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Abstract
The detection of alternative splicing using microarray technology involves multiple computational steps: normali-

sation, filtering, detection and visualisation. In this review, these analyses are approached using the R and

Bioconductor open-source computation solution. There is some discussion on how to integrate different

Bioconductor packages, and some of their major features are demonstrated. In addition, the Xmap Genome

Browser is incorporated as an integral part of the analysis and annotation workflow.
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Introduction

Alternative splicing (AS) is a natural biological

process that allows genetic materials from a single

locus to produce more than one transcript. The

functionality of the resulting isoforms can be

grossly different, and could potentially change the

landscape of the gene expression network.1

Furthermore, it has been shown that more than 70

per cent of transcripts in the genome undergo AS.2

As a result, many human diseases have been directly

and indirectly affected by a deficiency in these

splice forms.3 The importance of this phenomenon

has triggered the development of biological assays

to measure the anomaly, and microarray has

become one of the common tools.

Several issues arise in analysing exon microarray

data. First, the algorithm developed to detect AS

has to account for different AS types.4 Secondly,

unlike gene-centric expression arrays, where most

genes are labelled by one identifier (ID), exon

arrays involve tracking all known and predicted

exons for a gene. As genomic annotation becomes

more sophisticated, this information could change

frequently. Therefore, a comprehensive database

management system is required as a back-end

support for the exon array analysis. Lastly, the

complex task of integrating the statistical analysis,

database support and visualisation into a single

software system is unquestionably challenging.

Furthermore, these integrations should take future

algorithm development into confederation.

In this review, these issues will be discussed, and

the R statistical software system introduced as an

integrated environment for AS detection analysis. A

series of R packages for performing the analysis

workflow with example codes will be outlined.

A brief review of exon array design

This review discusses tools used to analyse the

Affymetrix GeneChip 1.0 ST array. At the time of

writing, the manufacturer has produced arrays for

human, mouse and rat species. Briefly, the array

design consists of 5.4 million 5-mm probes, which

are assembled into 1.4 million probesets. The

majority of these probesets are represented by four

overlapping probes. In most cases, each probeset

represents a single exon. Sometimes, more than

one probeset might be necessary to represent a

single exon.5 These probesets can be broken down

into three increasingly comprehensive annotated
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categories, collectively known as the ‘core’,

‘extended’ and ‘full’ sets. At one extreme, the ‘core’

set consists of the probesets with the highest anno-

tation confidence. At the other extreme, the ‘full’

set consists of the more computationally derived

probesets, as well as probesets that represent non-

exonic regions, such as intronic and intergenic

regions.

A brief overview of R and
Bioconductor

R (http://www.r-project.org) is a powerful, but yet

flexible, statistical computing programming environ-

ment. It was developed by Robert Gentleman and

Ross Ihaka and is highly regarded by the compu-

tational communities. Its object-orientation pro-

gramming scheme has made algorithm development

easy and flexible and has attracted a huge developer

community. These packages are freely available at

the CRAN section of the website. R is platform

independent, and works on all major computer

operating systems. In 2001, Robert Gentleman

established the Bioconductor consortium6 (http://

www.bioconductor.org) as a repository and distri-

bution centre for genomic computational tools. The

consortium has been working hard to keep up with

genomic technology development, ranging from

proteomic, microarray and the more recent next

generation sequencing analyses. Bioconductor has

played a major role in the successes of genomic

analysis, and continues to contribute to this cause,

being cited in hundreds of peer-reviewed publi-

cations. Readers who wish to get a quick start on R

and Bioconductor are encouraged to visit Thomas

Girke’s website for an extensive tutorial.7

Workflow for alternative splicing
detection using R packages

In general, exon array analysis workflow is broken

down into four major steps: data processing and

normalisation; genomic annotation and data filter-

ing; AS detection; and AS visualisation. R and

Bioconductor statistical packages will be used for

each step described below. We will provide sample

code when appropriate.

Data processing and normalisation

Due to its popularity, summarisation and normali-

sation methods for oligonucleotide array have been

thoroughly researched.8 Among the most popular

methods are robust multichip average (RMA);

probe logarithmic intensity error (PLIER); and GC

robust multichip average (GCRMA).9–11 The

Bioconductor packages ‘oligo’ and ‘affy’ are the

foundation for importing and processing oligonu-

cleotide microarrays such as the exon array used in

this review. The successful processing and normali-

sation of exon array chips rely on the Platform

Design (pd) file. Such files contain the mapping

information that assigns the probes to their corre-

sponding probesets. A collection of available pd

files can be downloaded from the ‘Download’ and

‘Metadata’ sections of the Bioconductor website.

Here, the procedures for loading the packages

and importing the dataset are illustrated. The

‘read.cellfiles’ function requires users to specify the

pd file for the chip types using the ‘pkgname’

argument.

