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Abstract

Background: A growing number of severe Mycoplasma pneumoniae pneumonia (MPP) cases have been
reported recently. However, the pathogenesis of severe MPP is not clear. In the current study, transcriptome
sequencing was used to identify gene expression and alternative splicing profiles to provide insights into the
pathogenesis of severe MPP.

Methods: RNAs of bronchoalveolar lavage fluid (BALF) samples from three severe MPP children and three
mild MPP children were analyzed respectively by deep sequencing followed by computational annotation
and quantification.

Results: The gene expression analysis revealed 14 up-regulated and 34 down-regulated genes in severe MPP
children comparing to mild MPP children. The top 10 most up-regulated genes were IGHV1-69, CH17-472G23.1,
ATP1B2, FCER2, MUC21, IL13, FCRLB, CLEC5A, FAM124A, and INHBA. The top 10 most down-regulated genes
were OSTN-AST, IL22RA2, COL3A1, Clorf141, IGKV2-29, RP11-731F5.2, IGHV4-4, KIRREL, DNASETL3, and COL6A2.
Clustering analysis revealed similar expression pattern of CLEC5A, IL13, FCER2, and FLT1. Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analyses revealed changes related to primary
immunodeficiency in severe MPP children comparing to mild MPP children; the pathway involves CDT9,
TNFRSF13C, CD79A, and AICDA genes. Among the differentially expressed genes, significant alternative splicing
events were found in FCER2 and FCRLA.

Conclusions: The current study on RNA sequencing provides novel insights into the pathogenesis of severe
MPP in terms of gene expression and alternative splicing. The up-regulation of /L13, FCER2, FLT1, and CLEC5A
and the down-regulation of CD79A, AICDA, CD19, and TNFRSF13C may contribute to the pathogenesis of
severe MPP. The differential expressions of FCER2 and FCRLA could be due to their alternative splicing.
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Background

Mycoplasma pneumoniae pneumonia (MPP), as a com-
mon community-acquired pneumonia, counts for 20 to
40% of children pneumonia and may reach 50 to 80%
during the time of local outbreak [1, 2]. MPP is usually
described as mild and self-limited; however, more and
more severe or even fatal cases of MPP with severe
complications such as pulmonary necrosis and chronic
interstitial fibrosis have been reported recently [3-5].
Macrolide-resistant and excessive immunological inflam-
mation are also commonly found in severe MPP [6].
Therefore, it is essential for pediatricians to recognize
severe MPP early, treat it promptly, and prevent the pro-
gression of the disease effectively. However, the mechan-
ism and etiology of severe MPP are largely unknown.

Based on published hypotheses, severe MPP is consid-
ered as a hyper-immune response that originates from
repeated or longer lasting childhood MP infections in
the lung [7]; further, severe MPP can be an overactive
innate immune response such as macrophage activation
via heterodimerization of Toll-like receptors two and six
of the bronchoepithelial cells to M. pneumoniae lipo-
proteins [8]. With ELISA and real-time quantitative
PCR techniques, researchers have found that the cell-
mediated immune response plays an important role in
the pathogenesis of MPP [9-11] but the role of humoral-
mediated immune response in mild and severe MPP is
still unclear.

High-throughput RNA sequencing technology, so called
next-generation sequencing, revolutionarily enhanced our
understanding on the complexity of eukaryotic trans-
criptome [12, 13]. It has several key advantages including
being independent on the predetermined genome se-
quences, highly accurate in detecting gene expression with
very wide dynamic detection ranges with low background.
Thus, RNA sequencing is not only useful to precisely
determine gene expression profiles but also particularly
powerful to detect novel transcription variants via alterna-
tive splicing [12].

In the present study, we observed the transcriptome of
bronchoalveolar lavage fluid (BALF) from children with
mild MPP and severe MPP. The large sum of novel
information on the gene expression profiles as well as
novel transcripts through alternative splicing would
provide not only insights into the pathogenesis of severe
MPP but also as basis for the development of bio-
markers and therapeutic targets.

Methods

Study subjects

The current study was conducted at the First Hospital of
Jilin University (Changchun City, Jilin Province, People’s
Republic of China). Six newly diagnosed children (three
male and three female) with acute stage of MPP admitted
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to our hospital were recruited [see Additional file 1: Table
S1]. All of the children enrolled in this study had no recur-
rent severe or unusual infections and had no inflamma-
tory disorders or autoimmunity. Therefore, based on the
published diagnostic criteria, they had no history of
common variable immunodefiency (CVID) [14]. After
admission to our hospital, the levels of immunoglobulins
in the blood of these children had been examined; the
levels of IgG, IgA, and IgM had been found within normal
range published for children [see Additional file 2: Figure
S1] [15]. Lymphocyte profiles in the peripheral blood of
these children had also been examined, the cell numbers
and percentage of T cells, B cells, and natural killer cells
had been found within normal range [see Additional file 3:
Table S2] [15]. Therefore, the enrolled children had
been excluded from having CVID, autosomal recessive
agammaglobulinemia [15], or high IgM syndrome [16].
All children did not have untreated metabolic/congeni-
tal systemic diseases. The diagnosis of pneumonia was
based on clinical manifestations (cough, fever, dry or
productive sputum, dyspnea, abnormal breath sound,
radiological pulmonary abnormalities). The diagnosis of
Mycoplasma pneumoniae (MP) infection was based on
positive results of serologic test (MP-IgM test >1:40)
and positive results of MP DNA (>500 copy/L) in BALF
with real-time quantitative PCR. MP was the only
pathogen identified in all the MPP subjects. The mild
and severe community-acquired pneumonia was de-
fined based on the criteria described [17, 18]. Mild
group was defined as fever <38.5 °C at any age, tachyp-
nea but respiratory rate <70 breaths/min at age <3 years
old or <50 breaths/min at age =3 years old, normal
food-intake, and no dehydration. Severe group was
defined as fever >38.5 °C at any age, breathless with
respiratory rate >70 breaths/min at age <3 years old or
>50 breaths/min at age >3 years old (excluding the
reasons of fever and cry), cyanosis, marked retractions,
anorexia, and dehydration.

