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Abstract
Recently, there has been much interest in the use of Bayesian statistical methods for performing genetic analyses. Many of the computational

difficulties previously associated with Bayesian analysis, such as multidimensional integration, can now be easily overcome using modern high-

speed computers and Markov chain Monte Carlo (MCMC) methods. Much of this new technology has been used to perform gene mapping,

especially through the use of multi-locus linkage disequilibrium techniques. This review attempts to summarise some of the currently

available methods and the software available to implement these methods.
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Introduction

Bayesian methods have become extremely popular in genetic

analysis, in part because they allow for the incorporation of

background information into the model. The popularity of

Bayesian methods may, however, also be due to the ease with

which complex likelihoods can be handled through modern

computationally intensive Markov chain Monte Carlo

(MCMC) techniques.1 MCMC techniques iteratively update

a parameter’s value based upon current estimates of values for

all other parameters in the model. Likelihoods that can be

difficult to estimate jointly can often be handled easily by exami-

ning one parameter at a time, conditional on other parameters

in the model. While MCMC methods are, by themselves, not

Bayesian methods, they are most often utilised in a Bayesian

context, as the random nature of parameters in a Bayesian

model allow for MCMC methods to be utilised in a natural

way. Many excellent introductions to MCMC methods exist.2

Much of this powerful Bayesian-based computational

machinery has been applied to the field of gene mapping.

Marker association studies using single nucleotide polymor-

phisms (SNPs) are recognised as providing potential for

linkage disequilibrium (LD) mapping of genetic polymor-

phisms contributing to complex traits. Often, association

mapping is performed by examining a single-locus model at

each candidate marker and then testing the statistical signifi-

cance of the association at each position. Recently, methods

that utilise full haplotype information have been proposed.3–5

These methods attempt to deal with the complex interplay

between markers without explicitly modelling all possible

combinations of these interactions. Bayesian methods and

MCMC parameter estimation have increasingly been used to

formulate and fit these models.

In the remainder of this paper, several current Bayesian

gene-mapping methods using multiple markers will be out-

lined and available software highlighted. Much has been

written in this field and, rather than intending this summary to

be exhaustive, the authors have instead attempted to

illustrate some of the methods that represent major trends in

this area. Important related issues — such as haplotype

assignment,6 haplotype tagging of SNPs7 and the determi-

nation of haplotype block structure8 — will not be emphasised.

LD mapping

LD refers to a non-random association of alleles within haplo-

types. It is these associations that are used in gene mapping

techniques.9 Bayesian methods utilise LD through the use of

likelihoods that exploit these allelic associations. There are three

general approaches to doing this. All of them try to avoid the

inadequacy of traditional methods that treat markers as being

independently associated with disease. The first approach is

to examine the association of continuous sets of markers

(ie haplotypes) with disease (see below). In this approach, a

complete haplotype is usually treated as the basic unit of

interest. Often, the location of a putative disease-causing

mutation is used as a point of reference for haplotype risk

estimation. Another approach is to examine the association

between alleles and disease status but to model dependency
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between markers using a hierarchical structure (see below).

The main difference between these two approaches is that the

first approach starts with haplotypes, with all the rich inter-

marker dependency haplotypes contain, and then tries to

determine the marker — and ultimately the allele — most

associated with disease. The second approach models allelic

associations directly and then deals with inter-marker depen-

dency at higher levels in the model. A third, arguably more

ambitious, approach is to approximate ancestral trees without

actually modelling the entire coalescent (see below).

