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Abstract
Longitudinal studies are an important tool for analysing traits that change over time, depending on individual

characteristics and environmental exposures. Complex quantitative traits, such as lung function, may change over

time and appear to depend on genetic and environmental factors, as well as on potential gene–environment

interactions. There is a growing interest in modelling both marginal genetic effects and gene–environment inter-

actions. In an admixed population, the use of traditional statistical models may fail to adjust for confounding by

ethnicity, leading to bias in the genetic effect estimates. A variety of methods have been developed to account for

the genetic substructure of human populations. Family-based designs provide an important resource for avoiding

confounding due to admixture. To date, however, most genetic analyses have been applied to cross-sectional

designs. In this paper, we propose a methodology which aims to improve the assessment of main genetic effect

and gene–environment interaction effects by combining the advantages of both longitudinal studies for continu-

ous phenotypes, and the family-based designs. This approach is based on an extension of ordinary linear mixed

models for quantitative phenotypes, which incorporates information from a case–parent design. Our results

indicate that use of this method allows both main genetic and gene–environment interaction effects to be

estimated without bias, even in the presence of population substructure.
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Introduction

In spite of the multiple efforts to find genetic factors

conferring susceptibility to complex diseases, the

success of genetic association studies is still hampered

by the difficulty in replicating findings in different

populations. Among the plausible explanations for

this lack of replication is the fact that the effects of

environmental factors, which can interact with

genetic factors, are not always taken into consider-

ation.1 There is an increasing interest in studying

different susceptibilities to environmental factors in

subjects with different genotypes; however, power

and bias issues with regard to the statistical estimation

of gene–environment interaction effects persist.

High-quality information about individual

environmental exposure is crucial for the
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assessment of gene–environment interactions.2

Failure to measure changes in exposure levels

over time could lead to an underestimation of

the role of the environment in the interaction.

Repeated measurements of the temporal relation-

ship between an outcome and the exposure may

overcome such a problem when both the endpoint

and the exposure are time-dependent variables.

In addition, potential misclassification due to ambi-

guity in the definition of complex diseases may be

avoided through the measurement of quantitative

disease-related phenotypes as the outcomes of

interest. For example, quantifying the decrements

in lung function over time through repeated spiro-

metric tests may provide insights into the pathogen-

esis of chronic obstructive pulmonary disease

(COPD) or asthma. Many disease ‘predictor’ phe-

notypes are thought to change within-subject

because of both environmental and genetic factors,

and of their potential interactions over time.

On the genetic side, population substructure is

an important practical issue for genetic association

studies. When the study population is not a collec-

tion of randomly mating individuals, several dis-

crete subgroups that are genetically different may

be identified; the collection of these subpopulations

is referred to as population substructure or stratifi-

cation.3 Moreover, disease prevalence also tends to

differ among these subgroups.4 Consequently,

without stratification adjustment, allele frequency

can appear to be associated with the disease,

regardless of whether the genotype has a functional

effect on that health outcome or not. By contrast,

when the genotype distribution is homogeneous

among groups, population substructure may not be

an issue. For example, if people are randomly

assigned to treatment groups, it is expected that

those groups will be genetically similar. If,

additionally, there are no differences in the response

to treatment among the different subgroups, bias

due to population substructure is unlikely.

Another source of spurious associations is popu-

lation admixture, which refers to the mixture of

different ancestries; that is, people from different

ethnic groups interbreed, so the genome of the new

generations is a combination of genotypes of the

original ancestry groups, and, consequently, in some

genes, allele frequencies are not homogeneously dis-

tributed in the study population. For example, it has

been recognised that Latino populations have

varying proportions of African, Native American

and European ancestry.5 Like population substruc-

ture, if the risk of disease depends on ancestry, a

high risk of disease may be erroneously associated

with a high allele frequency; thus, in admixed popu-

lations, ethnicity may confound associations between

genotype and outcome and assessment of gene by

environment interactions. The direction of the con-

founding could be positive or negative. Therefore,

to identify true associations, population substructure

must be taken into account in the analysis.

With the increasing availability of genetic data,

there is a growing interest in modelling both mar-

ginal genetic effects and gene–environment inter-

actions. Inclusion of interactions, when they exist,

can increase the statistical power of detecting both

genetic and environmental effects.6 Traditional stat-

istical models for detecting significant main effects

and interactions may not be completely adequate

for studying genetics in admixed or stratified popu-

lations, however.

A variety of methods have been developed to

account for the genetic substructure of human

populations.7 Family-based designs provide an

important resource for avoiding confounding due

to admixture.8 The simplest design for testing

association is the case–parent (or trio) design

because it uses genotypes from an affected off-

spring, the case, and his/her two parents. The

outcome is measured, however, only in the off-

spring. Many of these methods have been devel-

oped for cross-sectional designs, but can be applied

to repeated measurements through the two-step

modelling approach. The first step consists of calcu-

lating the slope between the longitudinal outcome

and the time-dependent environmental exposure;

thus, we calculate a single individual endpoint, the

slope, for each subject. In the second step, the

genetic methods for cross-sectional studies, where

the slope is the single outcome, can be applied.9

In this paper, we first provide a short review of

different approaches for studying gene–environment
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interactions for quantitative traits, and then propose a

method that aims to improve the assessment of main

and gene–environment interaction effects by com-

bining the advantages of both longitudinal studies

for continuous phenotypes and the family-based

designs. This approach is based on an extension of

ordinary linear mixed models (OLMM) for quanti-

tative phenotypes which incorporates information

from a case–parent design. We call the model the

‘adjusted linear mixed model’ (ALMM), and

through simulation methods we show that even

when population stratification is present, both main

genetic and gene–environment interaction effects

can be estimated without bias, and that this is more

powerful than the two-step modelling approach.

The broad objectives of this paper do not extend

to giving technical details about the family-based

approach and its extensions, or to giving an

extensive explanation about linear mixed models.

Rather, we present what we consider to be a

widely applicable method for correctly assessing the

main genetic effect and gene–environment inter-

actions for time-dependent quantitative traits in

stratified populations. For this purpose, we use

simulated repeated measurements of forced expira-

tory flow between 75 per cent and 25 per cent of

vital capacity (FEF25–75) ie (lung function) on asth-

matic children exposed to ozone pollution, based

on the observed distributions in a real cohort study

conducted in Mexico City.10

In order to set the stage for our methodology,

we first provide a brief overview of some existing

ordinary linear regression (OLR) models for testing

main genetic effects and gene–environment inter-

actions in cross-sectional studies that incorporate

information about parental genotype (case–parent

or trio design), adjusting for admixture. We then

briefly present the family-based association test

(FBAT) approach, which, as a second step (after

computing the slope between the outcome and the

exposure), represents an alternative method for ana-

lysing genetic associations over time. We next

review the ordinary linear mixed models (OLMM)

which are a standard approach for the analysis of

longitudinal data, and present the adjusted linear

mixed models (ALMM) as an extension of OLMM

combined with the adjusted cross-sectional

regression models. In order to show that the

two-step modelling approach provides a valuable

alternative for analysing longitudinal data, we

explain the relationship between this approach and

the linear mixed models. Finally, we give details

about the simulation procedures and present our

results and discussion.

Methods

Models for cross-sectional data with a single
quantitative measure for each subject

Existing methods for testing main genetic effect and

gene–environment interactions with a single

measured outcome include (1) OLR models and

extensions that aim to adjust for ethnicity by includ-

ing parental genotype information in a case–parent

or trio design, and (2) the FBAT approach, which

uses a score test based on a conditional likelihood.11

The OLR approach

In a genetic association analysis with quantitative

traits that follow a linear model, the assessment of

gene–treatment interactions may be conducted

using standard linear regression models for inde-

pendent subjects. Under the usual assumptions, the

well known model for testing the interaction

between two covariates is:

EðYijX ;ZÞ ¼ b0 þ b1Xi þ b2Zi þ b3XiZi

for i ¼ 1; 2; . . . n;
ð1Þ

where:

n is the number of subjects in the study;

Xi is a fixed variable that translates an offspring

genotype into a numeric value; and

Zi is an observed environmental covariate, either

continuous or dichotomous.

Xi is a scalar whose value depends on the disease

model. If the locus has two alleles, A and a, the

additive model assumes that each copy of the

variant allele* ‘A’ changes the outcome in an addi-

tive amount. Thus, Xi counts the number of ‘A’

*Usually the variant allele is the less frequent.
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alleles in the offspring genotype ðXi ¼ f0; 1; 2gÞ.
In the recessive model, Xi is coded as an indicator

variable for the AA genotype. As a special case,

model (2) is used for testing main genetic effects

adjusted for the environmental covariate:

EðYijX ;ZÞ ¼ b0 þ b1Xi þ b2Zi ð2Þ

A rejection of the null hypothesis H0 : b1 ¼ 0

means that the quantitative trait is associated with

the alleles in the marker.

The case–parent or trio design

Unlike OLR models, family designs aim to avoid

spurious associations due to population admixture.

