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Abstract

A bivariate mixture model utilizing information across two species was proposed to solve the fundamental problem of
identifying differentially expressed genes in microarray experiments. The model utility was illustrated using a dog and
human lymphoma data set prepared by a group of scientists in the College of Veterinary Medicine at North Carolina
State University. A small number of genes were identified as being differentially expressed in both species and the
human genes in this cluster serve as a good predictor for classifying diffuse large-B-cell lymphoma (DLBCL) patients
into two subgroups, the germinal center B-cell-like diffuse large B-cell lymphoma and the activated B-cell-like diffuse
large B-cell lymphoma. The number of human genes that were observed to be significantly differentially expressed
(21) from the two-species analysis was very small compared to the number of human genes (190) identified with only
one-species analysis (human data). The genes may be clinically relevant/important, as this small set achieved low
misclassification rates of DLBCL subtypes. Additionally, the two subgroups defined by this cluster of human genes had
significantly different survival functions, indicating that the stratification based on gene-expression profiling using the
proposed mixture model provided improved insight into the clinical differences between the two cancer subtypes.
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Introduction
Diffuse large-B-cell lymphoma (DLBCL), the most com-
mon type of non-Hodgkin lymphoma in adults, accounts
for 30% to 40% of newly diagnosed lymphomas and has an
annual incidence in America of more than 25,000 cases.
Combination chemotherapy has transformed DLBCL
from a fatal disease into one that is often curable, but
only approximately 50% of all patients are cured [1,2].
This suggests that DLBCL actually comprises several
subgroups that differ in responsiveness to chemother-
apy. The attempts to define subgroups of DLBCL have
often failed due to diagnostic discrepancies. Clinically, the
International Prognostic Index (IPI) [3] has been devel-
oped for use in the design of future therapeutic trials in
patients with aggressive non-Hodgkin lymphoma and in
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the selection of appropriate therapeutic approaches for
individual patients. However, IPI has not been used suc-
cessfully to predict outcomes in DLBCLs so that patients
can be stratified correctly for therapeutic trials. This may
be attributed to the fact that the clinical factors of IPI (age,
tumor stage, serum lactate dehydrogenase concentration,
performance status, and number of extranodal disease
sites) neither provide molecular insight into the hetero-
geneity of DLBCL nor identify specific therapeutic targets
[4,5].
Recent developments in microarray technology allow

researchers to accurately and precisely measure gene
expression patterns in lymphomas which provides the
opportunity to revolutionize the way these tumors are
grouped and treated. In other words, studying gene
expression profiles in lymphomas may provide the oppor-
tunity to identify pathways on which the tumor depends
and to target the pathways for the development of
new drugs. Indeed, gene-expression profiling studies
have distinguished three molecular subtypes of DLBCL:
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germinal-center B-cell-like (GCB) DLBCL, activated B-
cell-like (ABC) DLBCL, and primary mediastinal B-cell
lymphoma (PMBL) [2,5-8].
The first attempt at examining gene expression profil-

ing to identify distinct B-cell malignancies was made by
Alizadeh et al. [9]. A hierarchical clustering algorithm
[10] was used to group genes on the basis of similarity
of their expression over all subjects. Subjects were also
grouped based on the similarities in gene expression using
the same clustering method. Two distinct subgroups of
DLBCL were found based on the gene expression analysis:
GCB DLBCL and ABC DLBCL. Alizadeh et al. [9] discov-
ered that almost all genes that defined GCB DLBCL were
highly expressed in normal germinal center B cells and, by
contrast, most genes that defined ABC DLBCL were not
expressed in normal germinal center B cells. In addition,
there was a substantial and significant difference in the
average five-year survival rate between patients with GCB
DLBCL and ABC DLBCL.
Inspired by the work of Alizadeh [9], Rosenwald et al.

[5] found that most of the genes with expression patterns
that correlated with survival of the DLBCL subgroups fell
within four gene-expression signatures. A gene-expression
signature is a group of genes expressed in a specific cell
lineage or stage of differentiation or during a particular
biologic response and hence genes within the same gene-
expression signature are probably associated with similar
biologic aspects of tumor [5]. The authors in [5] then devel-
oped a molecular predictor consisting of 17 genes for
the likelihood of survival after chemotherapy according
to gene expression profiles of lymphomas. Shipp et al. [4]
adopted the weighted-voting algorithm [11] to develop an
outcome predictor with 13 genes and were able to classify
two categories of DLBCL patients with very different five-
year overall survival rates. Note that there is no overlap
among the genes in the models derived in [4] and [5].
Wright et al. [8] formulated a DLBCL subgroup pre-

dictor based on Bayes’ rule, applied this method to the
DLBCL gene expression data in [5], and constructed a
27-gene DLBCL subgroup predictor. Next, a new predic-
tor including 14 genes among the previous predictor was
constructed and applied to another set of gene expression
data fromDLBCLs [4]. Wright et al. [8] also demonstrated
that the proposed algorithm can define cancer subgroups
based on gene expression differences regardless of the
DNA microarray platforms and could be used clinically
to provide diagnostic information as the resulting survival
rates were significantly different for the identified GCB
and ABC DLBCL subgroups.
A panel of 36 genes whose expression predicts survival

in DLBCL was identified by Lossos et al. [1] through lit-
erature review. They [1] selected 6 out of the 36 genes by
ranking them on the basis of their predictive power for
DLBCL survival obtained by univariate analysis. A 6-gene

multivariate Cox proportional-hazards regression model
for prediction of survival in DLBCL was constructed and
applied to the data from [4] and [5]. Lossos et al. [1] con-
cluded that the measurement of the expression of the six
genes was sufficient to predict overall survival in DLBCL
after stratifying patients into different risk groups based
on their IPI score.
More recently, Blenk et al. [12] analyzed an enlarged

data set (original data were generated by [5]) to confirm
that there are clear expression differences between ABC
andGCBDLBCL. To detect differentially expressed genes,
they [12] used limma in [13] and further determined
50 best separating genes for class discovery. An optimal
classifier with only 18 genes for distinguishing DLBCL
subgroups was conducted. In addition, an optimal molec-
ular survival predictor with only six genes was obtained.
However, there was no overlap among the genes used in
the classifier and the survival predictor established in [12].
Models introduced in [1,4,5,8,9,12] can be used to dis-

