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Abstract

Background: Phenotypic variation along environmental gradients has been documented among and within many
species, and in some cases, genetic variation has been shown to be associated with these gradients. Bayenv is a
relatively new method developed to detect patterns of polymorphisms associated with environmental gradients.
Using a Bayesian Markov Chain Monte Carlo (MCMC) approach, Bayenv evaluates whether a linear model relating
population allele frequencies to environmental variables is more probable than a null model based on observed
frequencies of neutral markers. Although this method has been used to detect environmental adaptation in a
number of species, including humans, plants, fish, and mosquitoes, stability between independent runs of this
MCMC algorithm has not been characterized. In this paper, we explore the variability of results between runs and
the factors contributing to it.

Results: Independent runs of the Bayenv program were carried out using genome-wide single-nucleotide
polymorphism (SNP) data from samples from 60 worldwide human populations following previous applications
of the Bayenv method. To assess factors contributing to the method's stability, we used varying numbers of MCMC
iterations and also analyzed a second modified data set that excluded two Siberian populations with extreme climate
variables. Between any two runs, correlations between Bayes factors and the overlap of SNPs in the empirical p value tails
were surprisingly low. Enrichments of genic versus non-genic SNPs in the empirical tails were more robust than the
empirical p values; however, the significance of the enrichments for some environmental variables still varied among
runs, contradicting previously published conclusions. Runs with a greater number of MCMC iterations slightly reduced
run-to-run variability, and excluding the Siberian populations did not have a large effect on the stability of the runs.

Conclusions: Because of high run-to-run variability, we advise against making conclusions about genome-wide patterns
of adaptation based on only one run of the Bayenv algorithm and recommend caution in interpreting previous studies
that have used only one run. Moving forward, we suggest carrying out multiple independent runs of Bayenv and
averaging Bayes factors between runs to produce more stable and reliable results. With these modifications, future
discoveries of environmental adaptation within species using the Bayenv method will be more accurate, interpretable,
and easily compared between studies.
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Background
Phenotypic variation along environmental gradients, such
as limb length in animals increasing with colder climates
[1], animal body size increasing in colder environments
[2], and bird coloration becoming darker in more humid
climates [3], was first documented in the 1800s. Since
then, many associations between phenotypic variation and
environmental variation, both among and between
species, have been noted [4-20]. To define these patterns,
Huxley [21] introduced the term ‘cline’, which refers to a
continuous phenotypic or genetic gradient that is associ-
ated with a pattern of geographic and/or environmental
heterogeneity.
Various methods have been developed to determine

the contribution of environmental variation to allelic or
genotypic frequency patterns. Early theory in population
genetics was used to derive statistics that allowed variation
in allele frequencies to distinguish selection from drift
[22-24]. Additionally, it has been shown that correlations
between features of the environment and allele frequen-
cies can be detected [15,25-27]. Recently, the availability
of genome-wide data on DNA polymorphisms has spurred
interest in using haplotype frequencies or allele frequency
spectra to infer the existence or extent of selection across
genomes [28-37].
Coop et al. [38] developed a statistical procedure

named Bayenv to detect genomic evidence of adaptation to
specific environmental variation, and it is this method we
address here. The method carries out a locus-by-locus
Bayesian analysis to determine whether a pattern in
which population allele frequencies vary linearly with
environmental variables is more probable than a pattern
in which allele frequencies are assumed to be neutral and
unrelated to environmental variables.
Given a set of populations with associated environmental

variables and genome-wide single-nucleotide polymorphism
(SNP) allele frequencies, a null model is first estimated
to describe how allele frequencies covary across populations.
Sample allele frequencies are drawn from a set of underlying
population frequencies, which are assumed to be distributed
according to a multivariate normal distribution around a
transformed global allele frequency with a variance-
covariance matrix representing the genetic structure of
the populations. These transformed frequencies are not
constrained between 0 and 1. The prior on the variance-
covariance matrix is an inverse Wishart distribution, and
Markov chain Monte Carlo (MCMC) computation is used
to explore the posterior distribution of the covariance
matrix, given the ancestral allele frequency and population
allele frequencies.
After the covariance of allele frequencies between

populations is estimated, the posterior probability of
an alternative model for an individual SNP is determined.
The alternative model predicts that the transformed
population allele frequencies at a SNP are normally
distributed around the ancestral allele frequency according
to a linear model:

