noncoding regions. TADA-A is a statistical frame-
work that models mutation counts for each position in 
the genome with Poisson distribution [46]. The model 
can combine genomic annotation information from both 
coding and non-coding regions. Furthermore, TADA-
A supports meta-analysis of multiple DNV studies by 
fitting a background mutation model for each study to 
adjust for potential technical factors. However, TADA-A 
only focuses on regulatory sequences close to genes with-
out considering those distal to transcription start sites. 
Also, it uses a linear model to combine information from 
different annotations, which may not be as powerful as 

using a non-linear model such as deep neural networks 
[46, 47].

HeartENN (Heart Effect Neural Network) is devel-
oped to identify noncoding DNV burden in CHD. It is 
extended from a deep learning-based framework for pre-
dicting the effects of non-coding variants named Deep-
SEA [48, 49]. HeartENN uses two neural network-based 
epigenomic models for human and mouse to predict 
genome-wide features based on heart-specific chromatin 
profiles. It was found that noncoding variants prioritized 
by HeartENN score (score ≥ 0.1) had significant enrich-
ment of known human CHD genes in CHD cases.

Integrative analysis of DNVs and other sources of 
biological information
Muti-trait methods
Extended from extTADA, Nguyen et al. developed a 
multi-trait Bayesian framework that can jointly analyze 
two traits named mTADA [50]. There are four hypotheses 
of the model: the gene is associated with neither trait (H0

), the gene is only associated with the first trait (H1), the 
gene is only associated with the second trait (H2), and the 
gene is associated with both traits (H3). The input data 
includes DNVs from the two cohorts and mutation rates 
of genes that can be calculated from an external frame-
work. The mTADA framework assumes the DNV counts 
for both traits follow Poisson distributions. When gene i 
is associated with trait k  (k = 1 or 2), the rate parameter 
in the Poisson distribution of its DNV count is multiplied 
by a relative risk parameter γik . γik  is assumed to follow 
a Gamma distribution with two parameters −

γk
 (mean 

relative risk) and βk  (to control the variance of the rela-
tive risk). Based on the four hypotheses, the correspond-
ing posterior probabilities for genes can be calculated 
from Markov chain Monte Carlo. However, the hyper-
priors of mTADA cannot be estimated from the data but 
rely on running extTADA first.

M-DATA is another multi-trait method that shares the 
same hypotheses as mTADA, but uses an Expectation-
Maximization algorithm to estimate parameters and infer 
risk gene status [51]. Compared to mTADA, this method 
uses an alternative way to characterize the effects of vari-
ants in different functional groups by linking variant-level 
and gene-level functional annotations to the relative risk 
of de novo genotype in the model. However, M-DATA 
requires users to preselect functional annotations before 
inputting the data and the algorithm cannot prioritize the 
functional annotations automatically. In addition, if the 
underlying functional annotation effect size is small, the 
power improvement of M-DATA compared with models 
without integrating functional annotations will be minor.

Quantifying the genetic association of DNVs between 
different genetic disorders is crucial because it can lead 
to a better understanding of the common molecular 



Page 7 of 11Xie et al. Human Genomics           (2024) 18:25 

foundations these disorders may share. While recent 
research has shown that certain genes and biological 
pathways are commonly affected by DNVs in various 
disorders, current methods tend to only consider genes 
that are statistically significant across multiple disor-
ders and cannot fully capture the complexity of genetic 
associations due to the polygenic nature of diseases and 
incomplete penetrance. EncoreDNM is a novel statisti-
cal method that quantifies the overall genetic sharing of 
DNVs between two disorders for different variant types 
[52]. Instead of using the Bayesian framework, it con-
structs mixed-effects Poisson regression models to evalu-
ate the correlation between two traits by providing the 
estimated correlation and p-values from statistical infer-
ence. This method is designed for testing global genetic 
architecture from DNV information across traits but 
does not provide a way to prioritize specific risk genes.

Network-assisted models
Risk genes identified from DNV studies have been shown 
to enrich in a protein-protein interaction  (PPI) network 
in the post-association analysis [50]. Two methods have 
been proposed to integrate network information with 
DNV data based on the assumption that neighboring 
genes are more likely to have similar disease association 
statuses.

DAWN is a post-association method that takes asso-
ciation results from TADA p-values and gene-gene inter-
action network estimated from expression data as input 
[53, 54]. In real data application, Liu et al. identified 333 
genes that plausibly affect autism risk by integrating asso-
ciation results from WES data and brain gene expression 
data [54].