. library(‘oligo’)

. library(‘pd.huex.1.0.st.v2’)

. celFiles¼ list.celfiles (‘/path/to/my/celfiles’, full.

name ¼ TRUE)

. raw¼ read.cellfiles (celFiles, pkgname¼ ‘pd.huex.

1.0.st.v2’)

Once the dataset is imported into the R session

as an ‘ExpressionSet’ object, it can be normalised

using multiple approaches. Here, we illustrate how

the dataset can be normalised using three different

methods: RMA, GCRMA and PLIER, respectively.

R. eset ¼ rma(raw)

R. eset ¼ gcrma(raw)

R. eset ¼ justPlier(raw)

Recently, Gaidatzis et al.12 discovered a systema-

tic relationship between gene expression and AS.

The authors showed that detection of AS increased
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significantly as the differential expression of the

respective gene increases. This caused an overesti-

mation of AS for the dataset. The authors devel-

oped an algorithm, COrrected Splicing Indices for

Exon array (COSIE), to correct for this effect. The

method was based on a positional dinucleotide

modelling approach. The COSIE package can be

downloaded from the authors’ website (http://

www.fmi.ch/groups/gbioinfo). The function from

the COSIE package takes the ‘ExpressionSet’

object as its input and corrected expression values

as its output. Here is an example of COSIE codes:

R. source(‘cosie.R’)

R. cosieOut ¼ cosie(eset, ‘/path/to/cosie/output/

file.txt’)

Genomic annotation and data filtering

The exon array was designed to measure signals

from exonic, intronic and intergenic regions. This

ability increases the likelihood of discovering novel

splice forms and regulatory elements. Keeping track

of these genomic regions can be a daunting task,

however, and entails the need for a database manage-

ment system (DBMS). Okoniewski et al.13 have built

a database, Xmap, to capture these gene region enti-

ties. From now on, the different representations of a

gene (exon, intron, intergenic, etc) will be referred

to as gene entities. The database uses the Ensembl

ID system to map each probeset to its corresponding

gene, transcript, exon and other Ensembl represen-

tation (http://www.ensembl.org). For example, the

exon array ID, 3564255, is mapped to the gene ID

ENSG00000100505, and three transcript IDs,

ENST0000029355, ENST00000338969 and

ENST00000360392. A browser interface was devel-

oped to access the database (http://xmap.picr.man.

ac.uk). In addition to the website, an R package,

‘exonmap’, was developed to provide direct access to

the database using the R command line interface.

The package provides three types of programmatic

routine: translational, annotation and filtering.

The translational routine provides functionalities

that perform conversions between different gene

entities, such as probe, probeset, exon, transcript,

gene, symbol and sequence. These functions

assume the form X.to.Y, where X and Y represent

different combinations of the entities. For example,

the function ‘probeset.to.gene’ converts a probeset

ID to the gene ID it represents. Please refer to the

function’s help file for the full listing of all the

X.to.Y functions. Except for the probeset IDs, all

other entities are represented by the Ensembl ID

system. Because of this integration, it is relatively easy

to extract extended annotation using the Ensembl

database. One downside of using ‘exonmap’,

however, is the requirement for installing a local

copy of the Ensembl database onto your computer,

which can take up a substantial amount of disk space.

The annotation routine is used to attach bio-

logical meanings to the different gene entities. At

the time of writing, users can perform annotation

at three levels: probeset, exon and gene. For

example, the function ‘probeset.details’ takes a

probeset ID as an argument and returns a prede-

fined set of annotations for that probeset. This

annotation routine returns predefined annotation

information for the entities and cannot easily be

extended. To perform a more customised annota-

tion, Bioconductor offers the ‘biomaRt’ package,

which provides a direct interface to the Ensemble

database. The ‘getBM’ function from ‘biomaRt’

takes four input parameters: ‘Attributes’, ‘Filters’,

‘Values’ and ‘Mart’. The ‘Attributes’ are the list of

desired annotations to be returned. The ‘Values’

are the actual input IDs designated by the ‘Filters’

argument. Finally, ‘Mart’ indicates the database

selected at the time of query. Here is a sample

code for annotating the exon array ID, 3564255,

using the ‘genBM’ function. First, we need to

select the database, as well as the species, for this

analysis. In this case, we have selected to use the

Ensemble database for the human species. Then,

we use ‘getBM’ to annotate the ‘Affymetrix exon

array’ ID with two Ensembl IDs.