P θ Ω; α; βÞeN αþ βY; α 1−αð ÞΩð Þ;���

where θ is the transformed allele frequency, α is the
ancestral allele frequency, Y is the environmental variable,
and Ω is the variance-covariance matrix that was estimated
in the first step of this procedure.
For each SNP, the Bayes factor (BF) is the posterior

probability of the data at that SNP under the alternative
model, integrated over all parameters, then divided by the
posterior probability of the data under the null model,
integrated over all parameters of the null model. Using a
single run of the MCMC under the null distribution
and importance sampling, the Bayes factors for multiple
environmental variables are estimated quickly for each of
the SNPs assayed (see additional details in Coop et al.
[38]). This method has been shown to have good power
compared to a range of other approaches [39].
The Bayenv method has been applied to many species

including humans [40-44], plants [45-49], fish [50,51],
and mosquitoes [52]. In all cases, the objective was to
determine the extent to which a species' pattern of
genomic variation can be inferred to be a response to
environmental variation - for example climate, geography,
photoperiod, or soil type - and hence could be regarded as
a signal of adaptation.
Hancock et al. [40] applied the Bayenv method to

genome-wide data from 61 worldwide populations for
evidence of adaptation to 11 local climatic variables.
Analyzing the pattern of variation of genome-wide SNP
allele frequencies across the populations, they found
evidence for adaptation to several variables, the most
significant being latitude, summer relative humidity,
summer solar radiation, and winter relative humidity.
They reported signs of adaptation at SNPs previously
identified by genome-wide association studies (GWAS)
to be significantly related to phenotypes associated with
environmental gradients, as well as an enrichment of
genic versus non-genic SNPs among the SNPs most
strongly correlated with the climate variables.
Although the Bayenv method has been applied to

different species and environmental variables and has
produced some results agreeing with other analytical
methods, the stability of the results across multiple
MCMC runs is not known. It is also unknown how
the results may be affected by the inclusion of specific
populations from extreme environments, which could
potentially introduce bias [53]. In this study, we carried
out many independent runs of the Bayenv program
using data from Hancock et al. [40] to determine the
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degree of variability between runs and the factors that
may contribute to any variability.
During the writing of this manuscript, an updated

version of this program, Bayenv 2.0 [53], was released.
While the Bayes factor estimation procedure is the
same, it adds features that allow for the input of pooled
population sequencing data and the computation of non-
parametric correlations of the allele frequencies with the
environmental variables. Although using this new version
is advisable, the analyses of the original Bayenv program
presented here remain relevant both to further applications
of the method as well as to studies using results of previous
Bayenv analyses (i.e., Fraser [54]).

Results
All 60 populations; 100,000 MCMC iterations
First, we analyzed the full data set of 60 populations and
assessed correlations with 11 climate variables using
100,000 MCMC iterations (as in Hancock et al. [40]). We
compared results between pairs of five independent runs
as well as between each of our runs and Hancock et al.'s
[40] published results. We report comparisons of our runs
with an updated set of results made available online by the
authors (which we refer to as Hancock2) that used a dif-
ferent number of MCMC burn-ins from the original set of
results made available (Hancock1) (see ‘Methods’ section
for details). The 16 pairs analyzed here are shown by
a's in Table 1.
We found that Bayenv produced slightly different results

in independent runs of the program. For a given climate
variable, pairwise correlations of the logarithms of Bayes
factors (BF's) were computed for all SNPs from each run,
and correlations were averaged across all pairs of runs
mentioned above (shown in Table 1). The averaged correl-
ation coefficients ranged from 0.66 to 0.89 (Table 2a),
depending on the climate variable. Despite analyzing
only 60 of the 61 populations analyzed in Hancock et al.
[40], correlations among our runs were similar to correla-
tions with results from Hancock et al. [40]. Correlations
between the two versions of Hancock et al.'s [40] published
results were also comparable.
Correlations of empirical p values for all SNPs between

the pairs of runs listed in Table 1 were also calculated;
these correlation coefficients ranged from 0.63 to 0.85
(Table 2e), depending on the climate variable. Again, all
pairs of runs compared displayed similar correlation
values. For both the BF and p value correlations, the
longitude variable had the lowest correlation among
runs while winter radiation flux had the highest.
To examine the consistency of SNPs present in the