tinguish the subgroups in DLBCL and identify rational
targets for research into treatment intervention. More-
over, the predictor identified by each study involved only
a small number of genes and thus the needed DNA
microarrays may be easily developed for clinical predic-
tion. Nonetheless, genes seldom overlap in these models.
Blenk et al. [12] showed that 6 of the 18 genes used in the
optimal classifier were found again after analyzing another
data set from [4]. However, none of these genes were
identified in a subsequent investigation of survival [12].
Due to technical differences, the composition of the

microarrays used, and the different algorithms used for
constructing predictive models, it remains unclear which
method and which model best captures the molecular and
clinical heterogeneity of diffuse large-B-cell lymphoma.
Therefore, the goal in this research was to give an example
of how bivariate data can be used for clinical research.

Methods
Let Xaij and Xhil denote gene expression measurements
from the ith orthologous gene pair [14] for the jth ani-
mal and the lth human. The following independent linear
models describe the association between gene expression
and treatment (cancer type):

Xaij = β0ai + β1aiTaj + eaij , (1)
Xhil = β0hi + β1hiThl + ehil , (2)

where Taj and Thl are {0, 1} treatment indicators, and
eaij and ehil are independent N(0, σ 2

a ) and N(0, σ 2
h ) ran-

dom variables. The σ 2
a and σ 2

h are variances for eaij and
ehil , respectively. A given gene can be classified as non-
differentially expressed (NDE, showing no signs of treat-
ment effects), positively differentially expressed (pDE,
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showing positive treatment effects), or negatively dif-
ferentially expressed (nDE, showing negative treatment
effects). Furthermore, we assume dependency between
differentially expressed orthologs. Therefore, for a human
and animal gene pair, there are nine possibilities for cate-
gorizing this pair of genes, illustrated in Table 1.
The following two-species nine-component bivariate

normal mixture model in [15,16] is proposed to simul-
taneously model the vectors of the estimated treatment
effects (β̂1ai , β̂1hi)

T obtained from Equations 1 and 2:(
β̂1ai
β̂1hi

)
∼ π0N
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where πk , k = 0, . . . , 8 denote the mixing weights (the
probability that an observation belongs to the kth compo-
nent). Note that

∑8
k=0 πk = 1 and πk ≥ 0 . (μak ,μhk)

T

and (σ 2
ak , σ

2
hk)

T are the vectors of themeans and variances,
respectively, for each species in each mixture component.
ρk denotes the correlation between orthologs under the
kth category. To accommodate the possible patterns of

Table 1 Possible categories of (β1ai ,β1hi)
T

Category (β1ai ,β1hi ) (μβ1ai
,μβ1hi

) Corr(β1ai ,β1hi )

0 (NDE,NDE) (0, 0) 0

1 (pDE,pDE) (+,+) ρ1

2 (nDE,nDE) (−,−) ρ2

3 (pDE,nDE) (+,−) ρ3

4 (nDE,pDE) (−,+) ρ4

5 (NDE,pDE) (0,+) 0

6 (NDE,nDE) (0,−) 0

7 (pDE,NDE) (+, 0) 0

8 (nDE,NDE) (−, 0) 0

the gene expression for animal and human due to treat-
ment intervention (different cancer types), the following
constraints are imposed: μa1 ≥ 0, μh1 ≥ 0, μa2 ≤ 0,
μh2 ≤ 0, μa3 ≥ 0, μh3 ≤ 0, μa4 ≤ 0, μh4 ≥ 0, μh5 ≥ 0,
μh6 ≤ 0, μa7 ≥ 0, and μa8 ≤ 0; ρ0 = 0, ρ5 = 0, ρ6 = 0,
ρ7 = 0, and ρ8 = 0.
Gene membership is determined according to the

maximum posterior probability that an observation
(β̂1ai , β̂1hi)

T comes from the kth component of the
mixture.
A parametric bootstrap method in [17,18] to estimate

the standard errors for the estimated parameters is pro-
vided. Bootstrapping is the practice of estimating proper-
ties of an estimator by measuring those properties when
sampling from an approximating distribution. The basis
of the bootstrap methodology is simple. In the paramet-
ric bootstrap setting, consider F to be a member of some
prescribed parametric family and obtain F̂n by estimat-
ing the family parameters, in this case, (πk ,μak ,μhk ,�k)

T ,
k = 0, . . . , 8 , from the data. In each iteration, by
generating an iid random sequence, called a ‘resample’
from the distribution F̂n, new estimates of the param-
eters are obtained and the sampling properties (such
as the mean, standard deviation, bias, and shape) can
be evaluated.
The procedure of the parametric bootstrap resampling

method to obtain the estimated standard errors of the esti-
mated parameters for the nine-component mixture model
is described as follows:

1. F̂n is formed by substituting the estimates of
(μak ,μhk)

T and �k into the 9-component mixture
model (3).

2. The numbers of genes in category 0 through category
8 (n0, n1, . . . , n8) are drawn from a multinomial
distribution with parameters n and p . n is the
number of trials for each multinomial random
variable. In this study, it is equal to the number of
orthologs in two-species data. p is the vector of event
probabilities for each trial. In this study, p is the
vector of the mixing weights estimated from the data.
The new mixing weights are then calculated for the
bootstrap resampling and plugged into the
nine-component mixture model (Equation 3) to form
F̂n .

3. Bootstrap samples (β̂∗
1ai , β̂

∗
1hi)

T of size n are drawn
from F̂n formed above.

4. For each bootstrap resampling, obtain the
numerically approximated maximum likelihood
estimates for the parameters in the nine-component
mixture using the expectation-maximization (EM)
algorithm.

