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Abstract
The detection of gene–gene and gene–environment interactions associated with complex human disease or pharmacogenomic endpoints is

a difficult challenge for human geneticists. Unlike rare, Mendelian diseases that are associated with a single gene, most common diseases

are caused by the non-linear interaction of numerous genetic and environmental variables. The dimensionality involved in the evaluation

of combinations of many such variables quickly diminishes the usefulness of traditional, parametric statistical methods. Multifactor

dimensionality reduction (MDR) is a novel and powerful statistical tool for detecting and modelling epistasis. MDR is a non-parametric

and model-free approach that has been shown to have reasonable power to detect epistasis in both theoretical and empirical studies.

MDR has detected interactions in diseases such as sporadic breast cancer, multiple sclerosis and essential hypertension.

As this method is more frequently applied, and was gained acceptance in the study of human disease and pharmacogenomics, it

is becoming increasingly important that the implementation of the MDR approach is properly understood. As with all statistical methods,

MDR is only powerful and useful when implemented correctly. Concerns regarding dataset structure, configuration parameters and the

proper execution of permutation testing in reference to a particular dataset and configuration are essential to the method’s effectiveness.

The detection, characterisation and interpretation of gene–gene and gene–environment interactions are expected to improve the

diagnosis, prevention and treatment of common human diseases. MDR can be a powerful tool in reaching these goals when used

appropriately.
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Introduction

One of the biggest challenges in human genetics is identifying

polymorphisms, or sequence variations, that present an

increased risk of disease. In the case of rare, Mendelian single-

gene disorders, such as sickle-cell anaemia or cystic fibrosis,

the genotype to phenotype relationship is easily apparent,

because the mutant genotype is explicitly responsible for

disease. In the case of common, complex diseases, such as

hypertension, diabetes or multiple sclerosis, this relationship

is extremely difficult to characterise because disease is likely

to be the result of many genetic and environmental factors.

In fact, epistasis, or gene–gene interaction, is increasingly

assumed to play a crucial role in the genetic architecture of

common diseases.1–3 This challenge is equally present in

studies of pharmacogenomics.4

The dimensionality involved in the evaluation of

combinations of many such variables quickly diminishes the

usefulness of traditional, parametric statistical methods.

Referred to as the curse of dimensionality,5 as the number

of genetic or environmental factors increases and the number

of possible interactions increases exponentially, many

contingency table cells will be left with very few, if any,

data points. In logistic regression analysis, this can result in

increased type I errors and parameter estimates with very

large standard errors.6 Traditional approaches using logistic

regression modelling are limited in their ability to deal with

many factors and simultaneously fail to characterise epistasis
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models in the absence of main effects, due to the hierarchical

model-building process.7 This leads to an increase in type II

errors and decreased power.8 This is a particular problem with

relatively small sample sizes. Because sample collection is time-

consuming and expensive, the decreased power can make the

cost of effective studies prohibitive with traditional analytical

methods.

In order to address these concerns, a novel statistical

method, multifactor dimensionality reduction (MDR), was

developed. MDR reduces the dimensionality of multilocus

data to improve the ability to detect genetic combinations

that confer disease risk. MDR pools genotypes into ‘high-risk’

and ‘low-risk’ or ‘response’ and ‘non-response’ groups in

order to reduce multidimensional data into only one

dimension. Because it is a non-parametric method, no

hypothesis concerning the value of any statistical parameter

is made. It is also a model-free method, so no genetic

inheritance model is assumed.9

MDR was designed to detect gene–gene or gene–

environment interactions in datasets with categorical inde-

pendent variables, such as single nucleotide polymorphisms

(SNPs) and other sequence variations (insertions, deletions

etc), as well as environmental data that can be represented as

categorical variables. The endpoint, or dependent variable,

must be dichotomous such as case/control for studies of

human disease. Pharmacogenomics data can also be analysed

with MDR, in terms of ‘response/non-response’ or ‘toxicity/

no toxicity’. MDR is appropriate for any data type with

two distinct clinical endpoints.