The written informed consents were obtained by care
givers of all children. The study was approved by the
Institutional Medical Ethics Review Board of the First
Hospital of Jilin University in compliance with the
Declaration of Helsinki.

Bronchoscopy and bronchoalveolar lavage

Following the guidelines described previously [17],
flexible fiber optic bronchoscopy with bronchoalveolar
lavage (BAL) was performed within 3 days after the
admission. Both groups received similar supportive and
symptomatic treatment, including sputum aspiration,
nebulization, and fluid therapy. Corticosteroid and the
other immune regulation agents were not permitted
before bronchoscopy. A 2.8-mm pediatric flexible bron-
choscope (Olympus BF-XP60, New Hyde Park, NY) or a
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4.0-mm flexible bronchoscope (Olympus P-260, New
Hyde Park, NY) was used for children depending on
their age and body weight. All of the enrolled subjects
had indications for bronchoscopy and BAL: radiologic-
ally proven large pulmonary lesions (including atelectasis
and consolidation of lung fields). Supplemental oxygen
was administered during the procedure. Transcutaneous
oxygen saturation and pulse rate (Masimo Radical-7
pulse oximetry, Masimo, CA) were continuously moni-
tored during the bronchoscopy.

Intravenous injection of midazolam (0.1-0.15 mg/kg)
was used for sedation; aerosolized lidocaine spraying on
the throat insertion was performed 5-10 min before
bronchoscope for throat local anesthesia; dripping 2%
lidocaine through flexible bronchoscopy was used for
the topical anesthesia of the upper and lower airways.
BAL was performed in an area most prominently
affected based on the chest radiology (MPP groups) by
gently wedging the tip of the Bronchoscope in a segmen-
tal or subsegmental bronchus. 1 ml/kg sterile saline was
instilled through the instrumentation channel. The BALF
was gently aspirated and collected in a sterile container
and immediately centrifuged. The pallet was resuspended
in TRIzol (Life Technologies, CA, USA) and stored in
-80 °C freezer. The composition of the nucleated cells in
the BALF was counted; results were shown in Additional
file 4: Table S3.

RNA preparation and sequencing

Total RNA was extracted using TRIzol according to the
manufacturer’s instructions. RNA degradation and contam-
ination were monitored on 1% agarose gels. RNA purity
was checked using the NanoPhotometer spectrophotom-
eter (IMPLEN, CA, USA). RNA concentration was mea-
sured using Qubit RNA Assay Kit in Qubit 2.0 Flurometer
(Life Technologies, CA, USA). RNA integrity was assessed
using the RNA Nano 6000 Assay Kit of the Bioanalyzer
2100 system (Agilent Technologies, CA, USA).

A total amount of 3 pug RNA per sample was used as in-
put material for the RNA sample preparation. Sequencing
libraries were generated using NEBNext® Ultra™ RNA
Library Prep Kit for Illumina® (NEB, USA) following the
manufacturer’s recommendations, and index codes were
added to attribute sequences to each sample. The cluster-
ing of the index-coded samples was performed on a cBot
Cluster Generation System using TruSeq PE Cluster Kit
v3-cBot-HS (Illumia) according to the manufacturer’s
instructions. After cluster generation, the library prepara-
tions were sequenced on an Illumina Hiseq platform and
125 bp/150 bp paired-end reads were generated.

Sequencing data analysis
Raw data (raw reads) of fastq format were firstly processed
through in-house perl scripts, and clean data (clean reads)
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were obtained. Index of the reference genome was built
using Bowtie v2.2.3, and paired-end clean reads were
aligned to the reference genome using TopHat v2.0.12.
Only uniquely and properly mapped read pairs were used
for further analysis. The differentially expressed genes
between BALF samples were identified using the DESeq R
package (1.18.0) [19]. Differentially expressed genes were
defined as those with changes of at least twofold between
samples. The resulting p values were adjusted using the
Benjamini and Hochberg approach for controlling the
false discovery rate (FDR). Genes with an adjusted p value
<0.05 found by DESeq were assigned as differentially
expressed. Protein functional classification of differentially
expressed genes was performed using the PANTHER
classification system [20]. KOBAS software was used to
test the statistical enrichment of differential expression
genes in KEGG pathways. The significance of enriched
KEGG pathways were determined by corrected p value
<0.05. Cufflinks v2.1.1 Reference Annotation Based
Transcript (RABT) assembly method was used to con-
struct and identify both known and novel transcripts
from TopHat alignment results. The analysis of alterna-
tive splicing events was performed using MATS and
IGV software [21]; alternative splicing events were
classified to five basic types by software Asprofile v1.0.
The differences in alternative splicing of genes were
considered significant with a cutoff of 5% FDR.