In the case–parent design, the proband is the off-

spring that identifies the family for the study; the

genotypes of the candidate gene are measured for

all members of the trio, but the quantitative trait is

measured only in the offspring. The alternative

form of the OLR approach for testing main

genetic effect on quantitative outcomes, where the

parental genotype information is included, was

developed by Allison;12 it is based on the simplest

family-based design for testing associations, known

as the transmission disequilibrium test (TDT).13

The model is adjusted for the expected value of

the offspring’s genotype conditional on the parental

genotypes; thus, the adjusted version of model (2) is:

EðYijX ;ZÞ ¼ b0 þ b1ðXi � EðXijgim; gif ÞÞ
þ b2Zi ð3Þ

where:

gim; gif are the parental genotypes (mother and

father, respectively) and EðXijgim; gif Þ is calculated

under segregation and independent assortment

assumptions using Mendel’s law. Its value depends

on the mating type and the disease model.

The adjusted genotype Xi � EðXijgim; gif Þ is the

subject’s deviation from the family mean under

Mendel’s law. b1 represents the within-family effect

of the gene on the outcome. As a result of centring

Xi by its expected value conditional on parental

genotypes (gim; gif ), ethnicity bias is avoided, since

all possible genotypes — depending on the mating

type — are taken into account, even those that

were not transmitted to the affected offspring. This

strategy does not, however, necessarily prevent bias

due to other kinds of population stratification,14

such as the one that occurs when parental mating

type is highly correlated with the levels of

exposure, for example. For this reason, Allison12

and Ewens et al.14 propose an alternative version of

model (3) in which the intercept, representing the

between-family component, depends on the

mating type as a fixed effect:

EðYijX ;ZÞ ¼ b0M þ b1ðXi � EðXijgim; gif ÞÞ þ b2Zi

¼ ~b0M þ b1Xi þ b2Zi

ð4Þ

where:

~b0M ¼ b0M � b1EðXijgim; gif Þ

and M ¼ 1, 2, 3 are the three possible mating types

with at least one heterozygous parent, including

informative families only.† Note that here and in

subsequent equations, M depends upon i via the

parental genotypes, but this is suppressed for

simplicity.

It is noteworthy that since both b0M and

EðX jgim; gif Þ are constant within the mating type,

the estimation of the main genetic effect (b1)

through model (4) is completely equivalent to

using model (5):

EðYijX ;ZÞ ¼ b0M þ b1Xi þ b2Zi ð5Þ

Following the same idea, Gauderman15 proposed

a likelihood ratio test (LRT) of b1 in model (5),

although, in order to increase the power for detect-

ing main genetic effects, he included the whole set

of families, regardless of the heterozygous con-

dition. This is called the quantitative transmission

disequilibrium test with mating type indicators

(QTDTM). An extension of the QTDTM to

†There are six different mating types: AAXAA, AAXAa, AAXaa, AaXAa,
AaXaa, and aaXaa. When both parents are homozygous, the observed and
conditional expected genotypes are equal and it is said that the family is not
informative.
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include the environmental covariate and the gene–

environment interaction was also suggested by

Gauderman15 with the model:

EðYijX ;ZÞ ¼ b0M þ b1Xi þ b2Zi þ b3XiZi ð6Þ

Where M ¼ 1, 2, . . . , 6 are the six possible

mating-types.

In contrast to the relationship between models

(4) and (5), model (6) is not equivalent to:

EðYijX ;ZÞ ¼ b0M þ b1½Xi � EðXijgim; gif Þ�
þ b2Zi þ b3Zi½Xi � EðXijgim; gif Þ�

ð7Þ

because, although b0M and EðXijgim; gif Þ are con-

stant within mating type, the environmental covari-

ate (Zi) is not.

An alternative model to (7), (and an extension of

Gauderman’s idea), is given by the adjusted model

that we call the adjusted quantitative transmission

disequilibrium test with mating-type indicators

(AQTDTM).

EðYijX ;ZÞ ¼ b0M þb1½Xi �EðXijgim; gif Þ� þb2MZi

þb3Zi½Xi �EðXijgim; gif Þ� ð8Þ

where now both the intercept and the slope for the

environmental covariate depend on the mating

type, which means that the model has been

adjusted for a potential correlation between the

exposure to environmental factors and the mating

type. Note that now model (8) is equivalent to:

EðYijX ;ZÞ ¼ b0M þb1Xi þb2MZi þb3ZiXi ð9Þ

The advantage of using models (5) and (9) is that

the inclusion of an indicator variable for the mating

type, rather than calculating the expected genotype,

provides protection against population admixture

while taking into account those situations where

environmental exposure (Z) may depend on the

mating type and other additional types of population

substructure.14 As usual, in (6), (7), (8) and (9), b3

estimates the effect modification of the gene on the

environmental effect Zi and H0 : b3 ¼ 0 is the null

hypothesis that states the no interaction effect.

The FBAT approach

FBAT is the generalisation of the TDT for the trio

design. It encompasses a broad class of statistical

methods for testing genetic associations adjusting for

potential admixture or stratification. Such methods

are also based on extensions of the TDT and

regression models, although the covariance between

genotype and phenotype is the statistic of interest.11

The general FBAT statistic has been explained else-

where.16 Briefly, for n nuclear families, one offspring

in the family i and no covariates:

x2
FBAT ¼ U2

VarðUÞ ð10Þ

where:

U ¼
X

ðYi � EðYiÞÞ�ðXi � EðXijgim; gif ÞÞ½ �

for i ¼ 1; 2; . . . n;

VarðUÞ ¼
X

i

ðYi � EðYiÞÞ2�VarðXijgim; gif Þ;

and EðXijgim; gif Þ and VarðXijgim; gif Þ are calculated

under the null hypothesis of Mendel’s law. This stat-

istic follows a chi-square distribution with one degree

of freedom. In addition, unlike regression models

where the offspring’s genotype is assumed to be fixed

and observed, the general FBAT approach considers

the offspring genotype as a random variable. The

general idea is first to calculate a test statistic for the

association between the trait and the marker locus,

and then, as a second step, the distribution of this test

statistic is derived from the distribution of the off-

spring genotype under the null hypothesis of no

association. The distribution of the test statistic is

computed conditioning on the sufficient statistic

given by the parental genotype and the observed off-

spring’s phenotype. Under these conditions, no

assumptions about the allele frequency, the recombi-

nation fraction or the penetrance function are

required. Due to the fact that the general FBAT stat-

istic can only test main genetic effects, and since the

test statistic is based the relative size of U with respect

to its standard deviation, the genetic effect is not

directly estimated.
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Under the philosophy of the FBAT, Vansteelandt

et al.17 proposed an extension that permits the

assessment of and testing for the gene–environ-

ment interaction without any assumptions about

the genotype distribution and with no bias due to

unmeasured ethnicity confounding through which

Mendel’s laws hold. Such an extension is based on

G-estimation (causal inference) methodology and is

called QBAT-I; this test statistic has the same form

as the general FBAT (10), although the expected

genotype and the U statistic have more complex

expressions. A brief presentation of both FBAT and

QBAT-I can be found in Appendix 1.

FBAT and QBAT-I statistics are available from

PBAT free software at http://biosun1.harvard.edu/

~clange/pbat.htm and in the library pbatR under

the R package environment.

Models for longitudinal data

Until now, we have discussed methods for analysing

gene–environment interactions when a single

measurement of the phenotype is available. We

now turn to a discussion of methods for the analy-

sis of quantitative repeated phenotype data to evalu-

ate the effects of a gene and the environment over

time.

In longitudinal designs, the unit of study is not

each individual or each measurement, but rather

the sequence of measurements on each subject.

This means that the major advantage of a longi-

tudinal analysis is that the so-called cohort and age

effects are estimated separately; that is, differences

among people in their baseline levels (cohort

effects), can be discriminated from the changes over

time (ageing effects) within individuals. In other

words, measurements across people and repeated

values across time are sources of strength. Note that

cross-sectional data provide information for asses-

sing only the former effect; thus, longitudinal

studies tend to be more powerful than cross-

sectional studies.18

Although there are different approaches to longi-

tudinal data analysis, we consider here the two

most commonly used: OLMM and two-step

methods.

OLMM

OLMM assumes that the vector of repeated

measurements on each subject follows a linear

regression model. Thus, each individual model may

have subject-specific intercept and slope (the

random effects) representing the different suscepti-

bilities to the environmental exposure among sub-

jects. For most outcomes, variability across

individuals is greater than within-subject. This

difference may be due the influence of genetic

composition.19

In general, a linear mixed-effects model satisfies:

Yij ¼ a0 þ a1tij þ a2Zi þ a3Xi þ a4XiZi þ a5Xitij

þ a6Zitij þ a7XiZitij þ b1i þ b2itij þ eij

ð11Þ

where:

i ¼ 1; 2; 3; . . . ; n subjects;

j ¼ 1; 2; 3; . . . ;m corresponding times at which the

measurements are taken on each subject;

tij is the repeated time (or exposure) variable;

b1i is the random subject intercept effect (a0 þ b1i),

which varies among subjects;

b2i is the random subject slope effect ða1 þ b2iÞtij,
which varies among subjects;

eij is a random variable regarded as measurement or

sampling errors;

Eðb1iÞ ¼ Eðb2iÞ ¼ EðeijÞ ¼ 0

Varðb1iÞ ¼ s2
b1; Varðb2iÞ ¼ s2

b2; VarðeijÞ ¼ s2;

Covðb1i; b2iÞ ¼ s12;

and Xi and Zi are as previously defined. Note that

model (11) assumes that both genotype (Xi) and

environmental exposure (Zi) remain fixed over

time. However, we can take advantage of the time

variable (tij) to include an extra source of exposure

that changes across time. For example, we are par-

ticularly interested in the assessment of the

gene–environment interaction effect between the

glutathione-S-transferase M1 gene (GSTM1) and
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antioxidant supplementation on lung function —

FEF25–75 — of asthmatic children exposed to ozone.