MDR has been used to identify interactions in the absence

of any significant main effects in simulated data. In addition,

MDR has identified interactions in a variety of different real

datasets, including sporadic breast cancer,9 essential hyper-

tension,7 type 2 diabetes,10 atrial fibrillation,11 amyloid poly-

neuropathy12 and coronary artery calcification.13 Each

of these studies was the first of its kind to explore complex

interactions and thus needs to be replicated in additional

datasets. Studies with simulated data (of multiple models of

different allele frequencies and heritability) have also shown

that MDR has high power to identify interactions in the

presence of many types of noise commonly found in real

datasets (including missing data and genotyping error),

whereas errors such as heterogeneity (genetic or locus)

and phenocopy diminish the power of MDR.14 Additionally,

a mathematical proof has shown that, due to the relationship

between MDR and a naı̈ve Bayes classifier, MDR is optimally

efficient in discriminating between clinical endpoints

using multilocus genotype data.15

As with any type of statistical method, the effectiveness

of MDR is dependent on its proper implementation. Because

this method is used more frequently, and was gained accep-

tance in the study of human disease, it is becoming increas-

ingly important that the implementation of the MDR

approach is properly understood. Although the details of the

software package have been published,9,16 there are few

resources available to guide a user through the details of the

method itself. Concerns regarding dataset structure (including

sample size, balance of cases and controls and structure of

family data) must be considered before using MDR. Sub-

sequently, issues involving configuration parameters can affect

the results of analysis and must be carefully considered (such as

threshold values and cross-validation parameters). Performing

hypothesis testing on an MDR model requires permutation

testing. The proper execution of permutation testing in

reference to a particular dataset and configuration is essential to

the method’s effectiveness.

Method overview

The details of the MDR method have been published

previously.9,14,16 Briefly, MDR is described here and is shown

in Figure 1. In step one, the dataset is divided into multiple

partitions for cross-validation. MDR can be performed

without cross-validation; however, this is rarely done due

to the potential for over-fitting.17 Cross-validation18 is an

important part of the MDR method, because it tries to find

a model that not only fits the given data but can also predict

on future, unseen data. Since attainment of a second dataset

for testing is time-consuming and often cost-prohibitive,

cross-validation produces a testing set from the given data

to evaluate the predictive ability of the model produced. In

the case of ten-fold cross-validation, the training set comprises

90 per cent of the data, whereas the testing set comprises

the remaining 10 per cent of the data.

In step two, a set of n genetic and/or environmental factors

are selected. The n factors and their possible multifactor classes

are represented in n-dimensional space; for example, for two

loci with three genotypes each, there are nine possible two-

locus-genotype combinations. Then, the ratio of the number

of cases to the number of controls is calculated within each

multifactor class. Each multifactor class in n-dimensional space

is then labelled as ‘high risk’ if the cases to controls ratio meets

or exceeds some threshold (eg $1), or as ‘low risk’ if that

threshold is not exceeded, thus reducing the n-dimensional

space to one dimension with two levels (‘low risk’ and ‘high

risk’). Among all of the two-factor combinations, a single

model that has the fewest misclassified individuals is selected.

This two-locus model will have the minimum classification

error among the two-locus models. In order to evaluate the

predictive ability of the model, prediction error is estimated

using the testing set. Mathematically, the calculation of

prediction error and classification error is the same, but the

portion of the dataset used to calculate the metric is different.