5. Repeat steps 1 to 4 B times independently. B is the
number of bootstrap replications. Calculate the



Su et al. Human Genomics 2013, 7:2 Page 4 of 11
http://www.humgenomics.com/content/7/1/2

empirical standard deviation of a series of bootstrap
replications of θ̂ accordingly. θ̂ is the estimator of θ ,
the parameter of interest. Since the standard error of
the mean (s/

√
n, sample standard deviation divided

by the squared root of the size of the sample) is the
estimate of the true standard deviation of the sample
mean (σ/

√
n, standard deviation for the population

divided by the squared root of the size of the sample),
essentially, the standard deviation of the bootstrap
estimator obtained here is an estimation of the
standard error of the mean for the parameter of
interest. The bootstrap standard error ŜEB of θ̂ is
calculated as follows:

ŜE(θ̂)B =
√√√√ 1

B − 1

B∑
b=1

(θ̂∗
b − ¯̂

θ∗)2,

where θ̂∗
b is the estimator of θ calculated from the bth

bootstrap resample (b = 1, . . . ,B) , ¯̂
θ∗ = ∑B

b=1 θ̂∗
b /B;

B is the total number of resamples (each of size n)
collected from the empirical estimate of F.

Data sources
In order to improve treatments for non-Hodgkin lym-
phoma in human and canine patients, researchers from
North Carolina State University’s College of Veterinary
Medicine and the University of North Carolina at Chapel
Hill Lineberger Comprehensive Cancer Center conducted
research to study tissue samples from human and canine
non-Hodgkin lymphoma patients, with the hope of cre-
ating a genomic profile of non-Hodgkin lymphoma that
would give oncologists and veterinarians greater insight
into the disease’s biology and obtain the information
that could lead to a clinical benefit for both species.
The study protocol was approved by the Institutional
Animal Care and Use Committee of North Carolina
State University.
The team recruited dogs diagnosed with lymphoma

to collect tissue samples for study. The dog data were
measured at the probe set level on Affymetrix Canine
Genome 2.0 array (Canine 2, Affymetrix Inc., Santa Clara,
CA, USA), with a total number of probe sets equal to
43,035. Forty-eight dogs with one of the following diag-
nostic results were recruited: B-cell lymphoma (27 dogs),
T-cell lymphoma (10 dogs), B-cell acute lymphoblastic
leukemia (1 dog), T-cell acute lymphoblastic leukemia (4
dogs), and normal (6 dogs). Among the 27 dogs with
B-cell lymphoma, 14 of them were diagnosed histopatho-
logically with DLBCL. The 14 DLBCL patients could
be further divided into two subgroups: 5 ABC DLBCL
patients and 9 GCB DLBCL patients. For the purpose

of this research, only data for the 14 dogs with DLB-
CLs were used. The dog microarray gene expression
data were LOESS normalized by JMP Genomics 4.0
(Cary, NC, USA).
Corresponding data for human patients with lymphoma

were extracted from the Gene Expression Omnibus
(GEO) database [19]. Data for 460 lymphoma patients
were retrieved from two series with GEO accession num-
ber: GSE10846 [7] and GSE11318 [6]. The human data
were measured at the probe set level on Affymetrix
Human Genome U133 2.0 array (HG-U133 Plus 2), with
a total number of probe sets equal to 54,675. The human
microarray gene expression data were also LOESS nor-
malized by JMP Genomics 4.0. Based on the gene expres-
sion, two distinct subgroups were identified after principle
component analysis. This implied that there may be a
strong batch effect among the samples. Hence, only sam-
ples from one of these two subgroups were included in
the data analysis. This resulted in 219 human subjects
consisting of 31 PMBL, 78 ABC DLBCLs, 80 GCB DLB-
CLs, and 29 unclassified DLBCLs (distinguishing between
subgroups of DLBCL is through gene-expression profiling
[6,7]). To make the animal and human data comparable,
only data for ABC and GCB DLBCLs with correspond-
ing survival information were used. This resulted in a final
dataset with 77 ABCDLBCL patients and 79 GCBDLBCL
patients.
After averaging probe sets across a gene to obtain a

gene-level transcript value, the orthologous information
from HomoloGene release 64 at website ftp://ftp.ncbi.nih.
gov/pub/HomoloGene/build64/ was applied to acquire
the mappings between dog and human. This led to a total
of 6,566 pairs of dog and human orthologs.

Data analysis
We recall that the objective of the data analysis was to
identify rational targets (genes) for treatment interven-
tion simultaneously for both dog and human lymphoma
patients with the hope of giving researchers greater insight
into the disease’s biology. Furthermore, it was also of inter-
est to verify if the targeted genes can serve as a good
predictor to clinically distinguish subgroups of DLBCL
in humans. Because the samples in humans that were
used to estimate the distribution of the bivariate mixture
model were also used to build the classification func-
tion, there was a possibility of over-fitting, resulting in a
model that would indicate an over-optimistic separation
between the subgroups than would be found in inde-
pendent data. To avoid the biased classification result, a
leave-one-out-cross-validation (LOOCV) procedure [20]
was introduced as the following steps:

1. Use all 14 observations for dogs and obtain the
estimated coefficients of cancer type effect on gene

ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build64/
ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build64/
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expression β̂1ai , i = 1, . . . , 6, 566 . Omit one
observation from the 156 human observations and
obtain the estimated coefficients of cancer type effect
β̂1hi .

2. Use all (β̂1ai , β̂1hi)
T to construct the nine-component

bivariate normal mixture model. Identify gene
membership accordingly.

3. Use genes classified into categories (1, 2, 3, and 4)
(differentially expressed in both species) to develop a
classification rule based on the remaining 155 human
observations. Develop another classification rule
based on genes classified into categories (1, 2, 3, 4, 5,
and 6) (differentially expressed in human).

4. For the purpose of comparison, identify differentially
expressed human genes by performing a single
species analysis for human only. Choose genes based
on the p values of the t statistics after adjusting for
multiple comparison by controlling the false
discovery rate (FDR) [21] at levels 0.01 and 0.00001.