Therefore, in model (11), Xi represents the indi-

vidual GSTM1 genotype and Zi is a dichotomous

variable that denotes the antioxidant supple-

mentation group which was randomly assigned at

baseline and remained fixed during follow-up, and

which since ozone is a time-dependent variable,

can be represented by tij. This is a model with

random intercept and random slope on ozone. As

for ordinary linear regression models in cross-

sectional studies, OLMM assumes independent

subjects and does not account for population

admixture. Therefore, in order to avoid potential

estimation bias, it is necessary to adjust for

ethnicity.

ALMM

The ALMM form is a straightforward extension of

the approaches presented for the cross-sectional

designs. That is, following the ideas of Allison,12

Ewens et al.14 and Gauderman,15 model (12) can

be rewritten using the indicator variables for the

mating type and the offspring’s conditional

expected genotype:

FEF2575ij ¼ a0M þ a1Mtij þ a2Zi

þ a3½Xi � EðXijgim; gif Þ�
þ a4½Xi � EðXijgim; gif Þ�Zi

þ a5½Xi � EðXijgim; gif Þ�tij þ a6MZitij

þ a7½Xi � EðXijgim; gif Þ�Zitij

þ b1i þ b2itij þ eij

ð12Þ

where i, j, b1i, b2i, eij are as defined for (11); Xi rep-

resents the GSTM1 genotype; Zi denotes the anti-

oxidant supplementation group; tij represents the

ozone exposure and M ¼ f1,2, . . . , 6g are the six

possible mating types. This model is an extension of

(11) and is able to control for population admixture

and for any dependence of the environmental

exposure on mating type. Once again, using an indi-

cator variable for the mating type prevents controls

for other potential sources of population structure.

Note that, as in model (8), the simplest, but

equivalent, expression for the above model that

does not need the calculation of the expected gen-

otype is given by:

FEF2575ij ¼ a0M þ a1Mtij þ a2Zi þ a3Xi þ a4XiZi

þ a5Xitij þ a6MZitij þ a7XiZitij

þ b1i þ b2itij þ eij

ð13Þ

Through this model, the main genetic and

environmental effects and gene–environment inter-

actions can be assessed using standard statistical soft-

ware. Additional advantages of this model are that

genetic and longitudinal effects are estimated simul-

taneously; thus, parameters are mutually adjusted

for each other9 and within- and between-individual

variabilities are taken into account. Moreover, the

model can be adjusted by other covariates, such as

gender and age at baseline, or even by smooth

functions of variables which have non-linear associ-

ation with the outcome. In particular, in the

example, two sources of environmental exposures

— supplementation treatment (a constant) and

ozone (which is time dependent) — are included.

Computationally, longitudinal models require more

complex algorithms than those corresponding to

cross-sectional designs; however, this is no longer a

problem for the users of statistical packages.

Appendix 1 includes the R code for estimating the

effects of model (13).

Two-step modelling approach

As the term implies, this approach includes two

separate steps. In the first step, it is assumed that the

repeated measures on subject i, are independent

and follow a linear regression model. Therefore,

the individual intercept and slope are estimated by

an ordinary linear regression model:

Yij ¼ g0i þ g1itij þ eij ð14Þ

Therefore, different regression coefficients (g0

intercept and g1 slope) correspond to different

individuals. For example, with the lung function

data, the outcome is the repeated FEF25–75 and g1
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represents individual susceptibility to ozone over

time. Thus, the longitudinal observations are

reduced to one summary statistic per subject.20 The

second step includes the genetic analysis where

these slopes are the single outcome for each person.

This approach has been frequently used in segre-

gation, linkage and association analysis.9 The R

code for these models is included in Appendix 1.

It is interesting to note the close relationship

between the coefficients in the two-step model and

the respective coefficients in a linear mixed model.

That is, by definition, from the ordinary linear

regression model (14):

slopei ¼ g1i ¼
P

jðYij � �YiÞðtij ��tiÞ
P

jðtij ��tiÞ2

where Yij is given by (11) and

�Yi ¼ a0 þ a1�ti þ a2Zi þ a3Xi þ a4XiZi þ a5Xi�ti

þ a6Zi�ti þ a7XiZi�ti þ b1i þ b2i�ti þ�ei

Thus, it is straightforward to show that

slopei ¼ a1 þ a5Xi þ a6Zi þ a7XiZi þ�ei

) EðslopeijX ;ZÞ ¼ a1 þ a5Xi

þ a6Zi þ a7XiZi

This therefore enables one to relate the a coeffi-

cients of the linear mixed model to the b coeffi-

cients of the ordinary linear regression model given

by (1) as follows: b1 ¼ a5 and b3 ¼ a7 represent-

ing the main genetic effect and the gene–treatment

interaction on the slope, respectively.

This approach is remarkably similar to that of

mixed models, although longitudinal and genetic

effects are not jointly estimated, and time-

dependent covariates need to be summarised in

one measurement — the mean or the median, for

example — in order to be included in the analysis.

Computationally, this procedure is simpler than

mixed models, and any elemental statistical package

will suffice for conducting the analysis.

Table 1 summarises the different models included

in this section.

Simulations

Here, we address differences in the analytical

approaches, in terms of both bias and power, for

detecting main genetic effects and gene–environ-

ment interactions using simulations.

In order to compare the different methods pre-

sented, we simulated data with similar character-

istics to those in the study by Romieu et al.10

Briefly, this study was a randomised trial using a

double-blinded and longitudinal design, including

antioxidant supplementation for asthmatic children

who were residents of Mexico City and therefore

exposed to ozone pollution. There were 12

repeated measures for both FEF25–75 and ozone.

The deletion polymorphism of GSTM1, absent

versus present, was determined for each child and,

through a stratified analysis, evidence for inter-

action between the antioxidant treatment (dichoto-

mous and fixed variable) and the GSTM1

genotype was seen for the effect of ozone on lung

function.

For our simulations, 12 repeated measures of

lung function (FEF25–75) were generated for each

offspring with a mean vector given by a linear

mixed model conditional on treatment, genotype

and ozone level, assuming an additive (or recessive)

disease model (15). An error vector was added to

each mean by drawing from a multivariate normal

distribution. The variance–covariance matrix of the

errors was assumed to be equal to the observed var-

iance–covariance matrix among the residuals in the

real data, where model (15) was fit to the repeated

FEF25–75 measurements.

For the purpose of using the family-based

approach, samples of independent trios were simu-

lated. Each parent was randomly assigned a geno-

type assuming the Hardy–Weinberg equilibrium,

while each offspring was assigned a genotype

assuming Mendel’s law. Treatment (Z) was ran-

domly and independently assigned for each subject

i with a 50 per cent probability for supplement or

placebo group. Both additive and recessive disease

models were considered.

With regard to the population stratification, two

different situations were considered: the first one

assumed a homogeneous population (HP), where
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Table 1. Regression models included in the paper . The ‘Model’ column refers to the number that identifies each model in the paper.

Models for cross-sectional data

Model Independent subjects design Case–parent design Comments

Main genetic effect

(2) EðYijX;ZÞ ¼ b0 þ b1Xi þ b2Zi Ordinary linear

regression model

(3) EðYijX;ZÞ ¼ b0 þ b1ðXi � EðXijgim; gif ÞÞ þ b2Zi Adjusted version of (2).

The model is adjusted

by the expected value

of the offspring’s

genotype conditional to

the parental genotypes

(4) EðYijX;ZÞ ¼ b0M þ b1ðXi � EðXijgim; gif ÞÞ þ b2Zi Gauderman’s model

(QTDTM) adjusted for

the covariate Z

(5) EðYijX;ZÞ ¼ b0M þ b1Xi þ b2Zi (4) equivalent to(5)

(10) x2
FBAT ¼ U2

VarðUÞ FBAT statistic

Gene–environment interaction

(1) EðYijX;ZÞ ¼ b0 þ b1Xi þ b2Zi þ b3XiZi Ordinary linear

regression model

(6) EðYijX;ZÞ ¼ b0M þ b1Xi þ b2Zi þ b3XiZi Gauderman’s model

(QTDTM)

(7) EðYijX;ZÞ ¼ b0M þ b1½Xi � EðXijgim; gif Þ� þ b2Zi

þ b3Zi½Xi � EðXijgim; gif Þ�

(6) is not equivalent to

(7) when the

environment covariate

(Zi) is not constant

within mating type.