Classification error is calculated on the training set, whereas

prediction error is calculated on the testing set. Both metrics

measure the number of individuals whose clinical endpoint

has been incorrectly specified by the MDR model.
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Figure 1. Summary of the general steps to implement the MDR method (adapted from Ritchie et al.9) In step one, the data are divided

into a training set and an independent testing set for cross-validation. In step two, a set of n factors is then selected from the pool of

all factors. In step three, the n factors and their possible multifactor cells are represented in n-dimensional space. In step four, each

multifactor cell in the n-dimensional space is labelled as high risk if the ratio of affected individuals to unaffected individuals exceeds a

threshold of one, and low risk if the threshold is not exceeded. In steps five and six, the model with the best misclassification error is

selected and the prediction error of the model is estimated using the independent test data. Steps one through to six are repeated for

each possible cross-validation interval. Bars represent hypothetical distributions of cases (left) and controls (right) with each multifactor

combination. Dark-shaded cells represent high-risk genotype combinations, whereas light-shaded cells represent low-risk genotype

combinations. White cells represent genotype combinations for which no data were observed.

Figure 2. Example of trend of classification error(2A) and prediction error(2B) when the number of loci in a model increases. The

classification error continues to get smaller and smaller, which indicates over-fitting. The prediction error will average around 50 per

cent and will drop for the best model.
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For studies with more than two factors, the steps of the

MDR method are repeated for each possible model size

(two-factor, three-factor etc), if computationally feasible. The

result is a set of models, one for each model size considered.

From this set, the model with the combination of loci and/or

discrete environmental factors that maximises the cross-

validation consistency and minimises the prediction error

is selected. Cross-validation consistency is a measure of the

number of times an MDR model is identified in each possible

90 per cent of the subjects.9 When cross-validation consistency

is maximal for one model and prediction error is minimal

for another model, statistical parsimony is used to choose the

best model. In model selection, it is crucial that prediction

error, and not classification error, be used. This is due to over-

fitting observed with classification error. As the number of

loci evaluated increases, the classification error will always

decrease. This phenomenon is shown in Figures 2A and 2B.

Hypothesis testing of this final best model can then be

performed by evaluating the magnitude of the prediction

error through permutation testing. Permutation testing

is described in more detail below (Figures 3 and 4).

More recently, less emphasis has been put on choosing

a single final model. Significance levels are assigned to each

model in the final set using the permutation-testing procedure,

then all significant models are reported. This new approach

attempts to use all information within the final set of models.

Figure 3. Flow chart of multifactor dimensionality reduction (MDR) procedure. The flow chart outlines the thought process that

must be completed for each data analysis with MDR. The steps in analysis vary with different dataset structures and characteristics,

and the flowchart guides the user through the decision-making process associated with any particular analysis.
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Because the end goal of the MDR method is hypothesis

generation, this approach may be preferred to reduce the

risk of false negatives.

Implementation

The original distributed version of MDR was available as

Linux, Solaris, or MAC OS command line software. Presently,

MDR software is being distributed in a Java software package

with a graphical user interface. The most current open-source

version is available at www.epistasis.org/mdr.html. MDR

has also been incorporated into the Weka-CG software,

which is available from the same website. In addition, a

‘C’ library is under development for users to plug MDR into

their own software packages.

Dataset issues

Figure 3 displays the steps considered in the MDR procedure

which will be covered in detail in the next four sections.

When designing complex genetic and pharmacogenomic

studies, the structure and size of a dataset is very important.

MDR can be easily applied to case-control and discordant

sibling pair study designs with little or no dataset modification.

Appropriate datasets for MDR will include any number of

genetic and environmental independent variables, along with

two distinct clinical endpoints (dependent variables). MDR

was originally designed to find interactions in studies of disease

risk, but it is applicable to any type of dataset with two

outcome levels. Efforts are underway to expand MDR

to include more than two endpoints, because this can be

done in other contingency table methods, but this is currently

a restriction in the MDR software.

For case-control data with unrelated individuals, the

order of individuals within the dataset is irrelevant because the

data will be randomly shuffled during cross-validation. If

the dataset consists of family/sibling data, or population-based

matched case-control data, the order of individuals is very

important. In such cases, the pairs must be kept together

within the dataset during cross-validation splitting. These

data should not be randomly shuffled during MDR analysis.

Pedigree data can be more complicated. Currently,

pedigrees must be converted to sibling pair data for

analysis, and there are several options to handle such datasets.

