
Hooper Human Genomics 2014, 8:3
http://www.humgenomics.com/content/8/1/3
SOFTWARE REVIEW Open Access
A survey of software for genome-wide discovery
of differential splicing in RNA-Seq data
Joan E Hooper
Abstract

Alternative splicing is a major contributor to cellular diversity. Therefore the identification and quantification of
differentially spliced transcripts in genome-wide transcript analysis is an important consideration. Here, I review the
software available for analysis of RNA-Seq data for differential splicing and discuss intrinsic challenges for differential
splicing analyses. Three approaches to differential splicing analysis are described, along with their associated software
implementations, their strengths, limitations, and caveats. Suggestions for future work include more extensive
experimental validation to assess accuracy of the software predictions and consensus formats for outputs that
would facilitate visualizations, data exchange, and downstream analyses.
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What is differential splicing analysis and why is it
useful?
With the explosion of transcriptome data derived
from RNA-Seq, it has become apparent that alternative
splicing is a major contributor to cellular diversity in both
normal tissues and disease [1-5]. Sets of genes that are
regulated by alternative splicing are often different from
those that are regulated by differential expression [6]
and tend to highlight different biological processes [7,8].
Therefore, differential splicing complements differential
gene expression in genomic-level descriptions of gene
regulation in biological systems.
Alternative splicing (AS) is prevalent in multicellular

organisms, affecting approximately 50%–60% of genes in
Arabidopsis [9] and approximately 90%–95% of genes in
mammals [10,11]. It includes exon skipping, intron
inclusion, mutually exclusive exons, and alternative
5′ or 3′ splice sites for an included exon. Along with
alternative promoter usage and alternative polyadenylation
site usage, AS allows multiple mRNA variants, or
isoforms, to be produced by a single gene [10-18]. AS
isoforms generate regulatory and functional diversity,
differing in untranslated regions that regulate transcript
localization, stability, or translation, or in regions encoding
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protein-protein interactions or sites for post-translational
modification [19-21]. AS analysis describes the alternative
use of exons and splice sites within a single gene or
sample. AS databases, which are listed at [22], and
software for AS analysis, which is reviewed elsewhere
(e.g., [23]), are beyond the scope of this discussion,
which is focused on differential splicing.
Differential splicing analysis describes the differences

in AS site usage between two samples. This is critical for
studies involving mechanisms of AS and its regulation.
In addition, differential splicing analysis describes the
differences in splice isoforms between two samples,
uncovering functional diversity that is missed by differential
gene expression analysis. Available software tools and
packages take conceptually different approaches that
identify differential splicing at the level of the gene,
the exon, or both. The choice of which approach and
software is the best to use for a given analysis depends on
the experimental objectives and expected outcomes. Table 1
summarizes the software under review, highlighting the
strengths of each, their limitations, and directions for future
improvements.
The challenges for differential alternative splicing
analysis
Splicing analysis requires more input data than gene
expression analysis because a given gene often has several
splice isoforms. A sequencing read can map anywhere
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Table 1 Summary of differential splicing analysis software

Model Precision Sensitivity Pair end Multicores Novel events Visualization User-friendly URL Ref

Cuffdiff 2 Isoform ? ? ☺ ☺ ☺ ☺ ☺ [24] [25]

MISO Isoform ? ? ☺ ☺ ☹ ☺ ☺ [26] [27]

DEXSeq Exon ? ? ☹ ☺ ☹ ☺ ☹ [28] [29]

DSGseq Exon ? ? ☹ ☹ ☹ ☹ ☹ [30] [31]

MATS Junction + exon ☺☺ ? ☺ ☹ ☺ ☹ ☺ [32] [33]

DiffSplice Junction + exon ? ? ☹ ☹ ☺ ☺☺ ☺ [34] [35]

Splicing compass Gene ? ? ☹ ☺ ☹ ~ ~ [36] [37]

AltAnalyze (microarray) Junction + exon ☺ ☺☺ ☹ ☺ ☹ ☺ ☺ [38] [39]