R. library(biomaRt)

R. ensemble ¼ useMart(‘ensembl’, dataset ¼

‘hsapiens_gene_ensembl’)

R. annotation ¼ getBM(Attribute ¼ c(‘ensembl_

gene_id’, ‘ensembl_transcript_id’),
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Filters ¼ ‘affy_huex_1_0_st_v2’,

Values ¼ ‘3564255’,

Mart ¼ ensemble)

There is also a web version of the Biomart data-

base (http://www.biomart.org), where users can

perform point and click database searches. The

website is a great companion to the ‘biomaRt’

package. Users can perform a prototype search

before finalising the customised profiles with the

‘getBM’ function. The precise naming scheme for

the ‘Attributes’ and ‘Filters’ arguments is manda-

tory, and can be listed using the ‘listAttributes’ and

‘listFilters’ functions.

Finally, the Filtering routine from ‘exonmap’

serves two purposes: verification and filtering. The

verification utility takes the form is.X and is used

to verify the identity of a probeset as either exonic,

intronic, intergenic or multitarget. This is especially

useful for identifying multi-targeted probesets using

the ‘is.multitarget’ function. The removal of these

entities will reduce the chances of selecting a false-

positive AS. Lastly, the two filtering functions are

‘select.probewise’ and ‘exclude.probewise’, which

will either select or remove probesets that belong

to the selected entity from further consideration.

Alternative splicing detection

The simplest way to detect AS is to use the splicing

index (SI) method.14 The SI is calculated using the

log-ratio of the normalised exon level from the

comparison group, where the normalised exon

level can be calculated by dividing the exon signal

by its estimated gene level. One can think of SI as

the equivalent of fold change in gene expression

microarray analysis. The major pitfall of fold

change is that no statistical confidence is computed.

Therefore, better approaches, such as ANalysis Of

Splice VAriation (ANOSVA), were developed to

apply statistical stringency to changes in SI.15

ANOSVA was based on modelling the interaction

effect between the exon and the gene, where,

under the null hypothesis, all interaction terms in

an exon and a gene in the two-way ANOVA are

not significant, and therefore no exon or probesets

stand out. By contrast, under the alternative

hypothesis, the interaction term is significant, and

therefore characteristic of AS. This basic model was

further improved by other authors.16–18 The

‘exonmap’ package offers two functions for detect-

ing AS: ‘si’ and ‘splanova’, which perform the SI

and ANOVA modelling analyses, respectively.

Please refer to the ‘exonmap’ vignette for details of

their use.

Since exon array analysis deals with a massive

amount of data and the current Bioconductor

modules require them to be loaded into memory at

once, a regular 32-bit computer might be insuffi-

cient for this purpose. Instead, users are encouraged

to use a 64-bit computer system with sufficient

RAM memory, preferably 8 megabytes (MB) or

higher. Alternatively, Bengtsson et al.19 have devel-

oped the ‘aroma.affymetrix’ package which has

solved this memory problem by using persistent

memory technology. These authors claim that the

analysis can be done with just 1 MB of RAM, and

can process up to 1,000 arrays. Using the

‘aroma.affymetrix’ framework, Purdom et al.18 have

implemented an AS detection algorithm, FIRMA

(Finding Isoforms using Robust Multichip

Analysis). In this algorithm, the authors modified

the popular RMA normalisation method9 by

building an additive model to study the behaviour

of an exon relative to its gene expression. Similar

to ANOSVA, any deviation from the fitted behav-

iour would imply AS. The tutorial materials for

the ‘aroma.affymetrix’ package can be found in a

Google user group (http://www.braju.com/R/

aroma.affymetrix).

AS visualisation

Visualisation is important in AS detection. First, it

shows the distribution ratio of probesets per exon.

The number of probesets used to represent an exon

reflects the exon’s size and complexity. Secondly, a

visual inspection of the exon’s expression value

ensures the accuracy of the AS prediction algor-

ithm, and therefore reduces false positives. Thirdly,

information without content is meaningless.

Therefore, attaching genomic knowledge to the
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visualisation process allows further evaluation of the

AS candidates.

The most comprehensive visualisation tool for the

Affymetrix exon array is the Xmap Genome

Browser (http://xmap.picr.man.ac.uk). The website

uses Google’s map navigation technology to provide

a smooth scanning of gene regions. The back-end

Ensembl database support enables the display of

diverse gene information, such as the multiple

transcripts that represent different splice forms. To

add expression information onto the display,

Bioconductor offers the ‘XMapBridge’ package. The

package enables a seamless connection between R

and the Xmap Genome Browser via Java technology.

Conclusion

The R statistical software and the Bioconductor

consortium offer a wealth of solutions for AS

detection. With the support of developers around

the world, they provide new and improved algor-

ithms in all areas of exon array analysis. Overall, the

‘exonmap’ package offers the most comprehensive

analysis routines. The Xmap Genome Browser pre-

sents a beautiful, yet practical, visualisation utility

for the exon array analysis. The website is supported

by the Ensembl database and provides a compre-

hensive annotation solution for AS candidates.
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