empirical tails of each run, the overlap of SNPs in the
tails with p value cutoffs of 0.05, 0.01, 0.005, and 0.001
was calculated. Overlap was defined as the proportion of
overlapping SNPs relative to the total number of SNPs
in the tail; this proportion was averaged over all climate
variables. All pairs of runs showed comparable proportions
of overlaps, both when compared among the Blair
runs and between Blair runs and Hancock2. These
overlap proportions ranged from 0.24 in the 0.001
tails of both runs to 0.57 in the 0.05 tails of both
runs when Blair1 was compared to Hancock2 (Table 3a),
with similar values for overlap between all Blair runs. In
general, greater SNP overlap occurred when the SNPs in
one run's tail were compared to the less extreme tail in
another run. (In other words, more SNPs in the 0.001 tail
of run A overlapped with the SNPs in the 0.005 tail of run
B than the 0.001 tail of run B, and even more overlapped
with the SNPs in the 0.01 tail of run B).
To assess whether SNPs with more extreme p values

had greater overlap among runs, we ordered the empirical
p values from the lowest to the highest for each climate
variable and binned the SNPs in groups of 1,000. Each bin
was compared to the corresponding ordered bin in each
of the other Blair runs. Bins of lower p values had the
highest overlap and overlap decreased as the empirical
p values increased. The mean overlap for the top 1,000
SNPs was 0.44, and overlap was much lower for less
significant SNPs (Table 4).
There was also variation among the results at individual

SNPs. For example, SNPs in the CORIN gene region
(rs4558846, rs6447571, rs17601068) gave strong signals
(log10BF = 21.9, 28.7, and 20.8 and empirical p values =
2.0 × 10−5, 3.1 × 10−5, and 2.1 × 10−5) of association with
minimum winter temperature as reported in Hancock et al.
[40] (which we refer to as Hancock1), but show low signals
in other runs: Blair1 (log10BF = −0.32, −0.50, and −0.48 and
empirical p values = 0.40, 0.57, and 0.44) and Hancock2
(log10BF = −0.33, −0.07, and −0.16 and empirical p values =
0.36, 0.22, and 0.20). Some of this variability could be due
to the limited burn-in in Hancock1 (see ‘Methods’ section).
Other SNPs, such as rs2075756 in TRIP6, show more
consistency. Blair1 obtained a log10BF of 4.0 and empirical
p value of 7.9 × 10−4, while Hancock2 reported a log10BF of
1.4 and empirical p value of 3.2 × 10−3 for this SNP. This
SNP shows a strong signal with absolute latitude, the
variable for which we saw consistently strong signals
of genic/non-genic enrichment among SNPs with low
empirical p values (see below).
We then assessed whether genic SNPs were enriched

among SNPs with the strongest signals by comparing
the fraction of genic SNPs to non-genic SNPs in the
empirical tails. This enrichment was compared across all
five of our runs as well as with Hancock1 and Hancock2.
The absolute enrichment values (calculated as described in
the ‘Methods’ section) varied across runs and differed from
Hancock's [40] published results (results not shown). The
significance values of the genic/non-genic enrichments,
which represent the proportion of bootstrapped samples



Table 1 Pairs of Bayenv runs compared

Hancock1 Hancock2 Blair1 Blair2 Blair3 Blair4 Blair5 LongBlair1 LongBlair2 LongBlair3 LongBlair4 LongBlair5 W/O_
Sib1

W/O_
Sib2

W/O_
Sib3

W/O_
Sib4

W/O_
Sib5

Hancock1

Hancock2 a

Blair1 a

Blair2 a a

Blair3 a a a

Blair4 a a a a

Blair5 a a a a a

LongBlair1

LongBlair2 b

LongBlair3 b b

LongBlair4 b b b

LongBlair5 b b b b

W/O_Sib1 d

W/O_Sib2 d c

W/O_Sib3 d c c

W/O_Sib4 d c c c

W/O_Sib5 d c c c c

Letters indicate the parts of Tables 2 and 3 in which results for the indicated comparisons are averaged and presented. In Table 2, letters a, b, c, and d also correspond to parts e, f, g, and h, respectively. Hancock1
refers to the original Climate file posted on the dbCline website and published in Hancock et al. [40]; Hancock2 refers to file Climate.2 posted on dbCline website in autumn 2012 that uses the appropriate MCMC
burn-in (see ‘Methods’ section); Blair1-5 refer to our five separate runs using 100,000 MCMC iterations; LongBlair1-5 refer to our five separate runs using 500,000 MCMC iterations; W/O_Sib1-5 refer to our five runs using
a modified data set excluding the Siberian populations.
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Table 2 Average correlations of the log of the Bayes factors (BF) and average correlations of the empirical p values between runs for each climate variable