Excellent (☺☺), very good (☺), good (~), could be improved (☹), unknown (?), multi-cores (supports use of multiple cores to speed computations).
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along a gene and count towards expression, but a read
must include the AS region to count towards splicing
analysis. In a recent human study, 100- to 150-M reads
(100 nt, paired end) were needed to detect 80% of AS
events, and >400-M reads were needed to detect 80% of
AS differences between two conditions [40]. Given
current sequencing costs and computational approaches,
statistically robust detection of differential splicing is
biased towards the more abundant transcripts.
The problem is compounded because many genes have

multiple AS choices, and each resulting isoform may have
biologically unique properties. To reconstruct which
full-length isoforms are present in what amounts requires
either full-length sequencing of transcripts or full
knowledge of all possible isoforms as well as considerable
modeling based on the shorter reads. In the future,
when high-throughput full-length transcript sequencing
becomes cost-effective, splicing analysis will undoubtedly
be based on comparison of isoforms. However, most
current approaches ignore isoform reconstruction in favor
of local analysis.
The challenges associated with differential splicing

analysis and the following discussion of differential splicing
analysis software apply equally to mammalian systems and
to organisms with more compact genomes. The primary
difference is that better performance is expected for
all approaches in compact genomes, due to their lower
complexity [41].

Three approaches to differential splicing
analysis—what does each do?
If the experimental objective is to identify the relative
abundance of the encoded alternative protein products,
along with linked regulatory information (alternative
promoters, alternative 3′ untranslated regions (UTRs)),
then isoform modeling with either Cuffdiff 2 [25] or MISO
[27] is most appropriate. Here, all reads that have been
mapped onto a gene are distributed between its isoforms,
producing a probabilistic model of the frequency of each
isoform in the original sample. While both MISO and
Cuffdiff 2 rely on annotated files of splice isoforms, Cuffdiff
can also incorporate novel splicing events that it discovers
in the mapped sequencing files. Cuffdiff 2 returns a list of
differentially spliced genes, with associated p values and
false discovery corrections, but with no indication of the
exons/junctions involved. Many genes are filtered out due
to low coverage and/or wide confidence limits of isoform
predictions. MISO uses different statistics and less filtering
to return a list of differentially spliced genes. It includes
detailed information on the detected splicing differences
such as which exon/junctions are involved, alternative splice
type (skipped exon, mutually exclusive exons, retained
intron, alternative 5′ splice site, and alternative 3′ splice
site), magnitude of difference, and coverage. One drawback
of MISO is that it lacks statistical methods for handling
groups of samples. Thus, MISO gives richer information
in two-way comparisons, while Cuffdiff 2 incorporates
the added statistical power of multiple samples and/or
biological replicates.
For both MISO and Cuffdiff 2, genes with many

isoforms present a statistical problem. As the number
of isoforms increases, so do the degrees of freedom
in the model, such that the confidence intervals for
each isoform also increase. Based on this theoretical
consideration, isoform reconstruction methods are expected
to be biased against detection of differential splicing
in genes with many isoforms.
If the experimental objective is more local, dealing

with inclusion of specific exons or splice sites, then
several choices are available. DEXSeq [23,29] and DSGseq
[22,31] focus on exon usage; they equate differential usage
of non-terminal exons with differential splicing. Read
densities are calculated for every annotated exon in
the genome, data dispersion is modeled, and junction
information is ignored. Neither will do a simple two-sample
comparison; they both require groups of samples and
look for differences between groups. They calculate the
probability that usage of each exon is different by compar-
ing read densities across the gene between sample groups.
DEXSeq reports p values for differential usage of each
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exon, with corrections for false discovery and with associ-
ated fold change. DSGseq reports differential exon usage,
expressed by a novel NB statistic, for each exon and for
each gene, and includes the mean read density across
the gene (coverage). DSGseq reports no quantification
(e.g., fold change) of the differential exon usages.
The exon-centric approach of DEXSeq and DSGseq is

immune to isoform complexity. It is expected to be
biased against small exons; this includes alternate 5′ or
3′ splice sites, which are defined as separate exons.
Small exons will have lower read counts than large
exons, and thus more variability in the relative read
densities that are used to calculate differential usage. In
addition, the normalization across a gene that corrects
for differences in gene expression levels between samples
can introduce artifacts. For instance, when a gene has
alternative sites for transcription initiation or polyadenyla-
tion that generates isoforms with substantially different
lengths, and those isoforms are also differentially expressed,
these events can be misidentified as differential splicing.
The performance of DEXSeq and DSGseq is heavily

dependent on the annotation files, as they only consider
annotated exons. RefSeq annotations [42] are conservative
and exclude many exons and alternative splices that
are likely to be of interest. ENSEMBL and GENCODE
(the human ENSEMBL genebuild) annotations [43,44]
not only include many more exons and alternative splices,
but also include gene fusions (read-through from one
gene to the next) that confound normalization for gene
expression levels. Thus, analyses based on RefSeq annota-
tions will miss many ‘interesting’ events, while those based
on ENSEMBL will lose statistical significance through
extensive multiple testing corrections. Therefore, the anno-
tation used should be selected depending on experimental
objectives, and it might be prudent to run parallel analyses
with each annotation file.
SplicingCompass [25,37] shows great promise as a refine-