5. Classify the holdout human observation using the
classification rules constructed in steps 3 and 4.

6. Repeat steps 1, 2, 3, 4 and 5 until every one of the
human observations is classified.

The classification rule was established through the M-
dimensional centroid obtained from the k-means [22]
clustering process applied to the training set. M was the
number of genes retained for performing cancer type clas-
sification. k was equal to 2 as there were two types of
cancer. SAS PROC FASTCLUS [23] was used to carry out
the k-means clustering.
Since k-means does the clustering, and not the classi-

fication, the class of each cluster has to be determined
for the classification rule before it can be used to classify
future observations. Table 2 demonstrates the results of
the k-means clustering.
Clusters were designated so that the minimum misclas-

sification rate was achieved. Therefore,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if n12 + n21 < n22 + n11
⇒ cluster 1 = “ABC DLBCL” and cluster 2 = “GCB DLBCL”,

if n12 + n21 > n22 + n11
⇒ cluster 1 = “GCB DLBCL” and cluster 2 = “ABC DLBCL”,

if n12 + n21 = n11 + n22
⇒ randomly assign cluster labels.

Table 2 The k -means clustering results

Cluster 1 Cluster 2

ABC DLBCL n11 n12

GCB DLBCL n21 n22

The classification rule established at the lth LOOCV
procedure was then⎧⎪⎪⎨
⎪⎪⎩
if

∑Ml
m=1(xhml − μcentroid

l,1m )2 <
∑Ml

m=1(xhml − μcentroid
l,2m )2

⇒ classify the lth human subject into cluster 1,

else ⇒ classify the lth human subject into cluster 2.

Ml was the total number of genes retained at the lth
LOOCV procedure for cancer type classification. l =
1, . . . , 156 , as there were 156 human DLBCL patients.
xhml was the mth gene expression for the lth hold-out
human subject. For the lth LOOCV procedure, μcentroid

l,1m
andμcentroid

l,2m were themth centroidmeans (m = 1, . . . ,Ml)
calculated from the k-means (k = 2) algorithm for cluster
1 and cluster 2, respectively.

Results
Parameter estimation
The maximum likelihood estimates of the parameters
in the nine-component bivariate normal mixture model
computed using the EM algorithm [24] are given in
Table 3. The estimated mixture weight for category 0
was π̂0 = 0.823 indicating approximately 5,404 (6, 566 ×
0.823) pairs of uninteresting dog and human orthologs.
(μa,μh)

T denotes the mean vector of each mixture com-
ponent. Most of the estimated mean vectors were slightly
larger in categories 1 through 4 than those in categories 5
through 8. It appeared that themagnitude of the estimated
difference of expression in genes related to lymphoma
in both species tended to be larger than in genes where
differential expression was exhibited in only one species.

Gene selection and cancer type classification
For the 156 LOOCV instances, the proposed mixture
model determined 21 (14 genes appearing in the intersec-
tion of all hold-outs) human genes in categories (1, 2, 3,
and 4) and 279 (185 genes appearing in the intersection of
all hold-outs) human genes in categories (1, 2, 3, 4, 5, and
6). While analyzing the human data alone and controlling
the FDR at levels 0.01 and 0.00001, 935 (706 genes appear-
ing in the intersection of all hold-outs) and 190 (139 genes
appearing in the intersection of all hold-outs) genes were
identified as differentially expressed, respectively. Figure 1
shows the scatter plots of (β̂1a, β̂1h)

T for all orthologs and
the 21 pairs of orthologs in categories (1, 2, 3, and 4); i.e.,
the genes in this group showed evidence of distinguish-
ing the two types of cancer for both species. Clearly, most
of the pairs scattered around the (0, 0) origin, indicating
that these genes (for both species) did not have poten-
tial for serving as markers that could distinguish the two
subgroups of DLBCL.
After identifying human genes that showed signs of dis-

criminating between ABC DLBCL and GCB DLBCL and
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Table 3 Summary of parameter estimates for the bivariate mixture model averaged over the 156 LOOCV outcomes

Parameter

Category πk μak μhk σ 2
ak ρkσakσhk σ 2

hk

0 0.823(0.077) NE NE 0.013(0.001) NE 0.012(0.001)

1 0.001(0.005) 0.341(0.081) 0.022(0.130) 0.004(0.010) 0.001(0.017) 0.022(0.060)

2 0.001(0.001) -0.602(0.243) -0.831(0.193) 0.199(0.082) -0.128(0.048) 0.089(0.036)

3 0.001(0.004) 0.495(0.195) -0.564(0.244) 0.042(0.078) -0.042(0.041) 0.119(0.074)

4 0.000(0.003) -1.131(0.422) 0.758(0.305) 0.000(0.028) 0.000(0.015) 0.000(0.050)

5 0.020(0.008) NE 0.492(0.121) 0.020(0.021) NE 0.058(0.049)

6 0.011(0.004) NE -0.517(0.136) 0.034(0.093) NE 0.040(0.044)

7 0.130(0.077) 0.331(0.038) NE 0.018(0.009) NE 0.025(0.001)

8 0.012(0.008) -0.478(0.339) NE 0.011(0.051) NE 0.042(0.054)

Numbers in parentheses are the bootstrap standard errors; B = 5, 000 (the number of bootstrap replications); NE not estimated.

based either on two-species analysis (the nine-component
bivariate mixture model) or on single-species (human
only) analysis, the next step in the LOOCV procedure
was to classify the hold-out human subject according to a
classification rule established using the same set of genes.
Table 4 summarizes the classification results over the 156
LOOCV instances under the four different gene selection

criteria. It was interesting to see that using human genes
from categories (1, 2, 3, and 4), categories (1, 2, 3, 4,
5, and 6) (two-species analysis), and the genes selected
by controlling FDR at 0.00001 (single-species analysis)
gave a very similar number of misclassifications, 17, 16,
and 19, respectively. Nonetheless, choosing FDR = 0.01,
the gene list was largely expanded. The enlarged gene

(a) (b) (c)

(d) (e)

Figure 1 Scatter plots of (β̂1a, β̂1h)
T . (a) all orthologs, (b) orthologs differentially expressed in both species (categories (1, 2, 3, and 4)), (c)

orthologs for which the corresponding human genes are differentially expressed (categories (1, 2, 3, 4, 5, and 6)), (d) orthologs identified by analyzing
the human data alone and controlling FDR at 0.00001, and (e) orthologs identified by analyzing the human data alone and controlling FDR at 0.01.
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Table 4 Misclassification tables using different criteria

Categories (1, 2, 3, and 4) Categories (1, 2, 3, 4, 5, and 6) FDR = 0.00001 FDR = 0.01

Model prediction/subgroup ABC GCB ABC GCB ABC GCB ABC GCB

ABC DLBCL 72 5 64 13 58 19 0 77

GCB DLBCL 12 67 3 76 0 79 2 77

list resulted in a very poor classification result: 79 sub-
jects were misclassified, among whom the entire group
of ABC DLBCLs were misclassified as GCB DLBCLs.
Misclassification rates were 0.109, 0.103, 0.122, and 0.506,
accordingly. It was reasonable to conclude that the clas-
sification results based on two-species (dog and human)
data, in general, may outperform those based on only
single-species (human) data.