Figure 4. Flow chart of permutation testing procedure. The flow chart carries the user through the process of permutation testing

step by step, for any type of dataset analysis.
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The first option is to use all possible affected–unaffected

pairs from each family. This would allow individuals to be

represented multiple times in a dataset. The other option is to

consider only one randomly chosen affected–unaffected pair

from each pedigree. Currently, such datasets are handled on a

case by case basis, and further work is being done to determine

the appropriateness of each approach.

One particular type of pedigree data is triad data, where the

genotypes of the parents and an affected child are known.

In this case, ‘pseudo-controls’ must be created because this

approach will enable evaluation of the genotypes that were

transmitted to the affected child in comparison with genotypes

that were non-transmitted. This is done using allele data from

the two parents to create a new ‘child’ with the alleles that

were not transferred to the real affected child. For example,

if the mother had genotype ‘Aa’ for a particular gene, and the

affected child had received the ‘A’ allele, the pseudo-control

would receive the ‘a’ allele from the mother. This would

be done for every gene or SNP from both parents. Sibling

pairs would be created from the pseudo-control and affected

child for analysis.

Sample size requirements for MDR are not yet known.

A total sample size of 400 individuals has been shown to have

excellent power to detect two-locus interactions for a

specific set of epistasis models simulated in datasets of ten total

SNPs.9 Larger sample sizes are needed for higher-order

interactions. There is no theoretical formula for power

calculations for MDR, so more thorough empirical estimates

for sample size and power are needed. Preliminary simulation

studies have demonstrated that datasets smaller than 50 cases

and 50 controls show a decrease in power and, in addition,

begin to show an upward bias and inflated variance on the

prediction error estimates (unpublished data). Currently, more

simulation studies are underway to understand the influence

of different effect sizes and sample sizes on the power of

the MDR method.

If the dataset is not balanced in the number of cases and

controls, variations on the MDR configuration parameters

may be utilised. When analysing such a dataset, there are

several options. First, over-sampling or under-sampling might

be considered.9,19 Over-sampling involves randomly re-sam-

pling the under-represented class of individuals within the

dataset until the number of cases and controls are equal.

Secondly, under-sampling involves randomly removing

members of the over-represented class of individuals from

the dataset until it is balanced. There is no particular rule for

whether over-sampling or under-sampling is generally

preferable. Currently, research is being done with simulated

data to understand the implications of over- or under-

sampling. Initial observations indicate that either over- or

under-sampling is preferred over analysing an unbalanced

dataset with a greater than 2:1 ratio of cases to controls or vice

versa (manuscript in preparation). In many datasets, conver-

gence of results following over- and under-sampling

demonstrates a strong signal. If results vary widely among the

sampling datasets, it may indicate a weak signal within the

dataset (manuscript in preparation). There are risks associated

with using over- or under-sampling techniques. Over-

sampling can introduce false associations due to the particular

samples that were over-sampled. In addition, this can provide a

false sense of higher power. Under-sampling is a mechanism

by which data are thrown away. Again, this can lead to the

introduction of a false association, as a result of which samples

are thrown out, or this can reduce power due to a smaller

sample size. Thus, although these techniques are used in

the literature,19,20 they can be dangerous.

A potentially more conservative alternative that has been

proposed for analysing unbalanced data is adjusting the MDR

threshold value. The threshold value defines the ratio that

determines the disease risk status assignment to a particular

multi-locus genotype combination. Typically, this value is set

to ‘one’. The idea behind modifying this parameter was to

correct for the chance that a multifactor combination could

be assigned a classification of ‘high risk’ or ‘low risk’ simply

because of the numerical dominance of one disease class in

the dataset. When the threshold is adjusted, the calculation of

classification error will also need to be modified to accom-

modate the unbalanced data, such as using a balanced accuracy

metric. Further research is being conducted to understand

fully the implications of adjusting the threshold, as well as

addressing other potential solutions for unbalanced data,

such as new fitness functions.