(8) EðYijX;ZÞ ¼ b0M þ b1½Xi � EðXijgim; gif Þ� þ b2MZi

þ b3Zi½Xi � EðXijgim; gif Þ�
Adjusted QTDTM

(9) EðYijX;ZÞ ¼ b0M þ b1Xi þ b2MZi þ b3ZiXi (8) equivalent to (9)
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Table 1. Continued

Models for longitudinal data

Model Independent subjects design Case–parent design Comments

Main genetic effect

(19)
EðYijjX; Y; tÞ ¼ a0 þ a1tij þ a2Zi þ a3Xi þ a4XiZi

þ a5Xitij þ a6Zitij
Ordinary

linear mixed

model

(OLMM)

(20)
EðYijjX; Y; tÞ ¼ a0M þ a1Mtij þ a2Zi þ a3Xi þ a4XiZi

þ a5Xitij þ a6MZitij

Adjusted

linear mixed

model

(ALMM)

Gene–environment interaction

(11) Yij ¼ a0 þ a1tij þ a2Zi þ a3Xi þ a4XiZi þ a5Xitij

þ a6Zitij þ a7XiZitij þ b1i þ b2itij þ eij

Ordinary

linear mixed

model

(12) FEF2575ij ¼ a0M þ a1Mtij þ a2Zi þ a3½Xi

� EðXijgim; gif Þ� þ a4½Xi � EðXijgim; gif Þ�Ziþ
a5½Xi � EðXijgim; gif Þ�tij þ a6MZitij þ a7½Xi � EðXijgim; gif Þ�Zitij þ b1i þ b2itij þ eij

Adjusted

linear mixed

model

(ALMM)

(13) FEF2575ij ¼ a0M þ a1Mtij þ a2Zi þ a3Xi þ a4XiZi þ a5Xitij

þ a6MZitij þ a7XiZitij þ b1i þ b2itij þ eij

(13) is

equivalent

to (12)

Xi is a fixed variable that translates an offspring genotype to a numerical value; Zi is an observed environmental covariate, either continuous or dichotomous; gim; gif are the parental genotypes (mother and father,
respectively);EðXijgim; gif Þ is calculated under segregation and independent assortment assumptions using Mendel’s law; M ¼ 1, 2, . . .,6 are the six possible mating types; i ¼ 1; 2; 3; . . . ; n subjects; j ¼ 1; 2; 3; . . . ;m
measurement occasions into the subject; tij is the repeated time (or exposure) variable;

b1i is the random subject intercept effect; (a0 þ b1i) varies among subjects; b2i is the random subject slope effect: ða1 þ b2iÞtij varies among subjects; eij is a random variable regarded as measurement or sampling errors.
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the observed allele frequency for GSTM1,

PðaÞ ¼ 0:4 and PðAÞ ¼ 0:6,‡ was used for simulat-

ing the genotypes. The generating model we used

had the following form:

EðYijjX;Z; tÞ ¼ a0 þ a1tij þ a2Zi þ a3Xi þ a4XiZi

þ a5Xitij þ a6Zitij þ a7XiZitij

ð15Þ

Where: tij represents the time-dependent ozone

exposure; Zi is a dichotomous variable representing

the treatment group and Xi is either a continuous

variable counting the copy variant number of

GSTM1 (0, 1 or 2) in the additive disease model

or a dummy variable in the recessive case. The par-

ameters are:

a0 ¼ 1:8; a1 ¼ �0:8; a2 ¼ �0:2; a3 ¼ �0:05;

a4 ¼ 0:2; a5 ¼ 0:5; a6 ¼ 0:6;a7 ¼ 1:0

a0, a1, a2, a3, a4 are equal to the corresponding

estimates obtained through a linear mixed model

with random intercept and random slope on ozone

applied to the original dataset. With the only aim

to simulate situations where the effects are clearly

identified without using large samples but rather

looking at the differences between the methods,

a5, a6, a7 were magnified. Assigned values to a5,

a6, ða7Þ try to mimic the respective effects found

in the stratified analysis reported by Romieu et al.10

Specifically, the genotype effect for each part per

billion (ppb) of ozone was 0.8 ml/s in the placebo

group (n ¼ 78 subjects) and 0.16 ml/s in the sup-

plement group (n ¼ 80); thus, the main genetic

effect was taken as the rounded weighted average

effect, while ignoring the supplement effect. The

same procedure was applied to calculating the main

treatment effect. Finally, since the effect of antioxi-

dants was stronger in the GSTM1 null genotype

group (0.95 ml/s), and there was no significant

effect in the GSTM1-positive group, the coefficient

for the gene–treatment interaction on the lung

function–ozone relationship was rounded to 1.0.

Table S1 summarises the models used in the simu-

lation process and Table S2 shows the observed

effects in the real cohort study conducted in

Mexico City.

The second situation presumes a stratified popu-

lation (AP) with a 50/50 mix coming from two

populations with different allele frequencies and

different susceptibilities: P1ðAÞ ¼ 0:4; P1ðaÞ ¼ 0:6
and P2ðAÞ ¼ 0:8; P2ðaÞ ¼ 0:2. Note that, on average,

the combined population has the same allele fre-

quencies as the homogeneous one. With the

purpose of simulating differential susceptibilities to

ozone and supplementation, although allowing the

bias assessment for the main genetic and interaction

effects, generating model (15) differs in b0 and b6

coefficients (based on the observed percentiles).

That is, in the first population, the observed 95th

percentile for FEF25–75 (a0 ¼ 3:3) was used as the

intercept, and no treatment effect on the slope

a6 ¼ 0 was assumed. On the other hand, in the

second population, the 5th percentile (a0 ¼ 0:75)

was taken as the intercept, and a strong treatment

effect on the slope was assumed, a6 ¼ 2 (meaning

that 20 ml/s/10 ppb decreased lung function, on

average, in the placebo group in comparison with the

supplement group). The variance–covariance matrix

was constant over the different simulated samples.

Regarding the genetic effect, two different scen-

arios were considered. The first scenario represents

situations where the variability in the outcome may

be attributable just to the main effect of the gene

and the treatment, meaning that there is no gene–

treatment interaction effect ða7 ¼ 0Þ in the gener-

ating model (15). The second scenario assumes

that all genetic, treatment and gene–treatment

interaction are present in the true model.

Assessment of main genetic effect

The first scenario, where there is no gene–treat-

ment interaction (a7 ¼ 0), was used for testing the

main genetic effect, adjusted by treatment effect.

Under the two-step modelling approach, the

slope between the outcome and ozone was first

computed. In the second step, the ordinary linear

regression model (16), the AQTDTM (17) model

‡ Although allele A was not the less frequent, it was considered the variant
allele because, in the original study, children with genotype AA were
classified as GSTM1 null (no copy), and those with genotypes aA (one copy)
and aa (two copies) were considered GSTM1 positive.
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and the FBAT statistic (18) were used for testing

the null hypothesis of no main genetic effect

(H0 : b1 ¼ 0).

EðslopeijX ;ZÞ ¼ b0 þ b1Xi þ b2Zi; ð16Þ

EðslopeijX ;ZÞ ¼ b0M þ b1Xi þ b2Zi ð17Þ

x2
FBAT ¼

P
½ðslopei � EðslopeiÞÞ

�ðXi � EðXijgim; gif ÞÞ�P
iðslopei � EðslopeiÞÞ2�VarðXijgim; gif Þ

ð18Þ
The corresponding null hypothesis when using

longitudinal outcomes H0 : a5 ¼ 0 was tested

Table 2. Bias results for main genetic effect assessment comparing ordinary statistical methods (OLR and OLMM) to family-based

methods (AQTDTM and ALMM) under homogeneous (HP) and stratified (SP) populations. Each time, n cases were simulated with

parameters b1 ¼ a5 ¼ 0.5. Simulations are based on the additive genetic model. † ¼ number that identifies each model in the paper.

n b̂ 1 � b1 â5 � a5

Two-step models Mixed models

OLR (16) † AQTDTM (17) OLMM (19) ALMM (20)

HP SP HP SP HP SP HP SP

100 20.003 20.356 20.008 20.017 20.013 20.360 20.018 20.026

200 20.005 20.356 20.026 20.035 20.011 20.350 20.017 20.027

300 0.008 20.362 0.01 0.014 20.002 20.361 0.004 0.017

400 20.006 20.356 20.005 0.005 0.001 20.356 20.004 0.008

500 0.005 20.351 0.005 0.009 0.006 20.351 0.006 0.003

600 20.001 20.355 0.006 0.002 0.000 20.356 0.001 0.000

1000 20.001 20.363 20.006 20.008 20.001 20.364 20.005 20.007

OLR, ordinary linear regression; OLMM, ordinary linear mixed models; ALMM, adjusted linear mixed models; AQTDTM, adjusted quantitative transmission disequilibrium test
with mating type indicators

Table 3. Bias results for gene–environment interaction effect assessment comparing ordinary statistical methods (OLR and OLMM) to

family-based methods (AQTDTM and ALMM) under homogeneous (HP) and stratified (SP) populations. Each time, n cases were simulated

with parameters b3 ¼ a7 ¼ 1. Simulations are based on the additive genetic model. † ¼ number that identifies each model in the paper.