Latitude Absolute value
latitude

Longitude Min temp
win

Max temp
sum

Prec. rate
sum

Prec. rate
win

Rad flux
sum

Rad flux
win

Rel humid
sum

Rel humid
Win

Log of BF

(a) All populations (100,000 iterations) incl Hancock 0.87 0.88 0.66 0.83 0.84 0.73 0.75 0.74 0.89 0.73 0.79

(b) All populations (500,000 iterations) 0.93 0.92 0.82 0.88 0.90 0.85 0.85 0.83 0.93 0.85 0.88

(c) Without Siberia (150,000 iterations) 0.87 0.87 0.74 0.82 0.86 0.79 0.81 0.78 0.87 0.80 0.85

(d) Without Siberia (150,000 iterations) vs. Hancock2 0.79 0.82 0.70 0.81 0.81 0.70 0.72 0.75 0.84 0.78 0.76

Empirical p values

(e) All populations (100,000 iterations)
incl Hancock

0.81 0.84 0.63 0.79 0.81 0.68 0.70 0.70 0.85 0.70 0.75

(f) All populations (500,000 iterations) 0.91 0.91 0.81 0.88 0.90 0.82 0.83 0.82 0.92 0.84 0.86

(g) Without Siberia (150,000 iterations) 0.82 0.81 0.70 0.80 0.82 0.73 0.75 0.74 0.82 0.76 0.80

(h) Without Siberia (150,000 iterations) vs. Hancock2 0.61 0.65 0.67 0.74 0.66 0.62 0.68 0.70 0.67 0.72 0.75

‘Win’ refers to winter, ‘sum’ refers to summer, ‘prec. rate’ refers to precipitation rate, ‘rad. flux’ refers to radiation flux, and ‘rel. humid’ refers to relative humidity. Runs compared in each part are shown in Table 1.
Incl Hancock means that the average is taken over pairs of Blair1-5 (100,000 iterations) and Hancock1-2, shown by a's in Table 1. Hancock1-2 were run with 150,000 iterations.
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Table 3 Empirical p value tail comparisons between
indicated runs

.05 .01 .005 .001

(a) All populations (100,000 iterations) -
Hancock2 vs. Blair1

.05 0.55 0.79 0.83 0.88

.01 0.75 0.40 0.51 0.66

.005 0.78 0.49 0.34 0.54

.001 0.83 0.62 0.51 0.24

(b) All populations (500,000 iterations) -
LongBlair1 vs. LongBlair3

.05 0.64 0.85 0.89 0.93

.01 0.88 0.51 0.62 0.78

.005 0.91 0.65 0.46 0.67

.001 0.94 0.80 0.70 0.37

(c) Without Siberia (150,000 iterations) -
W/O_Sib1 vs. W/O_Sib3

.05 0.60 0.83 0.86 0.92

.01 0.81 0.45 0.56 0.73

.005 0.85 0.56 0.40 0.61

.001 0.90 0.71 0.59 0.30

(d) Without Siberia (150,000 iterations) vs.
Hancock2 - Hancock2 vs. W/O_Sib1

.05 0.51 0.72 0.75 0.80

.01 0.75 0.36 0.44 0.56

.005 0.81 0.46 0.30 0.44

.001 0.87 0.62 0.48 0.20

The table reports the fraction of SNPs from the smaller tail of one run that is
present in the larger tail of the second run, averaged over climate variables.
Two identical runs produce values of 1. Within each part (a to d), all pairs of
runs (see Table 1) have similar fractions of overlap, and representative tables
are shown here. For a given part, the first run's empirical tails are shown as
rows (e.g., Hancock2 in part a), and the second run's are shown as columns
(e.g., Blair1 in part a). Also, 623,318 SNPs are included in this analysis.
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that are also enriched, also varied across runs (i.e., for
summer solar radiation) (Table 5).
The absolute latitude and winter relative humidity

variables were almost always significant, with the exception
of the 0.005 tail in Blair5; the summer precipitation
variable was never significant. All three of these findings
agreed with Hancock et al.'s published results [40].
However, summer solar radiation and humidity were
Table 4 Overlap of ranked SNPs (ranked by empirical
p value from lowest to highest and binned in groups of
1,000) between runs

Range of ranked SNPs Overlap proportion

1–1,000 0.44 ± 0.020

100,001–101,000 0.0073 ± 0.0033

200,001–201,000 0.0051 ± 0.0023

300,001–301,000 0.0043 ± 0.0016

400,001–401,000 0.0042 ± 0.0014

500,001–501,000 0.0035 ± 0.0014

600,001–601,000 0.014 ± 0.0098

For each bin, we calculated the proportion of overlapping SNPs between each
corresponding bin for all ten pairs of runs (Blair1-5). Table reports the mean
and standard deviation of the overlap proportion across all pairs of runs. Only
1 bin per 100,000 SNPs is shown. Also, 623,318 total SNPs were used in
the analysis.
not consistently significant, though reported to be signifi-
cant in Hancock et al. [40]. Among the remaining
variables, results varied among runs, and our runs showed
less significance on average than Hancock et al.'s
published results [40].