Prognostic DLBCL sub-categories defined by gene
expression profiles
Does the taxonomy of DLBCL derived from gene expres-
sion patterns define clinically distinct subgroups of
patients? To confirm that these two DLBCL subgroups
defined by gene expression (the 21 genes in categories
(1, 2, 3, and 4)) were both biologically and clinically dis-
tinct so that the mixture model approach could form the
basis of a robust diagnostic test that may prove useful in
assessing the results of therapeutic trials in DLBCL, over-
all survival and subgroup survival based on two types of
gene-expression profiling, in [6] and [7] and the proposed
mixture model approach, were plotted.
Figure 2 shows the nonparametric Kaplan-Meier sur-

vival probability estimates [25] for patients with DLBCL
under two situations, unstratified and stratified, by gene-
expression profiling. Treating the DLBCL patients regard-
less of the biological difference between the subgroups
gave a 5-year survival rate of 45%. The 5-year survival

rates after stratifying the patients according to the gene-
expression profiling performed in [6] and [7] were 31%
for ABC DLBCL and 59% for GCB DLBCL as compared
with the rates of 29% for ABC DLBCL and 64% for GCB
DLBCL if patients were stratified by the gene-expression
profiling results based on the proposed nine-component
mixture model. Under both types of stratification, ABC
and GCBDLBCL were associated with statistically signifi-
cant differences in overall survival (p<0.0001). A log-rank
test [26] was used to test the hypothesis of equal survival
functions. The molecular dissection of DLBCL by gene-
expression profiling using the proposed nine-component
mixture model apparently identified different features of
these patients that influence their survival.
As determined by gene-expression profiling performed

in [6] and [7], among the 156 patients, there were 77 ABC
DLBCLs and 79 GCB DLBCLs. Conversely, the stratifi-
cation stated by the gene-expression profiling using the
proposed nine-component mixture model gave a result
of 84 ABC DLBCLs and 72 GCB DLBCLs. More specif-
ically, five of the ABC DLBCLs had been classified as
GCB DLBCLs, and 12 of the GCB DLBCLs had been
categorized as ABC DLBCLs. However, the difference
between themedian survival time (years) of the subgroups
stratified by gene-expression profiling performed in [6]
and [7] was smaller than that of the subgroups stratified
by gene expression profiling using the proposed nine-
component mixture model (8.76 vs. 9.31). This may imply
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Figure 2 Kaplan-Meier survival probability estimates for the dog and human lymphoma study. (a) No stratification, (b) stratification based
on the results of gene-expression profiling performed in [6] and [7], and (c) stratification based on the gene-expression profiling resulted from the
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that the stratification based on the gene expression pro-
filing using the proposed nine-component mixture model
provided better insight for the clinical difference between
ABC and GCB DLBCL. These results suggested that the
microarray-based outcome predictor not only reflected
the clinical difference between the twoDLBCL subgroups,
but also provided a possible strategy of investigation for
further individualization of patient treatment.

Justification of the 21 selected human genes
To validate the relevance between specific genes and phe-
notypes, a careful search of the literature was undertaken
using Entrez Gene [27]. Some of these 21 genes (the genes
in Table 5 with Entrez ID highlighted in italics) were iden-
tified by this search as potentially associated with the
development of DLBCL. A brief summary of the relation-
ship between these candidate genes and the development
of DLBCL is given as follows:

1. CD39 [Entrez Gene:953] is a B lymphocyte activation
marker and has powerful functions in the immune
system [28].

2. The expression pattern of JAW1 [Entrez Gene:4033],
a lymphoid-restricted protein, suggested that this
protein may have a role in the developmentally
regulated trafficking of the antigen receptors in B
cells and may influence lymphoid development [29].
Tedoldi et al. [30] pointed out that high levels of Jaw1
mRNA were found in germinal center B-cells and in
diffuse large B-cell lymphomas of germinal center
subtype.

3. The importance of LMO2 [Entrez Gene:4005],
though its function in germinal center cells is
unknown, as a candidate marker involved in the
development of DLBCL has been discussed in several
papers. Natkunam et al. [31] studied LMO2 at the
protein level and confirmed that LMO2 is expressed
specifically in germinal center B cells, which is fully in
keeping with gene-expression profiling studies that
showed high levels of LMO2 mRNA in germinal
center B cells. They in [31] also observed that among
DLBCLs, LMO2 tended to be expressed in cases
assigned by phenotyping to the GCB categories and
can therefore be added to the panel of markers that
pathologists may use to subcategorize lymphomas.
Morton et al. [32] claimed that LMO2 is one of the
candidate genes involved in lymphocyte development
and is highly expressed in germinal center
lymphocytes. Durnick et al. [33] studied the
relationship between LMO2 expression and
t(14;18)/IGH-BCL2, a specific marker of lymphomas
of germinal center origin and has been specifically
associated with the GCB subgroup of DLBCL as
determined by gene expression profiling but not in

the ABC cases. There was a statistically significant
association between IGH-BCL2 fusion and LMO2
protein expression and hence LMO2 was suggested
as a potential marker for the GCB phenotype. A
similar conclusion has also been reached by [1].