n b̂ 3 � b3 â7 � a7

Two-step models Mixed models

OLR (21) † AQTDTM (22) OLMM (23) ALMM (24)

HP SP HP SP HP SP HP SP

100 0.001 20.687 20.013 0.066 20.013 20.719 0.008 0.029

200 0.001 20.745 0.034 20.008 0.007 20.738 20.008 20.007

300 20.008 20.713 0.007 0.004 20.005 20.716 0.011 0.009

400 0.002 20.719 0.012 0.01 0.005 20.711 0.014 0.016

500 0.01 20.729 0.000 20.027 20.001 20.725 0.011 20.006

600 0.011 20.697 0.014 0.008 0.012 20.704 0.016 0.005

1000 0.003 20.728 0.007 20.018 0.052 20.730 0.011 20.075

OLR, ordinary linear regression; OLMM, ordinary linear mixed models; ALMM, adjusted linear mixed models; AQTDTM, adjusted quantitative transmission disequilibrium test
with mating type indicators
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through ordinary and adjusted linear mixed models;

that is:

EðYijjX;Y ; tÞ ¼ a0 þ a1tij þ a2Zi þ a3Xi þ a4XiZi

þ a5Xitij þ a6Zitij

ð19Þ

and

EðYijjX ;Y ; tÞ ¼ a0M þ a1Mtij þ a2Zi þ a3Xi

þ a4XiZi þ a5Xitij þ a6MZitij

ð20Þ

For the purpose of comparison, statistics based

on model (16) will be referred to as OLR, those

based on (17) will be referred to as the QTDTM,

those based on (19) will be referred as OLMM and

those based on (20) will be referred as ALMM.

Assessment of gene–environment interaction

Using the same idea, the second scenario, where

a7 ¼ 1 in the generating model, was used for asses-

sing the interaction effect through a one degree of

freedom test.

Assuming one outcome per individual, in the

two-step modelling approach, the null hypothesis

H0 : b3 ¼ 0, was tested using (21), (22) and the

QBAT-I statistic:

EðslopeijX ;ZÞ ¼ b0 þ b1Xi þ b2Zi þ b3ZiXi

ð21Þ

EðslopeijX ;ZÞ ¼ b0M þ b1Xi þ b2MZi þ b3ZiXi

ð22Þ

For repeated measurements, the corresponding

null hypothesis H0 : a7 ¼ 0 was tested using the

OLMM and ALMM models respectively:

EðYijjX;Z; tÞ ¼ a0 þ a1tij þ a2Zi þ a3Xi þ a4XiZi

þ a5Xitij þ a6Zitij þ a7XiZitij

ð23Þ

and

EðYijjX ;Y ; tÞ ¼ a0M þ a1Mtij þ a2Zi þ a3Xi

þ a4XiZi þ a5Xitij þ a6MZitij

þ a7XiZitij

ð24Þ

For the purpose of comparison, statistics based on

model (21) will be referred to as OLR, those based

on (22) will be referred to as the adjusted AQTDTM,

those based on (23) will be referred as OLMM and

those based on (24) will be referred as ALMM.

The empirical power for each test was estimated

as the percentage of occasions on which the null

hypothesis was rejected at a significance level a �
0.05 for a two-sided test. In each simulation study,

1,000 independent replicate datasets were generated.

Each dataset consisted of n (n ¼ 100, 200, 300, 400,

500, 600 and 1,000) complete and independent trios.

Bias was calculated as the average of the differ-

ence between the estimator and the true parameter

value (b̂ � b).

Results

Estimation bias

In order to look at the differences among methods,

the estimation bias for the main genetic effects and

gene–environment estimation was computed under

both population conditions, homogeneous (HP)

and stratified (SP) populations. Table 2 shows the

resultant bias for the four methods, with two

columns per method (HP and SP). When there is

no ethnicity confounding (HP), all methods

(OLR, AQTDTM, OLMM and ALMM) for esti-

mating main effects are unbiased, regardless of the

design analysis (independent subjects or trios) or

the modelling approach (two-step or longitudinal

data). By contrast, when the population is stratified,

the selection of the design is crucial. In other

words, while estimators obtained from the case–

parent design are unbiased, models using indepen-

dent subjects underestimate the effects by around

0.36 units. Note that, regardless of the modelling

approach, both designs provide similar results.
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As in the main genetic effect assessment, the esti-

mation of the gene–environment interaction also

depends strongly on the design of the study when

there is population stratification. In this case, when

using ordinary statistical methods, the interaction

effect was also underestimated by about 0.72 units,

but with a homogeneous population the design is

not relevant in terms of bias (Table 3).

Empirical power

Since power comparisons among biased and unbiased

methods cannot be fair, the power of OLR and

OLMM under population stratification was not com-

puted. Regarding genetically homogeneous popu-

lations, in both main genetic and gene–treatment

interaction effects, ordinary regression models are the

most powerful methods (Figures 1 and 2). Moreover,

and as was expected, the use of repeated measures

(OLMM) is more powerful than the use of a single

measure (OLR). Note that, among the family-based

models, ALMM is the most powerful and that FBAT

or QBAT-I statistics and AQTDTM are equivalent

with regard to power.

When the population is genetically mixed, all

methods, regardless of the modelling approach or

the design, lose power in comparison with the

setting where the population is homogeneous

(Tables 4 and 5). Once again, ALMM is the most

powerful method for detecting main genetic or the

interaction effects. In other words, the modelling

Figure 1. (a). Empirical power results for main genetic effect assessment comparing different methods under the assumption of a

homogeneous population. Simulations are based on the sample size as indicated in the plot and the additive genetic model. (b)

Empirical power results for gene–environment interaction effect comparing different methods under the assumption of a

homogeneous population. Simulations are based on the sample size as indicated in the plot and the additive genetic model.
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approach may be crucial, in terms of power, for

conducting the association analysis.

Additive versus recessive disease models

In the recessive model, the same relationship

among methods is observed, although the addi-

tive model is always more powerful than the reces-

sive one, regardless of the testing approach. The

data are shown in the supplementary tables. This

may be related to the fact that in the additive

model, X has a wider range of variation, whereas

in the recessive one, X is an indicator variable. In

addition, the number of informative families for

FBAT statistics is always larger when the additive

disease model is assumed, while the number with a

causal genetic mutation is smaller under the reces-

sive model assumption.

In summary, if the study population is geneti-

cally homogeneous, an independent subjects

design provides unbiased genetic estimates,

regardless of the modelling approach, and offers

the most powerful tests as well. The models that

use repeated measurements are even more power-

ful than those using one single outcome per

subject, however. When the study population is

stratified, using OLR or OLMM can result in

spurious associations; therefore, in order to

control for potential population admixture or

stratification, family-based designs are strongly

recommended. ALMM is more powerful than

QTDTM and FBAT statistics.

Figure 2. (a). Empirical power results for the main genetic effect assessment comparing different methods under the assumption of a

stratified population. Simulations are based on the sample size as indicated in the plot and the additive genetic model. (b). Empirical

power results for the gene–environment interaction effect comparing different methods under the assumption of a stratified

population. Simulations are based on the sample size as indicated in the plot and the additive genetic model.
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Discussion

The ALMM method combines the characteristics

of both longitudinal data analysis and case–parent

design. While repeated measurements of quantitat-

ive phenotypes allow for the assessment of the

effect of time-dependent environmental exposures,

the use of the case–parent design with analysis

based on ALMM eliminates the potential bias in

the estimated coefficients associated with popu-

lation admixture or stratification, provided that the

Table 4. Empirical power results for main genetic effect assessment comparing ordinary statistical methods (OLR and OLMM) to

family-based methods (AQTDTM, FBAT and ALMM) under homogeneous (HP) and stratified (SP) populations. Each time, n cases were

simulated with parameters b1 ¼ a5 ¼ 0.5. Simulations are based on the additive genetic model. † ¼ number that identifies each model in

the paper.

n H0 : b1 ¼ 0 H0 : a5 ¼ 0

Two-step-models Mixed models

OLR (16) † AQTDTM (17) FBAT (18) OLMM (19) ALMM (20)

HP SP HP SP HP SP HP SP HP SP

100 0.184 - 0.107 0.093 0.108 0.095 0.254 - 0.147 0.113

200 0.289 - 0.156 0.129 0.155 0.140 0.456 - 0.232 0.171

300 0.406 - 0.237 0.206 0.234 0.207 0.595 - 0.371 0.253

400 0.481 - 0.285 0.256 0.281 0.25 0.726 - 0.429 0.325

500 0.606 - 0.353 0.297 0.355 0.296 0.831 - 0.531 0.365

600 0.663 - 0.415 0.346 0.422 0.351 0.874 - 0.614 0.429

10000 0.864 - 0.589 0.493 0.589 0.495 0.976 - 0.813 0.613

OLR, ordinary linear regression; OLMM, ordinary linear mixed model; ALMM, adjusted linear mixed model; AQTDTM, adjusted quantitative transmission disequilibrium test with
mating type indicators