MDR configuration parameters

After dataset formatting, the next step is to establish

configuration parameters for data analysis.16 There are several

parameters that must be individually established for each

new dataset. A random seed (which can be any random

number) must be selected for the random shuffle function used

for cross-validation. Random shuffling reduces the risk of

biasing cross-validation due to non-random ordering of

data. This same random seed should be used in permutation

testing, which will be discussed below. The next parameter

is the number of loci considered. This describes the

number of factors considered in each interaction model.

For example, if ‘loci considered’ is set from ‘2–5’, MDR

will test for all two-factor, three-factor etc, up to five-factor

interactions.

Currently, when dealing with missing data, MDR includes

this missing data as an additional genotype level. This is not

problematic when there is a small amount of missing data.

If there is a large percentage of data missing, however, it can

overwhelm the solutions, and MDR can model the missing

data more so than the genotype data. Thus, caution should

be used when a dataset has a large amount of missing data.

Instead, one can use data imputation techniques in the data
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manipulation module of the Java MDR software. Alternative

missing data solutions are currently being investigated.

The final configuration issue to consider is the cross-

validation parameter. There are multiple types of cross-

validation, each with its own advantages and disadvantages,

from ‘leave one out cross-validation’ (LOOCV) to ‘N’-fold

cross-validation to no cross-validation.18 LOOCV is where

only one individual is left out of the training group for model

validation. ‘N’-fold cross-validation involves partitioning the

data into ‘N’ groups, where one group is used for testing and

the remaining groups are used in training. For MDR, ten-fold

cross-validation has traditionally been used. Even though

this technique is computationally intensive and the estimate of

the prediction error may be biased, its smaller variance makes

it well suited to the end goal of MDR, which is hypothesis

generation. In the original version of MDR (and original

MDR paper),9 the dataset had to be perfectly divisible by the

cross-validation interval, typically ten. This often meant that a

few individuals had to be thrown out of a dataset. Current

versions of MDR do not have this restriction. Now, the

dataset is divided into partitions as evenly as possible,

without losing any data. Current simulations are underway

to explore different types of cross-validation for evaluating

power, type I error, bias and variance. Regardless of the

type of cross-validation selected, it is recommended that

cross-validation be used because it has been shown to be so

important to prevent over-fitting.17

Performing MDR analysis

Using the MDR software is very straightforward after all

decisions regarding configuration parameters have been made.

There are a few issues that influence computation time: the

number of factors considered for a model (the dimension

of interaction), the number of individuals in a dataset, the

number of factors/variables considered for each individual

and the number of cross-validation intervals. These variables

increase computation time exponentially due to the

combinatorial aspect of the algorithm.

Current versions of MDR are constrained by the

parameters discussed in the previous section, but work is

in progress to expand MDR to more diverse datasets. One

current development is to expand MDR to analyse data with

more than two clinical endpoints, such as ‘unaffected’, ‘mildly

affected’ and ‘strongly affected’. The immediate relevance

of such an extension could easily be seen in studies of many

common medical conditions with multiple phenotypes, such

as diabetes, blood pressure, etc. As mentioned earlier, this

modification should not be too difficult because MDR is a

contingency table method, which is a type of method often

used for ordinal data.

Additionally, work is being done to expand the capability

of MDR to capitalise further on pedigree data. MDR–PDT

has been developed to merge the MDR algorithm with the

pedigree disequilibrium test (PDT).21 PDTwas developed as

a test for linkage disequilibrium. This merger will allow the

application of MDR to complex pedigree data in the presence

of family structure.

For large datasets with many individuals and/or loci, the

combinatorial explosion involved in an exhaustive search of

all multifactorial combinations exponentially extends compu-

tation time. Typically, datasets are analysed out to four- or

five-way interactions. Power studies with moderately sized

datasets indicate that MDR has excellent power to detect

interactions up to this level, but power to detect higher-order

interactions decreases. Also, the computation time required

for analysis beyond this point becomes prohibitive. To try

to resolve these issues and enable analysis of much higher-

order interactions and much larger datasets, a parallel

programming implementation of MDR is in development.