4. Germinal center B lymphocytes prominently express
at least two regulators of G-protein signaling (RGS)
proteins, RGS1 and RGS13 [Entrez Gene:6003]. RGS
is a family of proteins acting to limit and modulate
heterotrimeric G-protein signaling. Han et al. [34]
discovered that RGS1 and RGS13 act together to
regulate chemokine receptor signaling in human
germinal center B lymphocytes. The results provide
some insight toward finding methods to reduce or
eliminate an organism’s negative reaction to a
treatment stimulus.

5. The importance of the transcription factor FOXP1
[Entrez Gene:27086] as marker for the activated
B-cell-like signature has been well-established [5,9].
Banham et al. [35] investigated the prognostic
importance of FOXP1 protein expression in DLBCL
and found that the overall empirical survival curves
for the two subgroups based on the expression of
FOXP1 are significantly different. Goatly et al. [36]
made an attempt to discover the underlying
molecular mechanism of FOXP1 expression in
lymphoma development by investigating the FOXP1
translocation, copy number change, and protein
expression in mucosa-associated lymphoid tissue
lymphoma and DLBCL. Korac and Dominis [37]
explored the association between FOXP1, BCL2, and
BCL6 gene expression in diffuse large B-cell
lymphoma tumor cells. FOXP1 protein was detected
in 28 patients; genetic abnormalities involving the
FOXP1 locus were found in 19 patients, and both
were present in 13 patients, among the samples of
lymph nodes from 53 patients with newly diagnosed
DLBCL. FOXP1 genetic abnormalities have been
found to be associated with both BCL2 and BCL6
expression. Though it has been discovered that BCL2
and BCL6 proteins have an impact on diffuse large B-
cell lymphoma development and outcome, they may
not be good prognostic markers. FOXP1 has played a
role in the development of DLBCL. The identified
association among FOXP1, BCL2, and BCL6 indicates
the possibilities of uncovering the development
process in diffuse large B-cell lymphoma tumor cells.
In addition, Nyman et al. [38] used FOXP1 and
MUM1/IRF4 as activated B-cell-like markers to
distinguish patients between the activated B-cell-like
and other diffuse large B-cell lymphoma subtypes.
Most recently, six common prognostic biomarkers,
including FOXP1, were used to conclusively decide
the cut-off values calculated by receiver operating
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Table 5 Summary of the gene-specific information (retrieved from Entrez Gene, an NCBI’s database for gene-specific
information)

Entrez Gene ID Category Dog ortholog Frequencya Symbol Official full name

953 1 486810 156 CD39; ATPDase; Ectonucleoside triphosphate
FLJ40921; FLJ40959; diphosphohydrolase 1
NTPDase-1;
DKFZp686D194;
DKFZp686I093; ENTPD1

1278 2 403824 156 OI4; COL1A2 Collagen, type I, alpha 2

2530 1 448804 156 MGC26465; FUT8 Fucosyltransferase 8 (alpha (1,6) fucosyltrans-
ferase)

4005 2 609006 156 TTG2; RBTN2; RHOM2; LIM domain only 2 (rhombotin-like 1)

RBTNL1; LMO2

4033 3 486631 156 JAW1; LRMP Lymphoid-restricted membrane protein

5919 2 475532 156 TIG2; HP10433; RARRES2 Retinoic acid receptor responder (tazarotene
induced) 2

6003 3 612789 124 MGC17173; RGS13 Regulator of G-protein signaling 13

6856 3 475889 154 SYPL; H-SP1; SYPL1 Synaptophysin-like 1

6925 1 403949 156 E2-2; ITF2; PTHS; SEF2; Transcription factor 4

SEF2-1; SEF2-1A; SEF2-1B;

bHLHb19; MGC149723;

MGC149724; TCF4

7037 1 403703 11 TFR; CD71; TFR1; TRFR; Transferrin receptor (p90, CD71)

TFRC

9435 1 485701 156 C6ST; GST2; GST-2; Gn6ST-
1; CHST2

Carbohydrate (N-acetylglucosamine-6-O)
sulfotransferase 2

9760 2 486964 156 TOX1; KIAA0808; TOX Thymocyte selection-associated high mobil-
ity group box

10447 3 612336 154 ILEI; GS3786; FAM3C Family with sequence similarity 3, member C

23075 3 485385 4 HSPC321; SWAP-70; SWAP switching B-cell complex 70kDa

FLJ39540; KIAA0640; subunit

SWAP70

25816 1 481428 156 GG2-1; SCCS2; SCC-S2; Tumor necrosis factor, alpha-induced

MDC-3.13; TNFAIP8 protein 8

27086 1 484692 156 QRF1; 12CC4; hFKH1B; Forkhead box P1

HSPC215; FLJ23741;

MGC12942; MGC88572;

MGC99551; FOXP1

56941 2 484628 156 DC12; MGC111075; Chromosome 3 open reading frame 37

C3orf37

81552 1 608562 145 ECOP; GASP; FLJ20532; Vesicular, overexpressed in cancer,

DKFZp564K0822; VOPP1 prosurvival protein 1

81641 1 479002 116 Apm; Apn; KZP; AP-M; AP-
N; Lap1; rAPN; Anpep

Alanyl (membrane) aminopeptidase

121355 4 477590 156 FAM112B; FLJ32942; Gametocyte specific factor 1

GTSF1

219972 1 475960 156 MPG1; MGC132657; Macrophage expressed 1

MGC138435; MPEG1

For the 21 human genes in categories (1, 2, 3, and 4) determined by the bivariate mixture model.
Genes in italicswere identified by this search as potentially associated with the development of DLBCL.
anumber of times the corresponding gene was found in the classification gene set for the 156 LOOCV instances.
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curves to predict survival for DLBCL patients [39].
All these results suggested that FOXP1 expression
may be important in DLBCL pathogenesis.

Among the 21 selected genes, five (from categories 1,
2, and 3) have been carefully examined to explore their
association with the development of lymphoma. From
the mixture model assumption, genes in the same cate-
gory should react to the stimulus (drug treatment, cancer
type, etc.) in a similar manner. Hence, the implications of
these 21 genes (some of them may not have been stud-
ied scrupulously) in lymphoma may provide timely and
important insight on guiding future investigations of their
roles in both B-cell biology and lymphoma development.