All 60 populations; 500,000 MCMC iterations
In order to determine whether the observed variability
between runs was due to the MCMC not converging,
the number of MCMC iterations was increased fivefold
to 500,000. Five independent runs were performed, each
with different seeds, but with the same full data set
of 60 populations. All pairs of the five runs with 500,000
iterations were compared (shown as b's in Table 1).
Between independent runs, both the Bayes factors

and p values showed higher correlation coefficients
compared to those between independent runs with
100,000 iterations. When averaged across all pairs of
runs, the Bayes factor correlation coefficients ranged from
0.82 to 0.95 (Table 2b), and the correlation coefficients of
the p values ranged from 0.81 to 0.92 (Table 2f). These
correlations are significantly higher than among runs of
100,000 iterations for all environmental variables: paired
Wilcoxon tests of these correlations, which for each
climate variable are averaged across pairs of runs, give
a p value of 0.0038 for the Bayes factors and a p value of
0.0038 for the empirical p values. The SNPs in the empir-
ical p value tails were compared as before, and although
the overlap was greater between long runs than between
runs with 100,000 iterations, the proportion of overlapping
SNPs in the tails was still not high, ranging from 0.64 in
the 0.05 tails of two runs to 0.36 in the 0.001 tails of two
runs (Table 3b).
Genic/non-genic enrichment significance values also

stabilized somewhat in the runs with 500,000 iterations
but still did not show the same significance values from
run to run (Table 5). Genic/non-genic enrichments were
highly significant for the absolute latitude and relative
humidity winter variables and again were not significant
for the summer precipitation variable across all five runs.
Interestingly, none of the five runs showed significant
genic/non-genic enrichment for winter precipitation
rate, except in the 0.01 tail in Blair5. As before, varying
levels of significance were seen for summer solar radi-
ation and summer relative humidity. This differs from
Hancock et al. [40], who reported high significance across
all tails for these environmental variables.
In searching for the source of the differences described

above, biases from allele frequency, SNP ascertainment
panel, and method of calculating empirical p values were
investigated, but none of these potential biases was
shown to explain the variability among runs. First, the
data were re-analyzed using empirical p values that were
not binned by allele frequency. P value overlap did not



Table 5 Genic/non-genic enrichments for each climate
variable in the indicated empirical tails

Climate variable Data set Empirical tail

0.05 0.01 0.005

Absolute latitude Hancock1 (published
results)

3 3 3

Hancock1 (our analysis) 1 2 2

Hancock2 3 3 3

Blair1 0 2 3

Blair2 0 3 3

Blair3 1 1 2

Blair4 1 3 3

Blair5 1 1 3

LongBlair1 3 3 3

LongBlair2 2 2 1

LongBlair3 1 2 2

LongBlair4 3 2 1

LongBlair5 2 2 3

W/O_Sib1 1 0 0

W/O_Sib2 0 1 2

W/O_Sib3 1 0 1

W/O_Sib4 0 0 0

W/O_Sib5 0 0 0

Summer maximum
temperature

Hancock1 (published
results)

0 0 2

Hancock1 (our analysis) 0 2 3

Hancock2 2 3 3

Blair1 0 0 0

Blair2 0 0 0

Blair3 0 1 0

Blair4 0 0 0

Blair5 1 0 0

LongBlair1 0 0 1

LongBlair2 0 1 0

LongBlair3 0 0 1

LongBlair4 0 2 2

LongBlair5 0 0 1

W/O_Sib1 3 2 2

W/O_Sib2 0 0 0

W/O_Sib3 0 0 0

W/O_Sib4 0 2 3

W/O_Sib5 3 0 0

Summer precipitation
rate

Hancock1 (published
results)

0 0 0

Hancock1 (our analysis) 0 0 0

Hancock2 0 0 0

Blair1 0 0 0

Table 5 Genic/non-genic enrichments for each climate
variable in the indicated empirical tails (Continued)