Utilising parallel programming and parallel supercomputing

technologies will allow analysis of larger datasets and

higher-order interactions in reasonable time frames.

Permutation testing

Once a final MDR model or set of models has been chosen,

permutation testing can be used to perform a hypothesis

test and evaluate its statistical significance. The theory behind

permutation testing is to create an empirical distribution of

prediction errors that could be expected simply by chance.

This distribution must be created for each individual dataset,

mimicking the configuration parameters and dataset charac-

teristics of the original MDR analysis.22

Permutation testing has similar considerations as a typical

MDR analysis. If the dataset has a balanced ratio of cases

and controls, the ratio of cases and controls in the randomised

datasets should also be balanced. When analysing unbalanced

data, the randomised datasets must reflect the same proportions

of cases and controls. In addition, all configuration parameters

used in the original analysis should be identical in permutation

testing. This is to ensure that the permutation test mimics the

original analysis, except for the random disease status label.

Once the randomised data sets are created and configur-

ation issues are considered, an MDR analysis is performed on

all randomised datasets. After the analysis of each dataset,

the best model is extracted using the same criterion that was

used for the original analysis. The prediction errors of the

single best model from each analysis comprise the empirical

distribution. The prediction errors within the distribution

are sorted in ascending order because the lower the error, the

better the model. Once the distribution is created, the final

model from the original run can be evaluated. The location in

the empirical distribution where the original error would fall

directly translates into the p-value of the analysis. This omni-

bus permutation test may be a conservative method, but it

is more likely to control for type I error, while not limiting

power. As mentioned earlier, the primary goal of MDR is
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hypothesis generation for future studies; however, one often

wants some measure of how likely it is that the model or set

of models detected by MDR would arise by chance. Permu-

tation testing allows for the evaluation of statistical significance

of one or a few MDR models.

Case series

The importance of the correct MDR implementation can be

illustrated using a simulated dataset. SNP data were simulated,

containing a three-locus gene–gene interaction model with

no main effects, as described by Moore et al.23 The epistasis

model can be shown as a multilocus penetrance function,

where the table values indicate the probability of disease,

given a specific multilocus genotype combination

p(DjAABBCC ¼ 0.07). This particular dataset included allele

frequencies of 0.2 and 0.8 and a heritability of 1.5 per cent.

The effect in the dataset was simulated using a three-locus

interaction model between loci 3, 5 and 10. The model

is shown in Table 1.

The dataset is unbalanced, with 200 controls and 50 cases.

First, the dataset was run without any considerations for

its unbalanced nature: without any manipulation of the data

(ie no over- or under-sampling), without changing the

threshold (leaving it at 1.0), and following all previously

mentioned configuration recommendations. Single-locus

through to five-locus interactions were considered in the

analysis. The resulting best models for each level of

interaction are listed in Table 2A. Based on the lowest

prediction error and highest cross-validation consistency, the

single-locus model would be chosen as the final model. The

correct three-locus model was identified, but not chosen as

the final best model due to the over-representation of controls

within the dataset, skewing the assignment of disease risk

status for each multi-locus combination.

To perform permutation testing properly, the randomised

datasets must reflect the proportion of cases and controls

in the real dataset. Permutation testing was done correctly,

reflecting the unbalanced nature of the dataset as well as all

configuration parameters used in the original analysis.

The permutation distribution showed that the final model

revealed by MDR analysis was not statistically significant.

To demonstrate the importance of proper permutation

testing, randomised datasets were created for permutation

testing without consideration for the unbalanced nature of the

original dataset. When permutation testing was done in this

manner, the final single-locus model was found to be signifi-

cant. In fact, all five candidate models (single-locus through

to five-locus models) were significant. This demonstrates the

challenge presented by unbalanced datasets — disease risk

status in each cell can be influenced by the numerical

dominance of one affection class, making detection of a

true signal difficult.