Conclusions
Since the development of high throughput gene expres-
sion technology, the important and difficult task of
searching for genes that exhibit differences across species
(cancer types or treatment groups in drug trials) has been
the focus of much research. Simultaneously analyzing
gene expression across two species takes into account the
biological similarity between different organisms while
identifying genes that could be potential prognostic mark-
ers and increase the power to detect differences. Identifi-
cation of the relevant genes and a better understanding of
the associated molecular pathways may open new possi-
bilities in cancer diagnosis and treatment. Furthermore, it
may become a practical assay for newly diagnosed patients
to optimize their clinical management.
In this case study, the application of the proposed

nine-component mixture model successfully reduced the
quantities of variables (genes) needed to be investigated
for the study of two types of DLBCL in humans. The
dimension of variables decreased from 6,566 to 21, a clus-
ter of genes that were identified as being differentially
expressed in both species. On the other hand, an anal-
ysis of data from one species that selected genes using
a specified FDR led to a much longer list of differen-
tially expressed human genes (935 genes with FDR = 0.01
and 190 with FDR = 0.00001). Furthermore, the misclas-
sification rate for human cancer type classification using
clustering with gene expression from these 21 genes iden-
tified by the bivariate mixture model was remarkably low.
The survivorship of the patients stratified according to
this clustering was very different across the two types of
cancer, indicating that the stratification based on gene-
expression profiling using the proposed nine-component
mixture model provided better insight for the clinical
differences between the two types of cancer.
While validating the relevance of the identified human

genes through NCBI’s database, literature, if any, for the
corresponding dog orthologs were also searched. Far less
research about DLBCL has been conducted for canines.

As the model assumption is based on the biological
mechanism behind humans and animals, the promising
DLBCL classification results based on the human genes
may be extended to dogs. Furthermore, currently, direct
experiments on humans are not practical. This research
provides the possibility for scientists to conduct observa-
tional or experimental research on modeling organisms as
the first step to understand phenotypes, and then extend
the findings to humans for further investigation.

Abbreviations
DLBCL, diffuse large-B-cell lymphoma; GCB DLBCL, germinal-center B-cell-like
diffuse large-B-cell lymphoma; ABC DLBCL, activated B-cell-like diffuse
large-B-cell lymphoma.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Acknowledgements
The authors thank Dr. Steven Suter, professor of clinical sciences and Dr.
Matthew Breen from the College of Veterinary Medicine, North Carolina State
University for the access to the dog lymphoma expression data.

Author details
1Dr. Su’s Statistics, Department of Human Nutrition, Food, and Animal
Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
2Bioinformatics Research Center, North Carolina State University, Raleigh, NC
27695, USA. 3Biomarker and Predictive Analytics, GlaxoSmithKline, 5 Moore
Drive, Research Triangle Park, NC 27709, USA. 4Department of Genetic,
University of North Carolina, Chapel Hill, NC 27599, USA. 5Department of
Clinical Sciences, Center for Comparative Medicine & Translational Research,
North Carolina State University, Raleigh, NC 27695, USA. 6Department of
Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina
State University, Raleigh, NC 27695, USA. 7Department of Statistics, North
Carolina State University, Raleigh, NC 27695, USA.

Received: 9 December 2011 Accepted: 14 November 2012
Published: 5 January 2013

References
1. Lossos I, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D,

Levy R: Prediction of survival in diffuse large-B-cell lymphoma based
on the expression of six genes. N Engl J Med 2004, 350:1828–1837.

2. Lenz G, Staudt L: Aggressive lymphomas. N Engl J Med 2010,
362:1417–1429.

3. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project:
A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl
J Med 1993, 329:987–992.

4. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek
M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A,
Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR: Diffuse
large B-cell lymphoma outcome prediction by gene-expression
profiling and supervised machine learning. Nat Med 2002, 8:68–74.

5. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI,
Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM, Hurt EM,
Zhao H, Averett L, Yang L, Wilson WH, Jaffe ES, Simon R, Klausner RD,
Powell J, Duffey PL, Longo DL, Greiner TC, Weisenburger DD, Sanger WG,
Dave BJ, Lynch JC, Vose J, Armitage JO, Montserrat E, Lpez-Guillermo A, et
al.: The use of molecular profiling to predict survival after
chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med,
346:1937–1947.

6. Lenz G, Wright GW, Emre NC, Kohlhammer H, Dave SS, Davis RE, Carty S,
Lam LT, Shaffer AL, Xiao W, Powell J, Rosenwald A, Ott G, Muller-Hermelink
HK, Gascoyne RD, Connors JM, Campo E, Jaffe ES, Delabie J, Smeland EB,
Rimsza LM, Fisher RI, Weisenburger DD, Chan WC, Staudt LM:Molecular



Su et al. Human Genomics 2013, 7:2 Page 11 of 11
http://www.humgenomics.com/content/7/1/2

subtypes of diffuse large B-cell lymphoma arise by distinct genetic
pathways. Proc Nat Acad Sci USA 2008, 105:13520–13525.

7. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, Xu W, Tan B,
Goldschmidt N, Iqbal J, Vose J, Bast M, Fu K, Weisenburger DD, Greiner TC,
Armitage JO, Kyle A, May L, Gascoyne RD, Connors JM, Troen G, Holte H,
Kvaloy S, Dierickx D, Verhoef G, Delabie J, Smeland EB, Jares P, Martinez A,
Lopez-Guillermo A, et al.: Stromal gene signatures in large-B-cell
lymphomas. N Engl J Med 2008, 359:2314–2323.

8. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM: A gene
expression-based method to diagnose clinically distinct subgroups
of diffuse large B-cell lymphoma. Proc Nat Acad Sci USA 2003,
100:9991–9996.

9. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC,
Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson JJr, Lu
L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger
DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein
D, Brown PO, Staudt LM, et al.: Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling. Nature 2000,
403:503–511.

10. Eisen M, Spellman PT, Brown PO, Botstein D: Cluster analysis and
display of genome-wide expression patterns. Proc Nat Acad Sci USA
1998, 95:14863–14868.

11. Golub T, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller
H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES:Molecular
classification of cancer: class discovery and class prediction by gene
expression monitoring. Science 1999, 286:531–537.