Haplotype methods

A popular Bayesian method for which there is available soft-

ware is the BLADE algorithm, which is named after the

associated paper ‘Bayesian Analysis of Haplotypes for Linkage

Disequilibrium Mapping’, by Liu et al.4 This method explicitly

models positions of historical recombination and mutation

events based upon an initial set of founders and can deal with

missing marker data, multiple founders and unphased

chromosomes. This method deals with case-control data and

explicitly models ancestral haplotypes on which the original,

disease-causing mutations occurred. As with the method of

McPeek and Strahs,3 this method estimates b, the recombi-

nation distance from the disease locus to the left-most marker,

along with the recombination event to the left and right of the

disease locus. Software to implement this method is available

at http://fas.harvard.edu/~junliiu/TechRept/03folder/bla-

dev2.tgz. The software is available for Linux on x86 processors

and uses a command line interface. The latest version, version

2, allows for inference on phased and unphased haplotypes.10

Spatially-based haplotype methods
Spatially-based gene mapping methods are usually based upon

the idea that ‘similar’ haplotypes are likely to carry a common

disease-causing variant and hence have the same or similar

risk. A similar idea is employed in the field of spatial

statistics,11,12 in which ‘regions’ (haplotypes in this case) often

display some kind of spatial dependence structure, and regions

of higher risk are often clustered together.

The key to applying spatial statistical methods to haplo-

type analysis is to decide upon the distance metric one will

use to determine how ‘close’ one haplotype is to another. In

haplotype analysis, the distance metric could be as simple

as the proportion of marker loci at which two haplotypes are

the same, or the length of the longest contiguous segment

over which they are identical by state. Alternatively, if one

wanted to estimate the location of a single disease-bearing

mutation, one could calculate the length of segment shared

by the two haplotypes around the position of the hypo-

thesised mutation.

Thomas et al.13 and Molitor et al.14 used spatial smoo-

thing techniques to perform fine-mapping in a Bayesian

context. In order to impose a kind of dependency structure on

the haplotype effects so that similar haplotypes are induced to

have similar risks, a conditional autoregressive (CAR) prior is

used.15 A matrix of weights is used to indicate the ‘closeness’ of

one haplotype to another, with close haplotype pairs weighted

with high values and distant haplotype pairs weighted with

low values. Conditionally, the prior for each haplotype risk is

expressed as a univariate normal distribution centred on the

weighted average of all the haplotype risks.

Clustering methods
Bayesian clustering methods are similar to spatial smoothing

techniques in that similar haplotypes are induced to have

similar risk. Rather than smoothing the risks based upon

spatial similarity, however, haplotypes are placed into spatially

homogeneous clusters with constant risk. Molitor et al.16

applied this approach to gene mapping by assuming that each

cluster is determined by a ‘centre’ corresponding to a proto-

typical haplotype, which can be seen as analogous to the

ancestral haplotype from which the other haplotypes in the

cluster are derived. The identities of the centres will define the

way that haplotypes are allocated to their respective clusters.

Given a set of haplotype centres, any observed haplotype

will be placed into the cluster corresponding to the closest

centre. Here, the risk for a haplotype cluster c is defined as

gc , N ða;s2
gÞ: A simple model is then used.

Probit ½Prðyi ¼ 1Þ* ¼ gchi ð1Þ
The above model is written for haploid data, but could be

extended to handle diploid data by adding a second risk term

in equation (1) (plus potential interaction terms) and then

treating the haplotypes as latent variables in the MCMC

algorithm. As with spatial smoothing techniques, a distance

metric is chosen that contains the location of a putative

mutation and this location can be estimated as part of the

modelling process. Command-line Linux-based software to

implement this method for case-control data can be obtained

on request from the corresponding author.

Although not formulated in a Bayesian framework (the

focus of this paper), it is worth mentioning another method

based upon clustering of haplotypes that has been proposed by

Durrant et al.17 This method is based upon cladistic clustering

of haplotypes constructed from simple hierarchical averaging

techniques. At each partition, clusters of haplotypes from the

previous partition are merged together. The cladogram suc-

cessively partitions haplotypes T½h*;T½h2 1*;K;T½1*: The
first partition, T½h*; consists of h clusters; subsequent

partitions merge together increasingly diverse clusters of

haplotypes. The final partition, T½1*; combines all haplotypes

into a single cluster. For large genomic regions, similarity is

defined within a sliding window of SNPs. The method has

been coded in the CLADHC algorithm and can be obtained

from the corresponding author.
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Hierarchical modelling methods

Hierarchical methods usually treat allelic effects as a parameter

of interest and then use a hierarchical structure to capture the

dependence between alleles at different markers based on LD.