Table 5. Empirical power results for gene–environment interaction effect assessment comparing ordinary statistical methods (OLR and

OLMM) to family-based methods (AQTDTM, QBAT-I and ALMM) under homogeneous (HP) and stratified populations (SP). Each time, n

cases were simulated with parameters b3 ¼ a7 ¼ 1. Simulations are based on the additive genetic model. † ¼ number that identifies each

model in the paper.

n H0 : b3 ¼ 0 H0 : a7 ¼ 0

Two-step-models Mixed models

OLR (21) † AQTDTM (22) QBAT-I OLMM (23) ALMM (24)

HP SP HP SP HP SP HP SP HP SP

100 0.147 - 0.094 0.098 0.091 0.080 0.234 - 0.155 0.116

200 0.282 - 0.172 0.138 0.156 0.134 0.452 - 0.267 0.186

300 0.386 - 0.220 0.188 0.195 0.172 0.607 - 0.347 0.242

400 0.495 - 0.289 0.251 0.256 0.216 0.731 - 0.450 0.301

500 0.589 - 0.338 0.290 0.299 0.226 0.820 - 0.515 0.363

600 0.688 - 0.401 0.340 0.358 0.304 0.889 - 0.620 0.414

1000 0.875 - 0.604 0.503 0.561 0.465 0.978 - 0.794 0.618

OLR, ordinary linear regression; OLMM, ordinary linear mixed model; ALMM, adjusted linear mixed model; AQTDTM, adjusted quantitative transmission disequilibrium test with
mating type indicators

Gene–environment interaction tests for family studies with quantitative phenotypes PRIMARY RESEARCH

# HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 4. NO 5. 302–326 JUNE 2010 317



linear model is correct. Unbiased tests also require

valid estimates of standard errors, however.8 Use of

the ALMM model, which allows intercepts and

environment effects to depend upon parental

mating type, can help to address that issue.14 Our

results show that ALMM represents a valuable

methodology for correctly assessing main and

gene–environment interaction effects for quantita-

tive traits in stratified populations. In addition, by

taking advantage of the structure of the ordinary

linear mixed-effects models, covariates may be

included and balanced repeated measurements are

not required. This model can be implemented

using standard statistical software, including a linear

mixed models module.

Since ALMM is based on a case–parent design,

ethnicity bias is avoided because all possible geno-

types are taken into account, even those that were

not transmitted to the affected offspring. Including

an indicator variable for the mating type allows one

to use different intercepts; thus, differences within

and across mating-types are considered in the

genetic effects estimation. In order to account for a

potential correlation between the exposure and the

mating type, different levels of exposure, depending

on the mating type, have been modelled in ALMM

through the inclusion of the interaction between

such an indicator variable and the exposure. In this

manner, situations where, for example, the environ-

mental exposure may depend on the mating type

can be assessed without bias. Therefore, population

stratification and admixture are no longer sources

of estimation bias.

It can be the case that the study population is

mixed, although the trait of interest does not vary

within the subpopulations. In those situations, eth-

nicity is not a confounder; thus, genetic effects may

be estimated without bias through the use of ordin-

ary regression models. When there is an admixed

population, and the exposure of interest does not

depend on substructure, the indicator variable for

the mating type (a1m) can be omitted in model

(13). In the case where Z is randomised, it is

known that Z is independent of exposure and

genetic background; allowing a6m to depend on m

ensures that the effect of treatment–genetic

interaction is not confounded by different responses

to treatment in the different subgroups. If it can be

assumed that both coefficients do not depend upon

m, a simpler model can be fit, which has two clear

advantages. First, there are more degrees of

freedom, and this is important in small studies,

especially if some strata of mating types have few

observations. Secondly, if parents are missing,

instead of computing E(X) conditional on parental

genotypes, we can replace it by E(X) conditional

on the sufficient statistics for parental genotype.8

A disadvantage of case–parent designs is that

parental genotypes are not easily accessible for

late-onset disorders. In those cases, other family-

based designs suggest using siblings rather than

parents, although larger sample sizes are required in

order to achieve comparable power.21

It is important to note that, because OLR and

OLMM provide biased estimators under population

stratification, power comparison against unbiased

methods may not be completely fair. Power will be

underestimated when the parameter is incorrectly

estimated with values that are close to zero,

although when the reverse occurs, the power will

be magnified. For that reason, it was decided to

exclude those methods in power comparisons

under population stratification.

For testing both main genetic effect and gene–

environment interaction effects, regardless of

the composition of the population, ALMM was

found to be more powerful than the two-step mod-

elling approach where AQTDTM and FBAT — or

QBAT-I, in the gene–environment interaction

assessment — were used in the second stage. This

is because, while the longitudinal analysis approach

takes advantage of both repeated values across time

and measurements across people, the two-step pro-

cedure does not account for the relative degree

of within- and between-subject variability.

Nevertheless, there are weighting procedures that

account for both sources of variability; thus, the

summary statistic obtained in the first step can be

adjusted for.22 Although, methodologically, the

linear mixed models represent an adequate

approach for longitudinal data analysis, one should

not forget about the two-step modelling approach
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because it represents an intuitively simpler pro-

cedure and the opportunity to use existing genetic

software. It should be noted that the difference in

power between both modelling approaches may

strongly depend on the number of repeated

measurements, the underlying true effect sizes and

the frequency of the missing phenotypes.

It is evident that, with a homogeneous popu-

lation, OLMM is the most powerful tool. The

decrement in the power of ALMM relative to

OLMM is related to the lessening of the variability

in the genotype due to the centring procedure and

to the extra parameters, for each mating type, to be

estimated. When the population is not homo-

geneous, however, these factors should not rep-

resent a disadvantage when contrasted with the

added advantage of an unbiased estimation.

In summary, in addition to comparing the longi-

tudinal approach against the two-step modelling

approach, we have also compared designs using

independent subjects against family-based

approaches under homogeneous and stratified

populations. Assuming no population stratification,

ordinary regression methods are valid and more

powerful than the other methods. Nevertheless, the

family-based approach is strongly recommended

when the homogeneous ethnicity in the population

is in doubt, in order to achieve unbiased estimators.

ALMM now represents a powerful tool for assessing

the main genetic effect and gene–environment

interactions on time-dependent phenotypes under

population stratification.

Acknowledgments

Dr London was supported by the Division of Intramural

Research, National Institutes of Health, Department of

Health and Human Services (ES049019). Dr Laird was sup-

ported by the National Institute of Mental Health. The

authors thank Douglas Dockery, ScD and Diane Gold, ScD

from the Environmental Health Department, Harvard School

of Public Health, for their invaluable suggestions and

comments.

References
1. Martinez, F.D. (2007), ‘CD14, endotoxin, and asthma risk: Actions and

interactions’, Proc. Am. Thorac. Soc. Vol. 4, pp. 221–225.

2. Hunter, D. (2005), ‘Gene-environment interaction in human diseases’,

Nat. Rev. Genet. Vol. 6, pp. 287–298.

3. Li, C.C. (1969), ‘Population subdivision with respect to multiple alleles’,

Ann. Hum. Genet. Vol. 33, pp. 23–29.

4. Deng, H.W. and Chen, W. M. (2001), ‘The power of the transmission

disequilibrium test (TDT) with both case–parent and control-parent

trios’, Genet. Res. Vol. 78, pp. 289–302.

5. Choudhry, S., Seibold, M.A., Borrell, L.N., Tang, H. et al. (2007),

‘Dissecting complex diseases in complex populations: Asthma in Latino

Americans’, Proc. Am. Thorac. Soc. Vol. 4, pp. 226–233.

6. Almasy, L. (2001), ‘Introduction: Methods for detecting genotype X

environment interaction’, Genet. Epidemiol. Vol. 21, pp. S817–S818.

7. Tian, C., Gregersen, P.K. and Seldin, M.F. (2008), ‘Accounting for

ancestry: Population substructure and genome-wide association studies’,

Hum. Mol. Genet. Vol. 17(R2): R143–R150.

8. Rabinowitz, D. and Laird, N. (2000), ‘A unified approach to adjusting

association tests for population admixture with arbitrary pedigree struc-

ture and arbitrary missing marker information’, Hum. Hered. Vol. 50, pp.

211–223.

9. Gauderman, W.J., Macgregor, S., Briollais, L., Scurrah, K. et al. (2003),

‘Longitudinal data analysis in pedigree studies’, Genet. Epidemiol. Vol. 52,

pp. S18–S58.

10. Romieu, I., Sienra-Monge, J.J., Ramı́rez-Aguilar, M., Moreno-Macı́as,

H.R. et al. (2004), ‘Genetic polymorphism of GSTM1 and antioxidant

supplementation influence lung function in relation to ozone exposure in

asthmatic children in Mexico City’, Thorax Vol. 59, pp. 8–10.

11. Laird, N.M., Horvath, S. and Xu, X. (2000), ‘Implementing a unified

approach to family-based tests of association’, Genet. Epidemiol. Vol. 19,

pp. S36–S42.