As mentioned previously, altering the threshold value has

been suggested to deal with this challenge. To demonstrate the

effect of altering the threshold value, the data were run again,

but this time adjusting the threshold to reflect the proportions

seen within the data. Because there were 50 cases and 200

controls, the threshold was set to 0.25, instead of 1.0. As

discussed earlier, this produces unpredictable results, (also

shown in Table 2B). The final model chosen from this run

of MDR would be the two-locus model as it has the mini-

mum prediction error and parsimony. However, it does not

include even one of the three actual disease loci. Adjusting the

threshold gave rise to an even worse performance than was

seen in the original MDR run — the correct model was not

identified even as the best three-locus model. Proper permu-

tation testing, using the adjusted threshold value, revealed

that the final model was not statistically significant. Using

an alternative fitness metric to accommodate the unbalanced

nature of the data, however, can improve this procedure.

Balanced accuracy (or 1-balanced classification error) takes

into account the ratio of cases to controls in the dataset.

This metric is calculated by the equation [1 2 ((sensitivity þ
specificity)/2)]. The results of the MDR analysis using a

threshold of 0.25 and balanced accuracy as the fitness metric

are shown in Table 2C. Here, the best model is the three-locus

Table 1. Three-locus penetrance table where values in bold indicate genotype frequencies and table values indicate penetrance.

Penetrance is probability of disease given a particular genotype combination.

h 2 ¼ 0.03 CC Cc cc

0.64 0.32 0.04

BB Bb bb BB Bb bb BB Bb bb

0.64 0.32 0.04 0.64 0.32 0.04 0.64 0.32 0.04

AA 0.64 0.07 0.02 0.01 0.00 0.08 0.07 0.04 0.02 0.00

Aa 0.32 0.00 0.07 0.06 0.09 0.03 0.08 0.06 0.07 0.01

aa 0.04 0.05 0.01 0.08 0.06 0.01 0.10 0.10 0.02 0.05
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model because it has both the minimum prediction error and

the maximum cross-validation consistency. Thus, this

combination of fitness metric and adjusted threshold

successfully identifies the correct model.

As recommended earlier, in situations with an unbalanced

dataset both over- and under-sampling can be evaluated. This

was done for the present example to demonstrate the effec-

tiveness of this approach. To generate the over-sampled data-

set, the 50 cases were randomly re-sampled with replacement

until there were 200 cases balanced with 200 controls. MDR

was run on this newly modified dataset with a threshold of 1.0,

following all other configuration considerations recommended

earlier. The results are shown in Table 2D. In this case, the

correct three-locus model was successfully identified as both

the best three-locus model and as the final model. Permutation

testing (properly reflecting the over-sampled dataset and

proper configuration parameters) revealed that the three-locus

final model was statistically significant.

Simultaneously, under-sampling was also performed —

resulting in a dataset of 50 cases and 50 controls (randomly

(B). Alnalysis using threshold adjustment only.

Number of

loci in model

Best candidate model Average cross-validation

consistency

Average prediction error

1 5 5 40.80%

2 4, 9 3 30.53%

3 4, 5, 7 7 31.74%

4 3, 5, 8, 10 4 36.60%

5 1, 2, 4, 5, 9 5 40.00%

Final model: loci 4 and 9 — INCORRECT MODEL

(C). Analysis using threshold adjustment and balanced accuracy.

Number of

loci in model

Best candidate model Average cross-validation

consistency

Average prediction error

1 8 6 49.50%

2 10, 5 4 45.75%

3 10, 5, 3 10 29.97%

4 10, 5, 3, 2 7 33.69%

5 10, 8, 5, 4, 3 6 41.86%

Final model: loci 3, 5, 10 — CORRECT MODEL

Table 2 (A). Original MDR analysis of unbalanced data.