Recognising the variation that exists across measures of LD,

Conti and Witte18 introduced a hierarchical model to

incorporate haplotype block structure and the expected spatial

dependency among the markers. They assume a linear

relation between the measures of LD, b ¼ ðb1;K;bLÞ; and
marker-specific covariates and spatially correlated random

effects,

b ¼ Zgþ 1; where 1 , NLð0L; t2GTGÞ: ð2Þ
Here, Z is a pre-determined second-stage design matrix

composed of indicator variables distinguishing which markers

are in a particular haplotype block and g is a column

vector of coefficients corresponding to the effects on disease

of each block defined in Z. 1 is a vector of random effects

reflecting within-block variability. Spatial dependencies

between the markers can be incorporated into the model

through the specification of TG; a L £ L covariance matrix

for the random effects. The above model allows for markers

within the same block to borrow information from one

another to improve estimation. Using a two-stage estimation

procedure and a semi-Bayes approach with s 2 pre-specified,

they demonstrate potential improvements in the pattern of

LD. Furthermore, this model can be easily extended to a fully

Bayesian framework that also includes the estimation of s2
G:

Kilpikari and Sillanpää introduced a hierarchical method

for multi-locus association analysis of quantitative and binary

traits that postulates different parameters for allelic effects at

each marker but selects a trait-associated subset of markers

among candidates to be analysed at each cycle of the MCMC

sampler.19 Final results from different models are presented as

locus-specific probabilities using Bayesian modelling

techniques. This model averaging approach has computational

advantages, in that a relatively small, computationally

manageable subset of all possible models is analysed at each step

in the estimation process. This allows the method to be applied

efficiently to wide chromosomal segments. The

software is freely available for research purposes under the

name BAMA at URL http://www.rni.helsinki.fi/~mjs.

Approximate coalescent methods

The pattern of marker data seen in a sample of individuals

is shaped by the interplay between the processes of mutation

and recombination that occur over the evolutionary history of

the sample. This ancestral history or genealogy of the sample is

widely and successfully described by a stochastic process

known as the coalescent.20 The use of the coalescent as the

foundation of a model-based analysis approach has been shown

to provide a great deal of power in such contexts. While the

basic form of the coalescent is a simple Markov chain, however,

many complicating factors— such as recombination, population

structure and selection— would, ideally, need to be added in

order to accurately approximate the processes that are likely to

have shaped a sample drawn in a fine-mapping context.

The use of the coalescent in a disease-mapping context is

still in its infancy. Initially, several methods used the star-

phylogeny, an ancestry in which all sampled haplotypes are

assumed to evolve completely independently, to approximate

the genealogy of the sample.21 While the use of a star-phy-

logeny allows one to avoid a good deal of computational

complexity, it fails to capture the correlations induced by the

shared ancestry of the sample. Consequently, the variance of

the estimates of posterior parameters is likely to be underes-

timated. Realising this, others have attempted to include

more accurate approximations to the coalescent process.3,22,23

McPeek and Strahs use a star-shaped genealogy, but correct

for pair-wise correlations between loci.3 Their DHSMAP

software is available at http://galton.uchicago.edu/~mcpeek/

software/dhsmap/. Graham and Thompson introduce the

notion of ‘recombinant classes’ to model the possible

existence of several ancestral mutational events from which

the sampled cases may have derived.22 Software is available at

http://www.stat.sfu.ca/~jgraham/Papers/Programs/Disequili-

briumMapping/. Rannala and Reeve exploit data from an

annotated human genome sequence (HGS) as well as data

from multiple markers.23 They use the HGS to generate a

prior distribution for the location of functional mutations.

Their DMLE þ software is available at http://dmle.org/.