Compared to DAWN, N-DATA is a model that does 
not require summary statistics results from other meth-
ods such as TADA [55]. It directly incorporates PPI 
information into the prior risk gene status based on the 
Poisson mixture distribution. After applying N-DATA 
to real DNV data from the CHD study, Xie et al. iden-
tified 46 candidate genes with at least one DNV in the 
study cohort. Among these genes, they discovered that 
some genes can only be identified after integrating the 
network information compared with existing genes that 
can be identified using the baseline model without inte-
grating the network. Visualizing the 46 genes in the PPI 
network, they found three main gene clusters formed 
that are biologically interpretable within the network, 
including one cluster related to transcriptional regula-
tion and early cell growth or differentiation processes, 
one cluster related to RNA splicing, and the third cluster 
related to protein synthesis. This further demonstrates 
the improvement of power after incorporating network 
information into the framework. In simulation studies, 
Xie et al. showed that the performance of N-DATA and 

DAWN was comparable when the signals in the network 
became stronger. However, with more and more network 
databases available, these methods did not provide a way 
to incorporate multiple types of interactions or to priori-
tize network information.

Integrative analysis of DNVs and expression data
VBASS is an integration model that incorporates bulk 
or single-cell expression data into the analysis of DNVs 
based on a Bayesian framework to discover risk genes 
[56]. It constructs a model of disease risk based on 
expression profiles, which are estimated using deep neu-
ral networks. It simultaneously trains the neural network 
weights and determines the parameters for the Gamma-
Poisson likelihood model of DNV counts based on both 
gene expression data and genetic data. Different from 
previous methods, it has the key assumption that the 
prior probability of a gene being a risk candidate should 
be specific at the gene level and could be inferred from 
gene expression information in relevant tissues. There-
fore, it takes the gene expression profiles as a vector into 
its probabilistic model and estimates parameters in the 
model using deep neural networks. In addition, it can 
also incorporate RNA sequencing data of relevant organs 
or cell types other than single-cell expression profiles. 
The performance of VBASS is highly dependent on the 
quality of the gene expression data. One practical issue 
that may hamper incorporating gene expression infor-
mation with DNVs in birth defect studies is that gene 
expression data of early developmental human organs are 
hard to acquire.

Future directions
Sex-aware models
There is accumulating evidence of sex bias in neurodevel-
opmental disorders. For instance, the diagnosed male-to-
female ratio of autism spectrum disorder (ASD) is three 
to four times. The female protective effect can be attrib-
uted to genetic, hormonal, and environmental factors. 
Limited studies have focused on studying the sex-based 
mechanisms related to DNVs.

In 2017, Turner et al. conducted sex-based enrich-
ment DNV analysis for neurodevelopmental disorders 
using ∼ 8,825 sequenced parent-offspring trios in denovo-
db as the discovery cohort [57, 58]. The discovery cohort 
identified 17 female-only significant genes, 18 male-only 
significant genes, and 19 shared significant genes. Among 
the 54 genes identified, 25 genes were replicated in the 
18,778 trios from the GeneDx cohort [58]. They not only 
observed significant enrichment on the X chromosome 
for females but identified potential sex-biased genes on 
autosomal chromosomes.

Similar to ASD, the prevalence and disease mechanism 
of birth defects can vary based on sex. For instance, a 
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review study surveyed 21 articles and confirmed a sig-
nificant gender variation in specific CHD subgroups [59]. 
These findings call for more DNV studies to test sex-
based enrichment in birth defects and suggest the poten-
tial to develop methods that can incorporate sex-specific 
mechanisms.

Integration of common variants with DNVs
Common variants have been shown to play an important 
role in complex human traits and diseases. Despite the 
success of identifying risk genes using rare variants such 
as DNVs, it is worth exploring the joint and different con-
tributions of both rare variants and common variants. 
Different hypotheses have been made about the contri-
bution of common and rare variants in complex human 
diseases. In a study on UK Biobank participants, Lu et 
al. found that rare pathogenic variants were more preva-
lent among patients with a low polygenic risk score (PRS) 
affected by diseases including breast cancer, colorectal 
cancer, type 2 diabetes, osteoporosis, and short stature 
[60]. Studies in ASD have also suggested that DNVs and 
common variants have addictive effects [61, 62]. Another 
study has suggested that genes harboring schizophrenia-
associated common variants and genes harboring DNVs 
both contribute to a core set of biologically important 
pathways and networks and the interactions of these 
genes may play a part in the risk of schizophrenia [63]. To 
better prioritize suggestive loci from OFC GWAS, Bishop 
et al. hypothesized DNVs near a GWAS peak could pro-
vide evidence in support of suggestive loci without reach-
ing formal significance [9]. After evaluating genes within 
1  Mb (± 500  kb) of both suggestive and significant loci 
from two recent OFC GWAS studies, they found 37 pro-
tein-altering DNVs were within these genes and several 
of them were located in genes implicating OFC develop-
ment. These results suggest a potential future direction 
in integrating common variants and DNVs in a general 
framework for birth defects.