Number of

loci in model

Best candidate model Average cross-validation

consistency

Average prediction error

1 1 10 20.00%

2 7, 8 7 21.28%

3 3, 5, 10 5 22.90%

4 2, 3, 5, 10 4 26.60%

5 1, 4, 7, 8, 9 4 29.66%

Final model: locus 1 — INCORRECT MODEL
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selected from the original 200). This dataset was run and

the results outlined in Table 2E. Again, the correct three-locus

model was identified as the final model produced by MDR.

Proper permutation testing revealed that the final model

was again statistically significant.

By comparing the results from the two modified datasets,

it becomes apparent that the three-locus model identified by

each is the correct final model. The convergence of results

from both analyses indicates a strong signal within the dataset.

Neither the unbalanced dataset nor the adjusted threshold

value without adjusting the fitness metric analysis was able

to identify the correct model.

Another possible error in MDR implementation is the

use of misclassification error for model selection, instead

of prediction error. The results of this analysis are listed in

Table 2F. The correct model was identified as the best

three-locus model, but with no previous knowledge, the

five-locus model would be chosen as the final model based

on the lowest error. As mentioned previously, the use of a

misclassification error for model selection results in

(E). Analysis of under-sampled data.

Number of

loci in model

Best candidate model Average cross-validation

consistency

Average prediction error

1 6 5 60.00%

2 5, 10 10 32.56%

3 3, 5, 10 10 28.00%

4 3, 5, 7, 10 7 32.53%

5 3, 4, 5, 6, 10 4 39.95%

Final model: loci 3, 5, 10 — CORRECT MODEL

(F). Analysis using misclassification error for model selection.

Number of loci in model Best candidate model Average classification error

1 1 20.00%

2 7, 8 18.79%

3 3, 5, 10 18.00%

4 2, 3, 5, 10 16.80%

5 1, 4, 7, 8, 9 15.60%

Final model: loci 1, 4, 7, 8, 9 — INCORRECT MODEL

(D). Analysis of over-sampled data.

Number of

loci in model

Best candidate model Average cross-validation

consistency

Average prediction error

1 8 9 46.25%

2 5, 10 3 46.75%

3 3, 5, 10 10 25.84%

4 3, 5, 8, 10 7 29.83%

5 3, 5, 6, 8, 10 5 25.88%

Final model: loci 3, 5, 10 — CORRECT MODEL
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over-fitting of the data. As the number of loci in the candidate

model increases, the misclassification error always decreases,

as shown in this analysis.

This sample dataset demonstrates the importance of

proper implementation of the MDR method. A simulated

dataset was used so that the correct model was known and

the deleterious effect of improper implementation could be

readily apparent. These phenomena are also observed during

the analysis of real data.

Conclusions

MDR is a novel and powerful statistical tool for detecting

and modelling epistasis in the study of human disease and

pharmacogenomics. In making this method more available

and acceptable in the scientific community, it is important that

the guidelines for use are well understood.

These guidelines must also be understood when comparing

MDR with other, more traditional methods such as logistic

regression or classification and regression trees. To evaluate

multiple methods accurately, the parameters defined for each

method must be comparable. The range of loci interactions

considered must be identical, along with cross-validation splits

and permutation parameters.

Building on the success that MDR has already had, many

of the performance features of the method are currently being

studied. More extensive power studies are being performed to

estimate the power of MDR in datasets with different sample

sizes, effect sizes, number of factors and noise level attached

to the true model. Additionally, other levels of N-fold cross-

validation are being explored for their influence on power

and computation time. Understanding the problems that can

arise from over- and under-sampling, new fitness metrics

are being explored to handle the problem of unbalanced data.

The dissection of all performance features of MDR is a

priority of future research.

The detection, characterisation and interpretation of gene–

gene and gene–environment interactions are expected to

improve the diagnosis, prevention and treatment of common

human diseases. MDR can be a powerful tool in reaching

these goals when used appropriately.
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