12. Blenk S, Engelmann J, Weniger M, Schultz J, Dittrich M, Rosenwald A,
Mller-Hermelink HK, Mller T, Dandekar T: Germinal center B cell-like
(GCB) and activated B cell-like (ABC) type diffuse large B cell
lymphoma (DLBCL): analysis of molecular predictors, signatures,
cell cycle state and patient survival. Cancer Inform 2007, 3:399–420.

13. Smyth G: Linear models and empirical Bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol
Biol 2004, 3:3.

14. Sonnhammer E, Koonin E: Orthology, paralogy and proposed
classification for paralog subtypes. TIG 2002, 18:619–620.

15. McLachlan G, Basford K:Mixture models: inference and applications to
clustering. New York: Marcel Dekker; 1988.

16. McLachlan G, Peel D: Finite mixture models. New York: Wiley; 2000.
17. Efron B: Bootstrap methods: another look at the jackknife. Ann Stat

1979, 7:1–26.
18. Efron B: Better bootstrap confidence intervals. J Am Stat Assoc 1987,

82:171–185.
19. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF,

Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM,
Muertter RN, Edgar R: NCBI GEO: archive for high-throughput
functional genomic data. Nucl Acids Res 2009, 37:D885—D890.

20. Lachenbruch P, Mickey M: Estimation of error rates in discriminant
analysis. Technometrics 1968, 10:1–11.

21. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J Roy Statist Soc
Ser B 1995, 57:289–300.

22. MacQueen J: Somemethods for classification and analysis of
multivariate observations. In Proceedings of Fifth Berkeley Symposium on
Math Statistics and Probability. Statistics. Berkeley: 1965 June 21-July 18,
Statistical Laboratory of the University of California; 19651:281–297 .

23. SAS: SAS onlineDoc® 9.1.3. (2002-2008) Available at http://support.sas.
com/onlinedoc/913.

24. Dempster A, Laird N, Rubin D:Maximum likelihood from incomplete
data via the EM algorithm. J Roy Statist Soc Ser B 1977, 39:1–38.

25. Kaplan E, Meier P: Nonparametric estimation from incomplete
observations. J Am Stat Assoc 1958, 53:457–481.

26. Mantel N: Evaluation of survival data and two new rank order
statistics arising in its consideration. Cancer Chemother Rep 1966,
50:163–170.

27. Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez Gene: gene-centered
information at NCBI. Nucl Acids Res 2007, 35:D26—D31.

28. Spanevello R, Mazzanti CM, Schmatz R, ThomG, Bagatini M, Correa M, Rosa
C, Stefanello N, Bell LP, Moretto MB, Oliveira L, Morsch VM, Schetinger MR:
The activity and expression of NTPDase is altered in lymphocytes of
multiple sclerosis patients. Clin Chim Acta 2009, 411:210–214.

29. Behrens T, Kearns GM, Rivard JJ, Bernstein HD, Yewdell JW, Staudt LM:
Carboxyl-terminal targeting and novel post-translational
processing of JAW1, a lymphoid protein of the endoplasmic
reticulum. J Biol Chem 1996, 271:23528–23534.

30. Tedoldi S, Paterson JC, Cordell J, Tan SY, Jones M, Manek S, Dei Tos, A P,
Roberton H, Masir N, Natkunam Y, Pileri SA, Facchetti F, Hansmann ML,
Mason DY, Marafioti T: Jaw1/LRMP, a germinal centre-associated
marker for the immunohistological study of B-cell lymphomas. J
Pathol 2006, 209:454–463.

31. Natkunam Y, Zhao S, Mason DY, Chen J, Taidi B, Jones M, Hammer AS,
Hamilton Dutoit, S, Lossos IS, Levy R: The oncoprotein LMO2 is
expressed in normal germinal-center B cells and in human B-cell
lymphomas. Blood 2007, 109:1636–1642.

32. Morton LM, Purdue MP, Zheng T, Wang SS, Armstrong B, Zhang Y,
Menashe I, Chatterjee N, Davis S, Lan Q, Vajdic CM, Severson RK, Holford
TR, Kricker A, Cerhan JR, Leaderer B, Grulich A, Yeager M, Cozen W, Hoar
Zahm, S, Chanock SJ, Rothman N, Hartge P: Risk of non-Hodgkin
lymphoma associated with germline variation in genes that
regulate the cell cycle, apoptosis, and lymphocyte development.
Cancer Epidemiol Biomarkers Prev 2009, 18:1259–1270.

33. Durnick D, Law ME, Maurer MJ, Natkunam Y, Levy R, Lossos IS, Kurtin PJ,
McPhail ED: Expression of LMO2 is associated with t(14;18)/IGH-BCL2
fusion but not BCL6 translocations in diffuse large B-cell lymphoma.
Am J Clin Path 2010, 134:278–281.

34. Han J, Huang NN, Kim DU, Kehrl JH: RGS1 and RGS13mRNA silencing
in a human B lymphoma line enhances responsiveness to
chemoattractants and impairs desensitization. J Leukoc Biol 2006,
79:1357–1367.

35. Banham A, Connors JM, Brown PJ, Cordell JL, Ott G, Sreenivasan G, Farinha
P, Horsman DE, Gascoyne RD: Expression of the FOXP1 transcription
factor is strongly associated with inferior survival in patients with
diffuse large B-cell lymphoma. Clin Cancer Res 2005, 11:1065–1072.

36. Goatly A, Bacon CM, Nakamura S, Ye H, Kim I, Brown PJ,
Ruskon-Fourmestraux A, Cervera P, Streubel B, Banham AH, Du MQ:
FOXP1 abnormalities in lymphoma: translocation breakpoint
mapping reveals insights into deregulated transcriptional control.
Mod Pathol 2008, 21:902–911.

37. Korac P, Dominis, M: Prognostic markers and gene abnormalities in
subgroups of diffuse large B-cell lymphoma: single center
experience. Clin Sci 2008, 49:618–624.

38. Nyman H, Jerkeman M, Karjalainen-Lindsberg ML, Banham AH, Leppä S:
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