Results

RNA sequencing results

Total RNA was extracted from six BALF samples of
children with severe MPP or mild MPP [see Additional
file 1: Table S1]. Then, mRNAs from each sample were
sequenced. After the removal of adaptor sequences,
ambiguous reads and low-quality reads, about 40-70
million pairs of clean read, were generated for each
sample (Table 1). The percentage of reads mapped to
the forward chain was equal to that mapped to the
reverse chain. When compared with the reference se-
quence of the Genome Reference Consortium GRCh37/
hg19, more than 85% of total read pairs were uniquely
mapped on the human genome (Table 1). A correlation
matrix shown a high consistency of measurements
within each group, R*> 0.8 [see Additional file 5: Figure
S2A]. Principal component analysis (PCA) was carried
out to assess the clustering nature of these samples.
Samples of each group had been clustered together; data
shown good repeatability and correlation [see Additional
file 5: Figure S2B].

Identification and classification of differentially expressed
genes between severe MPP and mild MPP

Totally, 48 differentially expressed genes were identified
between the severe MPP group and mild MPP group
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Table 1 Summary of RNA sequencing read mapping result

Sample number Mild 202 Mild 224 Mild 247 Severe 177 Severe 223 Severe 324

Total reads 55492664 47186542 64792680 68897254 42136856 46318894

Total mapped
Multiple mapped

48535137 (87.46%)
844736 (1.52%)

40517410 (85.87%)
614681 (1.30%)

56013052 (86.45%)
797662 (1.23%)

60481397 (87.78%)
881129 (1.28%)

36565361 (86.78%)
543196 (1.29%)

40224088 (86.84%)
630869 (1.36%)

Uniquely mapped 47690401 (85.94%) 39902729 (84.56%)
Reads map to “+" 23844413 (42.97%) 19967766 (42.32%)
Reads map to "= 23845988 (42.97%) 19934963 (42.25%)
Non-splice reads 30580304 (55.11%) 22475106 (47.63%) 34530918
Splice reads 17110097 (30.83%) 17427623 (36.93%)

55215390 (85.22%) ( )
27594117 (42.59%) ( )
27621273 (42.63%) 29809332 (43.27%)
53.29%) ( )
20684472 (31.92%) ( )

59600268 (86.51%
29790936 (43.24%

36022165 (85.49%
18008541 (42.74%

( ) 39593219 (85.48%

( )
18013624 (42.75%)

( )

( )

( )

19797319 (42.74%)
19795900 (42.74%)
37577003 (54.54%) 20733762 (49.21% ( )
( )

15288403 (36.28%

24205574 (52.26%,

22023265 (31.97% 15387645 (33.22%

Total reads: The number of sequence after sequencing data filtering
Total mapped: The number of sequence which can map to the genome

Multiple mapped: The number of sequence which have multiple location on the reference sequencing
Uniquely mapped: The number of sequence which have single location on the reference sequencing
Reads map to “+": The statistics of sequence that were mapped on the “+” chain of the genome
Reads map to “—": The statistics of sequence that were mapped on the “—" chain of the genome

(Fig. 1a). The 14 up-regulated genes listed in Table 2
were IGHVI1-69, CH17-472G23.1, ATPIB2, FCER2,
MUC21, IL13, FCRLB, CLEC5A, FAMI124A, INHBA,
FLT1, APOL4, and two novel transcripts. These 14 up-
regulated genes included cytokine (/L13), immunoglobin
Fc receptors (FCER2 and FCRLB), and inflammatory
response regulator (CLEC5A). The top 20 most down-
regulated genes were OSTN-AS1, IL22RA2, COL3AI,
Clorfl41, IGKV2-29, RP11-731F5.2, IGHV4-4, KIRREL,
DNASE1L3, COL6A2, COL6AI1, FCRL4, HTRA3, TCLIA,
RP11-356K23.1, PLD4, DKK3, UBE2QL1, KLRBI, and
MS4A1 (Table 3).

Protein functional classification of differentially expressed
genes between severe MPP and mild MPP was performed.
As a result, the 48 differentially expressed genes were
divided into 13 different classes of protein (Fig. 1b). The

expression levels of genes classified as signaling molecule
(CLEC5A, IL13, INHBA), transporter (ATP1B2), and trans-
fer/carrier protein (APOL4) significantly increased in the
severe MPP group comparing to the mild MPP group
[see Additional file 6: Table S4]. On the other hand,
genes in the categories of nucleic acid binding molecule
(AICDA, PAXS, SPIB, TCF7), genes encodes defense/
immunity protein (IL22RA2, CD79A), hydrase (PLA2G2D,
HTRA3, AICDA), receptor (MS4A1, IL22RA2), and tran-
scription factor (PAXS5), were predominantly expressed in
the mild MPP group. Among the cell adhesion molecules,
FCER2 and FCRLB were up-regulated in the severe MPP
group; FCRLA and FCRL4 were up-regulated in the mild
MPP group.