ment of DEXSeq and DSGseq. It includes junction
information that improves performance on small exons
and can accommodate novel (un-annotated) splicing. It
detects differential splicing on the gene level instead of
considering exons individually. This better accounts for
combined effects and reduces the number of statistical
tests, thereby reducing the need for multiple testing
corrections. On the other hand, it returns information
only at the gene level and provides no insight into either the
isoforms (with encoded protein products) or which exons
or splices are involved. Future releases incorporating
these features are very welcome.
MATS [33] takes the most local view, calculating exon

inclusion (percent spliced in (PSI)) from junction and
exon reads for the exon and its two flanking exons. It
then compares values between samples or conditions
(groups of samples) to return the probability of differential
splicing, expressed as PSI. It recognizes the type of alterna-
tive splicing (e.g., skipped exon and retained intron) and
returns both p value and magnitude (ΔPSI) for each
alternative splice in the dataset. It can perform either
two-sample comparisons or look for differences between
groups of samples. This approach has high precision (low
false-positive rate), at the expense of some sensitivity [33].
It should be unaffected by isoform complexity, especially
alternative promoter or 3′-end usage, and should perform
equally well on both annotated and novel splice events.
However, the use of flanking exons means MATS is
blind to events involving the first or last exon, which
contains the untranslated regions (UTRs) where most
post-transcriptional regulatory sequences are found.
The precise description of the type of alternative splicing
is especially valuable where the experimental ques-
tion involves splicing mechanisms, while the under-
representation of UTRs is problematic if the experimental
question involves post-transcriptional regulation.
DiffSplice [35] takes a related approach based on

alternative splicing modules (ASMs), regions where
transcript isoforms diverge. The exon and splice junction
data for each gene are represented as a splicing graph
(splicing map) that is built from sample data without
relying on annotated transcriptomes or pre-determined
splice patterns. Alternative splicing generates branches in
the splicing graph, which are usually local and modular
(ASMs). Thus, a given gene may have several ASMs, each
involving one or more alternative exons and splice
junctions. DiffSplice then utilizes a non-parametric permu-
tation test to identify significant differences in expression at
both gene level and ASM level. Thus, it performs
equally well on annotated and novel events, as well as
splices involving transcript ends, and is unaffected by
isoform complexity. Its precision and sensitivity await
rigorous evaluation.

Usage and user interfaces
All of these packages take as input mapped reads (.bam
files) and an annotation (.gtf) file. Only AltAnalyze offers
a graphical user interface. The rest are run from the
command line. MATS and Cuffdiff 2 offer the most
streamlined use. Each has a wrapper script that is called
with a single command, as well as excellent documenta-
tion at their respective websites. They include detailed
instructions for use at the command line, clear explanations
of the optional parameters, and step-by-step instructions to
insure that input data are appropriately formatted. The out-
puts of these two packages are user-friendly; the .txt tables
are well labeled and intuitive. Cuffdiff 2 also offers
CummeRbund [25], an R package for downstream analyses
and visualizations.
DiffSplice offers a wrapper script that will run the three

steps of the analysis, or each step can be run individually.
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The descriptions of usage are clear, but the discussion of
optional parameters and data interpretation are still under
construction. The visualization is a major asset of
this software package—tracks of read densities and
the deduced alternative splices can be uploaded and
viewed on the UCSC genome browser.
DEXSeq, DSGseq, and SplicingCompass run in R, so

they are relatively slow. Each requires multiple steps:
reformatting the input annotation and .bam files, building
exon count files, and running the differential analysis. For
DSGseq, the documentation and usage at the website is
straightforward; it offers no options and outputs a
single data Table R file. DEXSeq offers multiple options
for customization, but usage must be gleaned from a com-
bination of the documentation available at Bioconductor,
a tutorial, and an example. The key output data table
is buried amongst all the metadata and supporting
calculations. DEXSeq provides excellent visualizations;
it builds a directory of .html files, one per gene, that
illustrate a reconstruction of alternative splicing across sam-
ples and with supporting numbers. The SplicingCompass
tutorial gives straightforward instructions for the 44
commands necessary to prepare and run a six-sample
analysis. It also includes a minimal visualization tool
that will plot the read coverage of all samples and groups
across a gene.
MISO offers remarkable versatility and remains user-