12. Allison, D.B. (1997), ‘Transmission-disequilibrium tests for quantitative

traits’, Am. J. Hum. Genet. Vol. 60, pp. 676–690.

13. Spielman, R.S., McGinnis, R.E. and Ewens, W.J. (1993), ‘Transmission

test for linkage disequilibrium: The insulin gene region and insulin-

dependent diabetes mellitus (IDDM)’, Am. J. Hum. Genet. Vol. 52, pp.

506–516.

14. Ewens, W.J., Li, M. and Spielman, R.S. (2008), ‘A review of family-

based tests for linkage disequilibrium between a quantitative trait and a

genetic marker’, PLoS Genet. Vol. 26, p. e1000180.

15. Gauderman, W.J. (2003), ‘Candidate gene association analysis for a quan-

titative trait, using parent-offspring trios’, Genet. Epidemiol. Vol. 25, pp.

327–338.

16. Laird, N.M. and Lange, C. (2006), ‘Family-based designs in the age of

large-scale gene-association studies’. Nat. Rev. Genet. Vol. 7, pp.

385–394.

17. Vansteelandt, S., Demeo, D.L., Lasky-Su, J., Smoller, J.W. et al. (2008),

‘Testing and estimating gene-environment interactions in family-based

association studies’, Biometrics Vol. 64, pp. 458–467.

18. Diggle, P.J., Liang, K.Y. and Zeger, S.L. (1994), Analysis of longitudinal

data, Oxford University Press, Inc., New York, NY.

19. London, S.J. and Romieu, I. (2009), ‘Gene by environment interaction

in asthma’, Annu. Rev. Public Health Vol. 30, pp. 55–80.

20. Fitzmaurice, G., Laird, N.M. and Ware, J. (2004), Applied Longitudinal

Analysis, John Willey and Sons, Inc., Haboken, NJ.

21. Abecasis, G.R., Cardon, L.R. and Cookson, W.O. (2000), ‘A general test

of association for quantitative traits in nuclear families’, Am. J. Hum.

Genet. Vol. 66, pp. 279–292.

22. Korn, E.L. and Whittemore, A.S. (1979), ‘Methods for analyzing panel

studies of acute health effects of air pollution’, Biometrics Vol. 35, pp.

795–802.

Gene–environment interaction tests for family studies with quantitative phenotypes PRIMARY RESEARCH

# HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 4. NO 5. 302–326 JUNE 2010 319



Appendix 1

R code for ALMM

library(nlme)

mmodel , -lme(fef2575 � o3*tx*as.factor(mating_

type) þ gstm1*tx*o3, random ¼ �1 þ o3jid,

method ¼ "ML", data ¼ base)

where:

fef2575 ¼ outcome

o3 ¼ ozone exposure (time-dependent)

tx ¼ supplementation treatment (fixed)

gstm1 ¼ genotype (takes values 0, 1, 2 if additive

disease model; or 0,1 if recessive)

mating_type ¼ vector with values 1, 2, 3, 4, 5, 6

classifying the different mating types.

id ¼ individual identification

R code for the second stage in the two-step
modelling approach

QTDTM

qtdtm , -lm(slope � tx*as.factor(mating_type) þ
tx*gstm1, data ¼ base1)

FBAT

library (pbatR)

pbat.m(slope � tx j gstm1, ped ¼ ped, phe ¼ phe,

fbat ¼ “gee”,min.info ¼ 10, max.pheno ¼ 1, scan.

genetic ¼ “additive”)

QBAT-I

library (pbatR)

pbat.m(slope � mi(tx) j gstm1, ped ¼ ped, phe ¼

phe, fbat ¼ “gee”,min.info ¼ 10, max.pheno ¼ 1,

scan.genetic ¼ “additive”)

where:

gstm1, tx and mating_type are defined as above

More details about the PBAT commands can be

found in http://biosun1.harvard.edu/~clange/pbat.htm

General FBAT statistic

For N nuclear families, one offspring in the family

i and no covariates

x2
FBAT ¼ U2

VarðUÞ

where:

U ¼
X

ðYi � EðYiÞÞ�ðXi � EðXijgim; gif ÞÞ½ �

i ¼ 1; 2; . . .N ;

VarðUÞ ¼
X

i

ðYi � EðYiÞÞ2�VarðXijgim; gif Þ;

and EðXijgim; gif Þ and VarðXijgim; gif Þ are calculated

under the null hypothesis of Mendel’s law. That is:

EðXijgim; gif i
Þ ¼

X

g

XðgÞPðgÞ

and

VarðXijgim; gif Þ ¼
X

g

X2ðgÞPðgÞ
" #

�
X

g

XðgÞPðgÞ
" #2

;

where g on the right hand side of these expec-

tations indexes the possible offspring genotypes and

P(g) is the probability of a particular genotype

given the parents’ genotypes, calculated under the

null hypothesis. Thus,

x2
FBAT � x2

1df :

If both parents are homozygous, Xi ¼ EðXijgim; gif Þ
and VarðXijgim; gif Þ ¼ 0. Therefore, these triads do

not add information to the FBAT statistic and they

are referred to as non-informative families.

The test is robust against population stratification,

as a result of centring X by its expected value con-

ditional on parental genotypes ðgim; gif Þ assuming

Mendel’s laws.

The statement that case selection was not based

on their genotype information is the only assump-

tion about the ascertainment process.

Since in U, EðYiÞ is calculated under the null

hypothesis, it can be estimated by �Y. Note that the

test statistic is based on the relative size of U with

respect to its standard deviation but not on the size
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of b1 explicitly. Thus, the genetic effect is not

directly estimated.

QBAT-I

This statistic17 is based on the following regression

model:

EðYijXi;Zi; SiÞ ¼ b0ðZi; SiÞ þ b1Xi þ b2Xizi

¼ b0 þ ðb1;b2Þ�
Xi

Xi�Zi

� �

ð14Þ

where:

Si ¼ ðgim; gif Þ Sufficient statistic (parental genotypes)

b0ðZi; SiÞ encodes the dependence of the outcome

on the environmental exposure and the parental

genotypes

b1 ¼ main genetic effect

b2 ¼ gene–environment interaction effect

And Xi and zi are as defined previously.

Note that there is no coefficient for the environ-

mental effect, as this is subsumed in the intercept

b0. Assuming that the environmental exposure is

independent of the candidate gene, and conditional

on Si, estimators for both b1 and b2 are obtained

through the equation:

X

i

UiðbÞ ¼
X

i

Xi � EðXijgim; gif Þ
Xi�Zi � EðXijgim; gif Þ�Zi

� �

�ei ¼ 0

where:

ei ¼ Yi � EðYijXi;Zi; SiÞ:

Under weak regularity conditions, the solution

to this equation leads to consistent estimators for

b ¼ ðb1;b2Þ which are robust for population

stratification.

The test statistic for the gene–environment

interaction has the same form as the original FBAT

statistic given in (12); that is:

QBAT � I ¼ U2

VarðUÞ � x2
1 ð15Þ

where:

U ¼
XN

i¼1

fXi � EðXijgim; gif ÞgðZi � m̂ZÞeiððb̂ 1; 0ÞÞg

with:

b̂ 1 ¼
X

i

fXi � EðXijgim; gif ÞgXt
i

( )�1

�
X

i

fXi � EðXijgim; gif Þgeijð0Þ
( )

and

m̂Z ¼
X

i

Zihiððb̂ 1; 0ÞÞfXi � EðXiÞjgim; gif ÞgXt
i

( )

�
X

i;j

fXi � EðXijgim; gif ÞgXt
i

( )�1

b̂ 1 is an estimate for the main genetic effect under

the null hypothesis of no gene–environment inter-

action and m̂Z is a weighted average of the environ-

mental exposures that ensures QBAT-I � x2
1.

Note that, in (14), the point of attention is on

the genetic effect through the main and the gene–

environment interaction. In other words, the par-

ental genotype and the environment main effect

are not of direct interest for estimation. In this

sense, the test of H0 : b3 ¼ 0 based on model (9)

may be thought of as an equivalent test to QBAT-I
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Table S1. List of models used in the simulation process. The column model refers to the number that identifies each model in the paper. Xi is a fixed variable that translates

an offspring genotype to a numeric value; Zi is an observed environmental covariate, either continuous or dichotomous; gim, gif are the parental genotypes (mother and father,

respectively); E(Xijgim, gif ) is calculated under segregation and independent assortment assumptions using Mendel’s law; M ¼ 1, 2, . . .,6 are the six possible mating types;

i ¼ 1; 2; 3; . . . ; n subjects; j ¼ 1; 2; 3; . . . ;m measurement occasions into the subject; tij is the repeated ozone exposure variable.