The clustering analysis of differentially expressed genes
indicated that FCER2, FLTI, IL13, and CLEC5A were
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Fig. 1 Differentially expressed genes between the severe MPP group and mild MPP group in BALF. a Volcano plot of genes differentially
expressed between the severe MPP group and mild MPP group. Each point represents one gene that is detectable in both groups. The red points
represent significantly up-regulated genes; the green points represent significantly down-regulated genes. b Protein functional classification of
differentially expressed genes has been performed using the PANTHER tool between the severe MPP group and mild MPP group. The protein
category is shown on x-axis and the gene frequency is shown on y-axis
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Table 2 Up-regulated genes of the severe MPP group comparing to the mild MPP group

Gene ID Associated gene name log,foldchange padj Description

ENSG00000104921 FCER2 4081288 0.001514 Fc fragment of IgE, low affinity Il, receptor for (CD23)
ENSG00000129244 ATP1B2 5.123508 0.008687 ATPase, Na+/K+ transporting, beta 2 polypeptide
ENSG00000258227 CLEC5A 3.046087 0.012798 C-type lectin domain family 5 member A
Novel00326 - 3.957912 0.029750 -

ENSG00000122641 INHBA 2792227 0.032804 Inhibin beta A

ENSG00000102755 FLT1 2.773680 0.044977 Fms-related tyrosine kinase 1

Novel00056 - 2612021 0.044977 -

ENSG00000169194 IL13 3320997 0.107345 Interleukin 13

ENSG00000211973 IGHV1-69 8.269132 0.110361 Immunoglobulin heavy variable 1-69
ENSG00000150510 FAM124A 2.878502 0.130273 Family with sequence similarity 124 member A
ENSG00000204544 MUC21 3.830138 0.130273 Mucin 21, cell surface associated
ENSG00000162746 FCRLB 3.307526 0.157765 Fc receptor-like B

ENSG00000274642 CH17-472G23.1 6496741 0.157765 -

ENSG00000100336 APOL4 2.103424 0.186854 Apolipoprotein L4

log,foldchange log, (severe MPP/mild MPP), padj adjusted p value, Novel novel gene

up-regulated in the severe MPP group comparing to the
mild MPP group (Fig. 2). Similar up-regulation or down-
regulation patterns among these genes were identified,
which may indicate related local protein functions of these
genes under MP infection in children.

Functional annotation of KEGG pathway enrichment
analysis revealed changes related to primary immuno-
deficiency in the BALF of severe MPP children, which
was associated with the down-regulation of CDI9,
TNFRSF13C, CD79A, and AICDA genes (Table 4).
CD19, TNFRSF13C, CD79A, and AICDA were involved
in the B cell differentiation process; down-regulation of
these genes may restrain B cell maturation and antibody
production (Fig. 3) [22]. Furthermore, COL6A1, COL6A2,
COL5A3, COL3A1, and COL1A2 genes were involved in
the pathways including protein digestion and absorption,
ECM-receptor interaction, P13K-Akt signaling, and focal
adhesion; these molecules were found down-regulated in
the severe MPP group comparing to the mild MPP group
(Table 4). COL6AI1, COL6A2, COLSA3, COL3Al, and
COL1A2 belong to the collagen super family, which play a
role in maintaining the integrity of various tissues includ-
ing the lung [23]. FLTI, which encoded a member of
vascular endothelial growth factor receptor (VEGFR)
family, was also found significantly increased in the
severe MPP group comparing to the mild MPP group
in the P13K-Akt signaling and focal adhesion path-
ways (Tables 2 and 4).

Alternative splicing events between severe MPP and mild
MPP

More than 90% of human genes are alternatively spliced
through different types of splicing [24]. MATS analysis
of the RNA sequencing data significantly revealed 1500

differential alternative splicing events with a cutoff of
5% FDR (Table 5), more than half (50.5%) of them
belong to the skipped exon type. Among the differen-
tially expressed genes between the severe MPP group
and mild MPP group, FECR2 and FCRLA were iden-
tified to have significantly alternative splicing [see
Additional file 7: Table S5, Additional file 8: Table S6,
Additional file 9: Table S7, Additional file 10: Table
S8, and Additional file 11: Table S9].

FCER?2 locates on chromosome 19p13.2 (chr 19:7,688,758-
7,702,146); its encoding protein is a B cell specific
antigen, which is a low-affinity receptor for IgE. This
protein plays essential roles in B cell growth, differen-
tiation, and regulation of IgE production. It also exists
as a soluble secreted form and acts as a potent mito-
genic growth factor. Retained intron (RI) was identi-
fied in FCER2 in some of the samples. RI lies on
chrl9: 7,698,355-7,698,854; the upstream exon locates
on chrl9: 7,698,355-7,698,409 and the downstream
exon locates on chr19: 7,698,740-7,698,854 [see Additional
file 8: Table S6]. Compared to the mild MPP group, the
severe MPP group had less RI spliced transcript events of
FCER2, which could be an explanation for the up-
regulation of the FCER2 in severe MPP children (Fig. 4a).