Perhaps the best of these latter approaches is that of Morris

et al., which involves the use of the shattered coalescent.5 This

process captures much of the correlation induced within

sampled cases, while approximating that of the controls using

more star-like models. Their software is available via e-mail

from AndrewMorris at the Wellcome Trust Center forHuman

Genetics, and is perhaps the most powerful coalescent-based

method currently available, although issues of computational

complexity prevent its use on datasets involving many markers.

The last word on coalescent-based algorithms for fine-

mapping has yet to be written. The key question is this: which

parts of the coalescent process need to be included in order to

accurately capture the influence of the ancestry on the pattern

of LD, and which parts can be ignored in order to gain power

by improving computational efficiency? The methods of

Terwilliger21 and Morris et al.5 fall at opposite ends of this

spectrum, while those of the other methods referenced in this

section lie somewhere between the two.

Conclusion

Bayesian methods are becoming ever more popular in the field

of gene mapping, including recent developments in model
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selection (reviewed in Sillanpää and Corander24). Here the

authors have summarised some of the more popular currently

available methods in this area. (For a more technical review of

Bayesian haplotype association methods, see Thomas et al.25)

One area that has not been discussed here is the issue of phase

estimation. The standard approach to fine mapping with

phase-unknown haplotypes is first to estimate haplotype phase

with a program such as PHASE26 and then to use these

estimated haplotypes in a fine-mapping program. One

advantage of Bayesian fine-mapping methods, however, is

that haplotype phase estimation can be incorporated into a

fine-mapping procedure in a unified manner. That is, one can

properly account for phase uncertainty in a way that is not

possible in a two-stage process. While recent extensions of the

expectation-maximisation (E-M) algorithm6 have provided a

frequentist framework for unified inference on haplotype

associations allowing for phase uncertainty, many of the pre-

viously mentioned Bayesian gene-mapping methods can deal

with phase unknown haplotypes in a coherent way.

As mentioned previously, the authors do not claim that this

summary is exhaustive. Indeed, given the rate at which this

field is progressing, it is quite possible that substantial new

methods will be introduced in the time it takes for this paper

to reach publication. Although much has been accomplished

in this field, clearly more work needs to be done, and, as such,

it is likely that this field will continue to undergo rapid

expansion.

References
1. Beaumont, M.A. and Rannala, B. (2004), ‘The Bayesian revolution in

genetics’, Nat. Rev. Genet. Vol. 5, pp. 251–261.

2. Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (1996), Markov chain

Monte Carlo in practice, Chapman and Hall, London, UK.

3. McPeek, M.S. and Strahs, A. (1999), ‘Assessment of linkage disequilibrium

by the decay of haplotype sharing, with application to fine-scale genetic

mapping’, Am. J. Hum. Genet. Vol. 65, pp. 858–875.

4. Liu, J.S., Sabatti, C., Teng, J. et al. (2001), ‘Bayesian analysis of haplotypes

for linkage disequilibrium mapping’, Genome Res. Vol. 11, pp. 1716–1724.

5. Morris, A., Whittaker, J. and Balding, D.J. (2002), ‘Fine-scale mapping of

disease loci via shattered coalescent modeling of genealogies’, Am. J. Hum.

Genet. Vol. 70, pp. 686–707.

6. Stram, D.O., Pearce, C.L., Bretsky, P. et al. (2003), ‘Modeling and E-M

estimation of haplotype-specific relative risks from genotype data for a

case-control study of unrelated individuals’, Hum. Hered. Vol. 55,

pp. 179–190.

7. Stram, D.O., Haiman, C.A., Hirschhorn, J.N. et al. (2003), ‘Choosing

haplotype-tagging SNPs based on unphased genotype data using a

preliminary sample of unrelated subjects with an example from the

multiethnic cohort study’, Hum. Hered. Vol. 55, pp. 27–56.

8. Zhang, K., Qin, Z.S., Liu, J.S. et al. (2004), ‘Haplotype block partitioning

and tag SNP selection using genotype data and their applications to

association studies’, Genome Res. Vol. 14, pp. 909–916.
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