friendly in spite of the resulting complexity. This is largely
due to the excellent documentation at their website. Its use
requires three sequential steps: analyzing ‘events’ in each
sample, computing PSI for each sample, and computing
differences between samples. There are multiple outputs,
depending on the analysis options selected, which include
a rich variety of details ranging from splicing event
type and coverage to PSI and magnitude of differences. It
includes two very useful utilities for downstream analysis.
Outputs can be filtered based on their coverage and/or
magnitude of change. There is also an excellent visualization
utility that shows the modeling and statistical results
alongside the raw RNA-Seq data as it maps across
exons and junctions. This combination of versatility,
ease of use, detailed outputs, and downstream utilities
makes MISO a very attractive package.

Limiting factors—sensitivity, accuracy, and
validation
All of these approach methods are limited by sensitivity, a
weakness that is common to many or all RNA-Seq-based
analyses [40,41]. At commonly used data depths (e.g., 50-
to 100-M reads, 50–100 nts), RNA-Seq analyses perform
well on highly expressed and thoroughly annotated genes,
but less well on genes at moderate or low expression levels
and/or with incomplete annotations [41]. The problem
with sensitivity can be partially overcome by increasing
read depth or read length [40], especially when excellent
annotations are available to help distinguish ‘signal’ from
‘noise’ [41,45]. One alternative might be to develop a
secondary analysis based on pooling data from samples or
conditions that show high correlation in the primary
analysis, thereby increasing effective read depth and
sensitivity. Another possibility might be to make more
effective the use of the information in paired ends to
infer exon usage between the paired mapped reads.
Exon junction microarrays (Affymetrix HJAY or MJAY

arrays, Santa Clara, CA, USA [46]) offer an oft-overlooked
approach with higher sensitivity than RNA-Seq for
well-annotated alternative splices. A software package
that integrated RNA-Seq and Exon junction array data
would be invaluable, where the experimental objective is a
comprehensive description of splicing and splicing differ-
ences. AltAnalyze [39], which was designed to process
splice-sensitive array data, is a unified and flexible package
that can process raw microarray data (or RNA-Seq data in
.bed format), compute differences in alternative splicing
(exon and junction usage), and integrate with a multitude
of other data types (e.g., protein domains and microRNA
binding annotations). It offers an interactive graphical
user interface that allows users with little knowledge
of bioinformatics programs or scripting to customize
analyses for their data and to visualize outputs in
Cytoscape or other useful formats. While AltAnalyze
can be applied to RNA-Seq data, it only analyzes
known alternative splicing, which limits its attractiveness
in RNA-Seq applications.
For all of these analysis tools and packages, the goal is

accuracy, which is limiting false-positives while maximizing
true-positives. Accuracy is best determined by extensive
experimental validation, for instance, by using quantitative
reverse transcribed-polymerase chain reaction (qRT-PCR),
to measure the ratios of alternative splice products in
the same RNA samples that were used for RNA-Seq
(or microarray probing). High-throughput qRT-PCR
technologies allow validation at genomic scale (e.g., [5]).
MATS used qRT-PCR to validate 164 detected alternative
splices that covered the range of false discovery rates [33].
They found that their calculated false discovery rate (fdr)
predicted validation rates; for example, splices with
fdr < 0.2 had >80% validation rate. SplicingCompass
showed promise for accuracy in extensive in silico analyses
[37], but it remains to be experimentally tested. The global
accuracy of DEXSeq, DSGseq, DiffSplice, and Cuffdiff 2
predictions has yet to be experimentally tested. Given
the complementary nature of the various approaches
described above, it is recommended to try more than one
software tool on a dataset and then compare and/or
amalgamate the outputs.
This survey has been cursory, and other good splicing

analysis software are available [23]. For instance, GLiMMPS
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is a newly developed statistical method for detecting
splicing quantitative trait loci (sQTLs) from RNA-Seq
data [47]. Two key goals downstream of alternative
splicing analysis are to identify the regulatory differences
in the transcript isoforms and the functional differences in
the encoded protein isoforms. In this respect, ASPicDB
(http://www.caspur.it/ASPicDB/) is a database of human
protein variants generated by AS [48]. AltAnalyze has
begun to address the consequences of AS by incorporating
protein domain annotations into its integrated analysis. A
useful development would be standardized format(s)
for outputs of differential splicing analyses, like the .bam
or .bed formats for genomic information. This would
facilitate development of downstream modules that
could be applied to any differential splicing analysis
for further exploration of functional consequences of
variations in splicing.
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