FCRLA locates on chromosome 1¢g23.3 (chr 1:161,706,972-
161,714,352). This gene encodes a protein similar to
Fc receptor of gamma immunoglobulin (IgG), which
is selectively expressed in B cells and may be involved in
their development. Alternatively, spliced transcript variants
of FCRLA that encode different protein isoforms have been
found in the current study. Two exons of FCLRA were in-
volved in mutual exclusive exon (MEX), the first exon starts
at 161,710,759 and ends at 161,710,912 and the second
exon starts at 161,711,207 and ends at 161,711,474 [see
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Table 3 Down-regulated genes of the severe MPP group comparing to the mild MPP group

Gene ID Associated gene name log,foldchange padj Description

ENSG00000163687 DNASETL3 —4.90655 0.002613 Deoxyribonuclease I-like 3

ENSG00000166428 PLD4 —4.12788 0.005539 Phospholipase D family member 4
ENSG00000269404 SPIB —3.62528 0.008687 Spi-B transcription factor (Spi-1/PU.1 related)
ENSG00000081059 TCF7 -2.83313 0.021184 Transcription factor 7 (T cell specific, HMG-box)
ENSG00000156738 MS4A1 —3.80125 0.029750 Membrane-spanning 4-domains, subfamily A, member 1
ENSG00000159958 TNFRSF13C -3.59110 0.029750 Tumor necrosis factor receptor superfamily member 13C
ENSG00000233308 OSTN-AS1 —7.65241 0.029750 OSTN antisense RNA 1

ENSG00000253364 RP11-731F5.2 —5.82530 0.029750 -

ENSG00000111796 KLRB1 —3.80851 0.032804 Killer cell lectin-like receptor subfamily B, member 1
ENSG00000164485 IL22RA2 —7.13138 0.032804 Interleukin 22 receptor subunit alpha 2
ENSG00000253998 IGKV2-29 —6.19209 0.032804 Immunoglobulin kappa variable 2-29 (gene/pseudogene)
ENSG00000168542 COL3AT —6.89272 0.036862 Collagen, type Ill, alpha 1

ENSG00000170801 HTRA3 —4.50354 0.036862 HtrA serine peptidase 3

Novel00339 - —3.48127 0.041780 -

ENSG00000142173 COL6A2 —4.69524 0.042554 Collagen, type VI, alpha 2

ENSG00000100721 TCLIA —4.49274 0.044977 T cell leukemia/lymphoma 1A

ENSG00000142156 COL6AT —4.52065 0.044977 Collagen, type VI, alpha 1

ENSG00000111732 AICDA —3.71025 0.055876 Activation-induced cytidine deaminase
ENSG00000164692 COLTA2 -3.75418 0.059895 Collagen, type |, alpha 2

ENSG00000105369 CD79A -3.63713 0.069048 CD79a molecule

ENSG00000276775 IGHV4-4 —5.43537 0.069048 Immunoglobulin heavy variable 4-4
ENSG00000080573 COL5A3 -3.37399 0.090838 Collagen, type V, alpha 3

ENSG00000163518 FCRL4 —4.51056 0.090838 Fc receptor-like 4

ENSG00000196092 PAX5 —-2.93710 0.093937 Paired box 5

ENSGO00000177455 CcD19 —3.44060 0.110361 CD19 molecule

ENSG00000136573 BLK -3.67317 0.128424 BLK proto-oncogene, Src family tyrosine kinase
ENSG00000203963 Clorf141 —6.39692 0.130273 Chromosome 1 open reading frame 141
ENSG00000258752 RP11-356K23.1 —4.39265 0.130273 -

ENSG00000167483 FAM129C —2.78386 0.148367 Family with sequence similarity 129 member C
ENSG00000215218 UBE2QL1 —391473 0.149275 Ubiquitin conjugating enzyme E2Q family-like 1
ENSG00000050165 DKK3 —3.95056 0.186854 Dickkopf WNT signaling pathway inhibitor 3
ENSG00000132185 FCRLA -3.11003 0.186854 Fc receptor-like A

ENSG00000183853 KIRREL —-5.37583 0.186854 Kin of IRRE like (drosophila)

ENSG00000117215 PLA2G2D —2.60098 0.191201 Phospholipase A2 group IID

log,foldchange log, (severe MPP/mild MPP), padj adjusted p value, Novel novel gene

Additional file 9: Table S7]. The analysis of alternative
splicing events indicated that the MEX frequency of the
first exon in the severe MPP group was significantly higher
than that in the mild MPP group, which may result in the
down-regulated expression of FCRLA in severe MPP
children (Fig. 4b).

Discussion
Recent developments in RNA sequencing technology en-
abled elaborate analysis of gene expression in numerous

human diseases. However, to our best knowledge, no
report of RNA-sequencing study on human MPP has
been published yet. The current study provides extensive
information on gene expression and alternative splicing
in the BALF of MPP children through transcriptome
analysis, which is crucial for understanding the pa-
thogenesis of severe MPP. The gene expression analysis
revealed 14 up-regulated genes and 34 down-regulated
genes in severe MPP children comparing to mild MPP
children. The top 10 most up-regulated genes are IGHVI-
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log:foldchange padj

-2.83313 0.021184

-4.52065 0.044977

-4.69524 0.042554

-3.80851 0.032804

-3.11003 0.186854

-3.37399 0.090838

-3.71025 0.055876

-3.63713 0.069048

-3.5911 0.02975

-3.67317 0.128424

-4.51056 0.090838

-3.80125 0.02975

-3.4406 0.110361

-4.12788 0.005539

-4.90655 0.002613

-3.91473 0.149275

-3.62528 0.008687

-2.9371 0.093937

-5.8253 0.02975

-4.50354 0.036862

RP11-356K23.1 -4.39265 0.130273
COL1A2 -3.75418 0.059895
COL3A1 -6.89272 0.036862
KIRREL -5.37583 0.186854
3.307526 0.157765