Generating models

Model Linear mixed model Parameters Allele

frequencies

(15) EðYijjX;Z; tÞ ¼ a0 þ a1tij þ a2Zi þ a3Xi þ a4XiZi þ a5Xitij

þ a6Zitij þ a7XiZitij

Homogeneous population

a1 ¼ �0:8;a2 ¼ �0:2;a3 ¼ �0:05;a4 ¼ 0:2;

a6 ¼ 0:6;a7 ¼ 1:0

P(A) ¼ 0.6

P(a) ¼ 0.4

Admixed population

a1 ¼ �0:8;a2 ¼ �0:2;a3 ¼ �0:05;a4 ¼ 0:2;

a6 ¼ 0;a7 ¼ 1:0

Population 1

P(A) ¼ 0.4

P(a) ¼ 0.6

a1 ¼ �0:8;a2 ¼ �0:2;a3 ¼ �0:05;a4 ¼ 0:2;

a6 ¼ 2:0;a7 ¼ 1:0

Population 2

P(A) ¼ 0.8

P(a) ¼ 0.2

Assessing models

Model Independent subjects design Case-parent design Comments

Two-step modelling approach

Main genetic effect

(16) EðslopeijX;ZÞ ¼ b0 þ b1Xi þ b2Zi Taken from

model (2)

(17) EðslopeijX;ZÞ ¼ b0M þ b1Xi þ b2Zi Taken from

model (5)

(18)
x2

FBAT ¼
P

ðslopei � EðslopeiÞÞ�ðXi � EðXijgim; gifÞÞ½ �
P

iðslopei � EðslopeiÞÞ2�VarðXijgim; gifÞ
Taken from

model (10)

Continued
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Table S1. Continued

Generating models

Model Linear mixed model Parameters Allele

frequencies

Gene–environment interaction

(21) EðslopeijX;ZÞ ¼ b0 þ b1Xi þ b2Zi þ b3ZiXi Taken from

model (1)

(22) EðslopeijX;ZÞ ¼ b0M þ b1Xi þ b2MZi þ b3ZiXi Taken from

model (9)

Models for longitudinal data

Main genetic effect

(19) EðYijjX; Y; tÞ ¼ a0 þ a1tij þ a2Zi þ a3Xi þ a4XiZi

þ a5Xitij þ a6Zitij

Taken from

model (15)

with a7 ¼ 0

(20) EðYijjX; Y; tÞ ¼ a0M þ a1Mtij þ a2Zi þ a3Xi þ a4XiZi

þ a5Xitij þ a6MZitij

Taken from

model (13)

with a7 ¼ 0

Gene–environment interaction

(23) EðYijjX;Z; tÞ ¼ a0 þ a1tij þ a2Zi þ a3Xi þ a4XiZi þ a5Xitij

þ a6Zitij þ a7XiZitij

Taken from

model (15)

(24) EðYijjX; Y; tÞ ¼ a0M þ a1Mtij þ a2Zi þ a3Xi þ a4XiZi þ a5Xitij

þ a6MZitij þ a7XiZitij

Taken from

model (13)
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Table S2. Observed effects in the real cohort study conducted in Mexico City. 95% CI ¼ 95% confidence interval.

Group Subgroup n Coefficient (95% CI*)

Placebo

GSTM1 null 29 21.01 (21.80, 20.22)

GSTM1

positive

49 20.21 (20.77, 0.35)

Genotype

effect

78 0.80 (20.15, 1.75)

Supplement

GSTM1 null 33 20.06 (20.81, 0.69)

GSTM1

positive

47 0.10 (20.60, 0.80)

Genotype

effect

80 0.16 (20.88, 1.02)

GSTM1 null Placebo 29 21.01 (21.80, 20.22)

Supplement 33 20.06 (20.81, 0.69)

Supplement

effect

62 0.95 (20.14, 2.04)

GSTM1

positive

Placebo 49 20.21 (20.77, 0.35)

Supplement 47 0.10 (20.60, 0.80)

Supplement

effect

96 0.31 (20.58, 1.21)

Simulation parameters:

a5 ¼ 0:8ð78Þ þ 0:16ð80Þ
158

� 0:5

a6 ¼ 0:95ð62Þ þ 0:31ð96Þ
158

� 0:6

a7 ¼ 0:95 � 1

This Table is based on results previously published in Thorax, Vol. 59 (2004)10.
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Table S3a. Bias results for main genetic effect assessment comparing ordinary statistical methods (OLR and OLMM) with family-based

methods (AQTDTM and ALMM) under homogeneous (HP) and stratified (SP) m populations. Each time, n cases were simulated with

parameters b1 ¼ a5 ¼ 0:5. Simulations are based on the recessive genetic model. † ¼ number that identifies each model in the paper.

n b̂ 1 � b1 â5 � a5

OLR (16) † AQTDTM (17) OLMM (19) ALMM (20)

HP SP HP SP HP SP HP SP

100 20.010 20.505 20.012 20.049 20.026 20.508 20.023 20.052

200 20.022 20.507 20.049 20.040 20.019 20.494 20.031 20.023

300 20.002 20.500 20.003 0.028 20.010 20.505 20.004 0.025

400 20.020 20.499 20.018 0.002 20.008 20.496 20.012 0.006

500 0.007 20.494 0.012 0.004 0.005 20.495 0.006 20.002

600 0.000 20.496 0.010 0.003 20.001 20.499 0.001 0.001

OLR, ordinary linear regression; OLMM, ordinary linear mixed models; ALMM, adjusted linear mixed models; AQTDTM, adjusted quantitative transmission disequilibrium test
with mating type indicators

Table S3b. Bias results for gene–environment effect assessment comparing ordinary statistical methods (OLR and OLMM) with

family-based methods (AQTDTM and ALMM) under homogeneous (HP) and stratified (SP) populations. Each time, n cases were simulated

with parameters b3 ¼ a7 ¼ 1. Simulations are based on the recessive genetic model. † ¼ number that identifies each model in the paper.

n b̂ 3 � b3 â7 � a7

OLR (21) † AQTDTM (22) OLMM (23) ALMM (24)

HP SP HP SP HP SP HP SP

100 0.008 20.962 0.001 0.048 0.006 21.003 0.017 0.027

200 20.008 21.042 0.020 20.007 20.001 21.024 0.019 20.006

300 0.011 21.005 0.048 0.001 0.009 21.004 0.012 0.010

400 0.014 21.001 0.019 0.022 0.001 20.988 20.009 0.034

500 0.011 21.010 0.000 20.028 20.002 21.010 20.012 20.006

600 0.016 20.967 0.016 0.033 0.015 20.973 0.008 0.032

OLR, ordinary linear regression; OLMM, ordinary linear mixed models; ALMM, adjusted linear mixed models; AQTDTM, adjusted quantitative transmission disequilibrium test
with mating type indicators

Table S4a. Empirical power results for main genetic effect assessment comparing ordinary statistical methods (OLR and OLMM) with

family-based methods (AQTDTM, FBATand ALMM) under homogeneous (HP) and stratified (SP) populations. Each time, n cases were simulated

with parameters b1 ¼ a5 ¼ 0:5. Simulations are based on the recessive genetic model. † ¼ number that identifies each model in the paper.

n H0 : b1 ¼ 0 H0 : b5 ¼ 0

OLR (16) † AQTDTM (17) FBAT (18) OLMM (19) ALMM (20)

HP SP HP SP HP SP HP SP HP SP

100 0.108 - 0.074 0.074 0.075 0.072 0.146 - 0.116 0.09

200 0.155 - 0.104 0.098 0.103 0.101 0.259 - 0.166 0.118

300 0.237 - 0.161 0.128 0.158 0.128 0.359 - 0.236 0.164

400 0.255 - 0.182 0.143 0.178 0.144 0.469 - 0.295 0.18

500 0.357 - 0.226 0.176 0.227 0.175 0.552 - 0.342 0.221

600 0.411 - 0.275 0.206 0.278 0.275 0.605 - 0.417 0.255

OLR, ordinary linear regression; OLMM, ordinary linear mixed models; ALMM, adjusted linear mixed models; AQTDTM, adjusted quantitative transmission disequilibrium test
with mating type indicators
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Table S4b. Empirical power results for gene–environment effect assessment comparing ordinary statistical methods (OLR and OLMM)

with family-based methods (AQTDTM, QBAT-I and ALMM) under homogeneous (HP) and stratified (SP) populations. Each time, n cases

were simulated with parameters b3 ¼ a7 ¼ 1. Simulations are based on the recessive genetic model. † ¼ number that identifies each

model in the paper.

n H0 : b3 ¼ 0 H0 : b7 ¼ 0

OLR (21) † AQTDTM (22) QBAT-I OLMM (23) ALMM (24)

HP AP HP AP HP AP HP AP HP AP

100 0.099 - 0.067 0.078 0.070 0.065 0.151 - 0.118 0.098

200 0.160 - 0.127 0.111 0.119 0.109 0.252 - 0.180 0.144

300 0.220 - 0.150 0.124 0.130 0.120 0.374 - 0.219 0.155

400 0.296 - 0.215 0.132 0.158 0.129 0.466 0.302 0.172

500 0.345 - 0.241 0.160 0.182 0.161 0.535 - 0.342 0.216

600 0.422 - 0.252 0.192 0.201 0.190 0.633 - 0.402 0.260

OLR, ordinary linear regression; OLMM, ordinary linear mixed models; ALMM, adjusted linear mixed models; AQTDTM, adjusted quantitative transmission disequilibrium test
with mating type indicators
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