Integration of epigenetic information with DNVs
Epigenetic changes modify the activation of certain genes 
without changing the DNA sequence, and they play an 
essential role in human development and disease etiology 
[64]. There are different classes of epigenetic information 
including DNA methylation, histone modification, and 
noncoding RNA action [65]. DNVs and epigenetic inter-
actions may interact to influence gene expression and 
contribute to disease development and progression [66]. 
For instance, DNV in the RING1 gene was identified in 
a 13-year-old girl with neurodevelopmental disabilities. 
RING1 encodes an E3-ubiquitin ligase that is involved 
in the epigenetic control of transcription during devel-
opment. The mutant RING1 retained catalytic activity 
but was unable to ubiquitylate histone H2A. The animal 

model suggested that animals with the same mutation 
or complete knockout of RING1 ortholog had defects in 
histone H2A ubiquitylation. RING1 mutations are likely 
a cause of human neurodevelopmental disorders where 
epigenetic effects play an important role [67].

Epigenetic regulation mechanisms have also been iden-
tified for CHD. For instance, researchers conducted a 
case-control study using exome sequencing to compare 
the occurrence of DNVs in genes related to the modi-
fication of histone proteins in individuals with severe 
CHD and those without the condition. They discovered 
an excess of DNVs in the genes responsible for writing, 
erasing, or reading H3K4 methylation or H2BK120 ubiq-
uitination required for H3K4 methylation. This indicates 
a potential pathogenic role of abnormal histone methyla-
tion in CHD [11, 68].

Studies have also shown that integrating genetic data 
with epigenetic information could better elucidate func-
tional insights of complex diseases [69–71]. For example, 
Andrews et al. found ASD-associated SNPs in GWAS are 
enriched for tissue-specific meQTLs in fetal brain and 
peripheral blood [70].

These studies collectively demonstrate the potential of 
integrating epigenetic information with DNVs to under-
stand the complex mechanisms underlying birth defects.

Integration of protein structural information with DNVs
Protein Data Bank (PDB) is a worldwide repository that 
stores 3D structural information about biological mac-
romolecules. Despite the efforts in experiments, only 
35% of human proteins are mapped to a PDB entry, and 
frequently, these entries represent only fragments or 
segments of protein sequences rather than the whole pro-
teins [72, 73]. The release of AlphaFold2 expands the cov-
erage of human protein structures to 98.5%, with 58% of 
them with high confidence [73]. The enlarged knowledge 
of protein structures can help us elucidate the molecular 
mechanisms of more variants. Leveraging protein struc-
tures from protein structure databases, three statistical 
methods - POINT [74], PSCAN [75], and POKEMON 
[76] - have been developed to characterize the associa-
tion between rare missense variants and phenotypes by 
integrating 3D spatial distance of variants within protein 
structures.

In addition to spatial distance, studies have also shown 
the importance of functional features, physiochemical 
features, interaction features, and others. Multiple stud-
ies showed differences of these features between patho-
genic missense variants and variants that are commonly 
found in the general population [77–79]. For instance, 
Iqbal et al. surveyed 40 structural features and found 
significant enrichment of multiple features under dif-
ferent categories in pathogenic missense variants from 
Clinvar [80] and HGMD [81] compared with general 
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population variants from gnomAD [78, 82] in 1,330 dis-
ease-associated genes. Chen et al. demonstrated that 
ASD cases exhibited an enrichment of de novo missense 
variants with disruptive impacts on protein interactions, 
and these variants often affect hub proteins and disturb 
their interactions [83]. These findings suggest the poten-
tial benefit of new methods that can integrate different 
categories of protein structural features such as second-
ary structures, residue exposure levels, and PPIs into the 
modeling of de novo missense variants.

Conclusions
In this review, we have summarized different statistical 
methods that can be applied to identify risk genes for 
birth defects by analyzing DNVs. Most of the methods 
characterize DNV counts within a gene using a Poisson 
distribution and estimate parameters using likelihood-
based approaches or Bayesian methods. The output of 
these methods includes p-values, posterior probabilities, 
Bayesian q-values, and others in correspondence to dif-
ferent modeling approaches. The identified risk genes by 
these methods can help guide future biological experi-
ments and clinical studies to further understand disease 
mechanisms. In the meantime, the complexity of genetic 
architectures, the interplay between genetic and envi-
ronmental factors, and the rare nature of DNVs pose 
challenges to the current field. Moreover, the methods 
that can integrate multi-layers of multi-omics data, such 
as integrating transcription and methylation data with 
DNVs remains in the early stage of development. There 
is also a critical need for improved computational models 
that can effectively incorporate the heterogeneity of birth 
defects, and for databases that can capture the pheno-
typic spectrum associated with DNVs in a standardized 
way. Addressing these challenges requires interdisciplin-
ary collaboration and the development of innovative ana-
lytical tools capable of dissecting the intricate biological 
networks underlying birth defects. To better elucidate the 
etiology of birth defects, we discussed several potential 
future directions, including incorporating information on 
sex, common variants, epigenetic information, and pro-
tein structures with DNVs. These future directions offer 
abundant possibilities, inviting researchers to unlock the 
mysteries of genetic etiology and developmental biol-
ogy for birth defects and paving the way for personalized 
therapeutic strategies.
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