5.123508 0.008687

4.081288 0.001514

3.830138 0.130273

2.103424 0.186854

2.878502 0.130273

INHBA 2.792227 0.032804
FLT1 2.77368 0.044977
Novel00056 2.612021 0.044977
Novel00326 3.957912 0.02975
IL13 3.320997 0.107345
CLEC5A 3.046087 0.012798
Clorf141 -6.39692 0.130273
IL22RA2 -7.13138 0.032804
CH17-472G23.1 6.496741 0.157765
IGHV1-69 8.269132 0.110361
OSTN-AS1 -7.65241 0.02975
TCL1A -4.49274 0.044977
-6.19209 0.032804

-3.95056 0.186854

-5.43537 0.069048

FAM129C -2.78386 0.148367
PLA2G2D -2.60098 0.191201
Novel00339 -3.48127 0.04178

Fig. 2 Cluster of 48 genes showing representative expression patterns between the severe MPP group and mild MPP group. All of the genes that are
differentially expressed between the severe MPP group and mild MPP group by log, fold change >2 or <—2, adjusted p value <0.2, have been selected

Table 4 KEGG pathway enrichment

Term D Adjusted p value  Input KEGG_ID/KO
Protein digestion and absorption  hsa04974 0.000305 COL6AT| COL6A2| ATP1B2| COL5A3 hsa:1291|hsa:1292|hsa:482|hsa:50509

| COL3AT| COLIA2 |nsa:1281|hsa:1278|
Primary immunodeficiency hsa05340 0.001040 CD19| TNFRSF13C| CD79A| AICDA hsa:930|hsa:115650]|hsa:973|hsa:57379)
ECM-receptor interaction hsa04512 0.001350 COL6A2| COL5A3| COL6AT hsa:1292|hsa:50509]hsa:1291

| COL1A2| COL3AT |hsa:1278|hsa:1281]
PI3K-Akt signaling pathway hsa04151 0.003493 COL6AT| TCL1A| COL6A2| CD19| COL5A3  hsa:1291|hsa:8115]hsa:1292|hsa:930

| COL3AT| COLIA2| FLTI |nsa:50509|hsa:1 281 |hsa:1278|hsa:2321|
Focal adhesion hsa04510 0.005512 COL6AT| COL6A2| COL5A3| COL3AT hsa:1291|hsa:1292|hsa:50509|hsa:1281

| COL1A2| FLTT |hsa:1278]hsa:2321]
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Fig. 3 Model diagram showing primary immunodeficiency. Hematopoietic stem cell (HSC)-derived lymphoid progenitor cells develop into progenitor
(pro)-B cells, Pre-B1 cell, Pre-B2 cell, immature B cell, mature B cell, B cell, memory B cell, and plasma cell. The decreased expression of CD79A inhibits
the differentiation of Pro-B cell into Pre-B1 cell; the decreased expression of AICDA inhibits the differentiation of mature B cell into B cell; the decreased

expression of CD19 and TNFRSF13C inhibits the differentiation of mature B cell into memory B cell and plasma B cell

69, CH17-472G23.1, ATPIB2, FCER2, MUC21, IL13,
FCRLB, CLEC5A, FAM124A, and INHBA (Fig. 1a, Table 2).
The top 10 most down-regulated genes are OSTN-
ASI, IL22RA2, COL3Al, Clorfl41, IGKV2-29, RP11-
731F5.2, IGHV4-4, KIRREL, DNASE1L3, and COL6A2
(Fig. 1a, Table 3).

Several key genes that are differentially expressed be-
tween severe MPP and mild MPP are associated with
hyper-immune response and signaling. For example,
IL13, a cytokine secreted by T helper type 2 (Th2) cells,
can induce many features of allergic lung disease includ-
ing airway hyper-responsiveness, goblet cell metaplasia,
and mucus hyper-secretion, which all contribute to air-
way obstruction [25, 26]. IL13 is found to cause mucin
overproduction through STAT6/EGFR-FOXA?2 signaling
and mucus plugging formation in MP infection, which
results in pulmonary atelectasis or consolidation [27].
These results prove that IL13 play an important role in
the airway obstruction of severe MPP. In addition, Wu
Q et al. [26] have reported that IL13 can restrain MP
clearance by the suppression of Toll-like receptor 2 in
mice. Therefore, high levels of IL13 may make severe
MPP children lose the ability to eradicate MP from the
lung in primary infection, resulting in longer lasting MP
infection and a hyper-immune response [7]. Another
gene associated with hyper-immune response is FCER2.

FCER2 is a B cell specific antigen and a low-affinity re-
ceptor for IgE. It has essential roles in B cell growth, dif-
ferentiation, and the regulation of IgE production. On
the basis of study with animal models, FCER2 has been
implicated in IgE-mediated allergic diseases and bron-
chial hyper-reactivity [28]. It has been proved that
FCER2 is involved in the pharmacogenetic basis for
severe exacerbations in children with asthma [29]. Up-
regulated FCER2 in severe MPP children has been
discovered in the present study. Similarly, increased IgE
levels in the serum of MPP patients have been reported
[30]. Therefore, further study will be needed to prove
that up-regulated FCER2 causes the bronchial inflam-
mation and hyper-immune reactivity. Among the up-
regulated genes in severe MPP comparing to mild MPP,
FLTI may also associate with hyper-immune response.
FLT1 (fms-like tyrosine kinase 1) encodes a member of
the vascular endothelial growth factor receptor (VEGFR)
family. Wu WK et al. demonstrate that Th2-related cyto-
kines, such as IL4 and IL13, could drive the expression
of FLT1 [31]. Moreover, Th2-related cytokines can pro-
mote VEGF release in the airway, and VEGF has been
proposed to be associated with severe MPP [32, 33].
Therefore, atopic children may be more prone to de-
velop severe pneumonia [34]. We tentatively put forward
the hypothesis that IL13, FCER2, and FLT1 may be

Table 5 Summary of the differential alternative splicing event analysis

Skipped exon

Retained intron  Mutual exclusive exon Alternative 5' splicing sites Alternative 3" splicing sites

Number of total alternative splicing 44856 (11195) 3772 (2353)

events (genes)

6862 (3327)

2793 (2103) 4374 (2874)

Percentage of total alternative 716 6.0 10.9 4.5 7.0
splicing event (%)

Number of differential alternative 758 (398:360) 181 (107:74) 315(193:122) 101 (74:27) 145 (86:59)
splicing events (up-regulation/

down-regulation)

Percentage of total differential 50.5 121 21 6.7 9.7

alternative splicing event (%)
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Fig. 4 Differential alternative splicing of FCER2 and FCRLA. a Read distribution plot for FCER2 with differential isoform expression due to retained
intron in the mild MPP group is shown. The black box and red arrows indicated the location of the retained intron. b Read distribution plot for
FCRLA with differential isoform expression due to mutually exclusive exon is shown. The ratio of mutually exclusive exon happened in the severe
MPP group is compared with that in the mild MPP group

associated with each other and all of them are involved
in the pathogenesis of severe MPP.

Based on our data [see Additional file 4: Table S3] and
published results [35], more than half of the nucleated
cells in BALF of MPP children without other pathogen
infection are macrophages. But it is still unclear how
macrophages are involved in the pathogenesis of severe
MPP. Clustering analysis of the differentially expressed
genes reveals that the expression patterns of ILI3,
FCER2, FLTI1, and CLEC5A are similar in the severe
MPP group (Fig. 2). One possible mechanism of severe
MPP is the overactivation of macrophage in innate
immune response [7]. CLEC5A (C-type lectin domain
family 5, member A) is expressed on alveolar macro-
phages; it has been demonstrated to mediate macro-
phage response and play roles in pro-inflammatory
cytokine expression and airspace enlargement in a mice
model of chronic obstructive pulmonary disease (COPD)
[36]. Muro S et al. suggested that MP infection could be
an independent risk factor for COPD in the general
population [37]. CLEC5A encodes a member of the
CTL/CTLD (C-type lectin/C-type lectin-like domain)
superfamily, which family members play roles in inflam-
mation and immune responses. Teng O et al. have
revealed that CLEC5A-mediated enhancement of the
inflammatory response in myeloid cells contributes to
influenza’s pathogenicity in vivo [38]. We found signifi-
cant higher expression levels of CLEC5A in the BALF of
severe MPP comparing to that of mild MPP. Therefore,

our results support the hypothesis that CLEC5A is
involved in the pathogenesis of severe MPP through the
overactivation of macrophage. Protein functional clas-
sification of the differentially expressed genes indicates
that signaling molecules including IL13, CLECS5A, and
INHBA are obviously increased in severe MPP compar-
ing to mild MPP [see Fig. 1b, Additional file 6: Table
S4]. INHBA (Inhibin beta A) encodes a member of the
transforming growth factor superfamily. The encoded
preproprotein is proteolytically processed to generate a
subunit of the dimeric activin and inhibin protein com-
plexes. Rheumatoid arthritis synovium fluid (RA-SF)
promotes INHBA production as a pro-inflammatory
cytokine from macrophages in vitro [39]. Similarly,
INHBA is reported to be up-regulated in endometritis by
Hoelker M et al. [40]. It is interesting that the current
study finds increased levels of INHBA in severe MPP.
The causal relationship between the up-regulation of
INHBA and severe MPP requires further investigation.

It is still unclear how B cells are involved in the pa-
thogenesis of severe MPP. In the current study, KEGG
pathway enrichment analyses have revealed changes
related to primary immunodeficiency in severe MPP
patients, which involves CD79A, AICDA, CDI19, and
TNFRSF13C genes (Table 4, Fig. 3) [22]. CD79A, AICDA,
CD19, and TNFRSF13C are related to the B cell antigen
signaling pathway; lower expression of these genes can
lead to the deficiency of B cell functions. CD79A encodes
the Iga protein of the B cell antigen component, which is
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necessary for expression and function of the B cell anti-
gen receptor. Defected CD79A has been discovered in
immunodeficiency-related diseases [41]. Similarly, AICDA
(activation-induced cytidine deaminase) encodes a RNA-
editing deaminase, which is expressed in a B cell differ-
entiation stage-specific fashion. AICDA is involved in
somatic hyper-mutation, gene conversion, and class-
switch recombination of immunoglobulin genes [42].
Defects in AICDA can cause autosomal recessive hyper-
IgM immunodeficiency syndrome type 2 (HIGM2) [43].
CDI19 is a B cell-specific molecule, which serves as a
major costimulatory molecule for amplifying B cell recep-
tor (BCR) responses. Morbach H et al. have revealed that
CD19 is required for TLR9-induced B cell activation and
CD19/PI3K/AKT/BTK is an essential axis integrating
BCRs and TLR9 signaling in human B cells [44]. In
addition, biallelic CDI9 gene mutations cause common
variable immunodeficiency in human. BCR-induced B cell
responses are impaired in most patients with common
variable immunodeficiency. TNFRSF13C (tumor necrosis
factor receptor superfamily member 13C) encodes a re-
ceptor for BAFF (B cell activating factor), which enhances
B cell survival in vitro and regulates the peripheral B cell
population. TNFRSF13C is a principal receptor required
for BAFF-mediated mature B cell survival and it has been
reported to be associated with common variable im-
munodeficiency [45]. In our study, significantly de-
creased expression levels of CD79A, AICDA, CDI19,
and TNFRSFI13C have been observed in the BALF of
the severe MPP group comparing to the mild MPP
group. Comparing to the local reduction of CD79A,
AICDA, CD19, and TNFRSF13C genes found in BALF,
these patient’s immunoglobulins and lymphocyte pro-
files in the peripheral blood are normal, which means
they do not have any systemic immunodeficiency dis-
ease [see Additional file 2: Fig. S1, Additional file 3:
Table S2 ]. We have found these local changes related
to primary immunodeficiency in the bronchoalveolar
of severe MPP. Local B cell-related immunodeficiency
may be involved in the pathogenesis of severe MPP
comparing with mild MPP. Figure 3 shows how these
molecules are involved in the pathway of B cell dif-
ferentiation and immunoglobulin gene class switch;
down-regulation of these molecules may restrain anti-
body production and make the MPP children lose the
ability to eradicate MP from the lung, which leads to
happen of severe MPP [7].

Alternative splicing events of genes are involved in the
diversity of proteome as well as genome evolution,
control of developmental processes, and physiological
regulation of various biological systems [46]. It could be
deduced that dysregulation of alternative splicing event
is often linked to various human diseases [47]. However,
alternative splicing events in the context of MPP have
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rarely been investigated. The current study discovered
significant differential alternative splicing events in
FCER2 and FCRLA which could be an explanation for
the differential expression of these two genes between
severe MPP and mild MPP. The alternative splicing type
of FCER2 is retained intron (RI), which can change the
function and expression levels of a gene [48]. Therefore,
lower rate of RI in the severe MPP group comparing to
the mild MPP group may partly explain the significantly
increased expression levels of FCER?2 in the severe MPP
group. FCRLA is a soluble resident endoplasmic reticulum
protein. It is capable of associating with multiple Ig
isotypes including IgM, IgG, and IgA, which makes it
unique among the large family of Fc receptors. The
expression of FCRLA is restricted to B lineage and is most
abundant in germinal center B lymphocytes [49]. In the
present study, the alternative splicing type of FCRLA is
MEX, which is significantly increased in the severe MPP
group comparing to the mild MPP group. According to
the literatures [50, 51], alternative splicing may be a causal
explanation for the down-regulation of FCRLA in the
severe MPP group.

Previous studies have found that cell-mediated im-
mune response, specifically Thl-type cytokines such as
IL8, IL18, and IFNy, plays important roles in the me-
chanism of MPP [9-11, 52]. Most of these studies
observed serum levels of Thl cytokines, but we have
chosen BALF to study the local differentially expressed
genes. Cytokines may be expressed differently in BALF
comparing to that in the peripheral blood; this could
partly explain why significant difference of IL8, IL18,
and IFNy was not found in the current study. Addition-
ally, our transcriptome analysis focused on comparing
severe MPP with mild MPP in order to study the specific
pathogenesis of severe MPP; similar results have been
reported by Kang YM et al. group [53]. In their study,
higher levels of IFNy in BALF of MPP patients compar-
ing with that of control children were discovered, but no
significant difference of IFNy was found between the
severe MPP group and mild MPP group.

Some limitations of the current study should be dis-
cussed. First, this is a small size transcriptome analysis
between mild MPP children and severe MPP children;
bigger sized analysis would be preferred in future study
to support solid conclusions. However, three samples in
each group have been chosen carefully to receive next-
generation sequencing separately; quality control analysis
of the whole process has been greatly satisfied. Correlation
matrix shows a high consistency of measurements within
each group. Principal component analysis (PCA) shows
good repeatability and correlation of these samples.
Second, this is a preliminary study on the pathogenesis of
severe MPP comparing to mild MPP. Further study will
be needed to further prove the hypothesis that gene
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reduction related to primary immunodeficiency in bron-
choalveolar is involved in the pathogenesis of severe MPP.
Patient’s primary cell culture and in vivo experiments
using animal model may help to clarify how these genes
and pathways are involved in the pathogenesis of severe
MPP in the future.

Conclusions

The current study presented gene expression profiles as
well as alternative splicing in BALF samples from MPP
patients by next-generation RNA sequencing. This study
clearly indicates that the up-regulation of IL13, FCER2,
FLTI, and CLEC5A and the down-regulation of CD79A,
AICDA, CDI19, and TNFRSF13C may contribute to the
pathogenesis of severe MPP or the progression from
mild MPP to severe MPP. Furthermore, the differentially
expression of FCER2 and FCRLA may be due to the
alternative splicing; further studies will be required to
confirm this hypothesis.
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Additional file 2: Figure S1. The levels of immunoglobulins in the
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