Blair2 0 0 0

Blair3 0 0 0

Blair4 0 0 0

Blair5 0 0 0

LongBlair1 0 0 0

LongBlair2 0 0 0

LongBlair3 0 0 0

LongBlair4 0 0 0

LongBlair5 0 0 0

W/O_Sib1 0 0 0

W/O_Sib2 0 0 0

W/O_Sib3 0 0 0

W/O_Sib4 0 0 0

W/O_Sib5 0 0 0

Summer solar
radiation

Hancock1 (published
results)

3 3 3

Hancock1 (our analysis) 3 3 3

Hancock2 0 1 3

Blair1 2 2 0

Blair2 0 0 0

Blair3 1 0 0

Blair4 0 0 0

Blair5 3 0 0

LongBlair1 2 3 3

LongBlair2 0 3 3

LongBlair3 2 0 0

LongBlair4 0 2 1

LongBlair5 0 3 3

W/O_Sib1 3 3 3

W/O_Sib2 1 0 0

W/O_Sib3 0 0 0

W/O_Sib4 1 0 0

W/O_Sib5 3 3 2

Summer relative
humidity

Hancock1 (published
results)

2 3 3

Hancock1 (our analysis) 2 3 3

Hancock2 0 3 3

Blair1 0 2 1

Blair2 2 0 0

Blair3 0 0 0

Blair4 0 2 0

Blair5 1 0 0

LongBlair1 0 0 0

LongBlair2 1 2 3

LongBlair3 0 2 1
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Table 5 Genic/non-genic enrichments for each climate
variable in the indicated empirical tails (Continued)

LongBlair4 0 0 1

LongBlair5 1 1 1

W/O_Sib1 0 3 3

W/O_Sib2 2 3 2

W/O_Sib3 0 0 0

W/O_Sib4 1 2 1

W/O_Sib5 0 0 1

Winter minimum
temperature

Hancock1 (published
results)

1 0 0

Hancock1 (our analysis) 1 0 0

Hancock2 0 3 3

Blair1 0 1 2

Blair2 0 2 2

Blair3 0 1 2

Blair4 0 0 1

Blair5 0 1 1

LongBlair1 0 3 2

LongBlair2 0 2 2

LongBlair3 0 3 2

LongBlair4 0 2 2

LongBlair5 0 3 3

W/O_Sib1 0 0 0

W/O_Sib2 0 2 0

W/O_Sib3 1 0 2

W/O_Sib4 0 1 3

W/O_Sib5 0 1 2

Winter precipitation
rate

Hancock1 (published
results)

0 3 3

Hancock1 (our analysis) 1 3 3

Hancock2 2 0 0

Blair1 2 0 0

Blair2 0 1 0

Blair3 2 1 0

Blair4 2 3 3

Blair5 0 0 0

LongBlair1 0 0 0

LongBlair2 0 0 0

LongBlair3 0 0 0

LongBlair4 0 0 0

LongBlair5 0 2 0

W/O_Sib1 0 0 2

W/O_Sib2 0 2 3

W/O_Sib3 0 0 0

W/O_Sib4 0 3 2

W/O_Sib5 3 1 2

Table 5 Genic/non-genic enrichments for each climate
variable in the indicated empirical tails (Continued)

Winter relative
humidity

Hancock1 (published
results)

3 3 3

Hancock1 (our analysis) 3 2 2

Hancock2 3 3 3

Blair1 3 3 3

Blair2 3 3 2

Blair3 3 1 3

Blair4 3 3 3

Blair5 3 1 0

LongBlair1 3 3 0

LongBlair2 3 3 2

LongBlair3 3 3 2

LongBlair4 2 0 0

LongBlair5 3 2 1

W/O_Sib1 3 2 2

W/O_Sib2 3 2 3

W/O_Sib3 3 3 2

W/O_Sib4 3 3 3

W/O_Sib5 3 3 0

Winter solar radiation Hancock1 (published
results)

3 1 1

Hancock1 (our analysis) 3 0 2

Hancock2 3 2 0

Blair1 3 1 0

Blair2 3 2 1

Blair3 3 0 0

Blair4 3 0 0

Blair5 2 1 0

LongBlair1 3 0 0

LongBlair2 3 2 0

LongBlair3 3 2 1

LongBlair4 3 3 2

LongBlair5 3 1 0

W/O_Sib1 3 0 0

W/O_Sib2 3 1 2

W/O_Sib3 3 0 0

W/O_Sib4 3 3 2

W/O_Sib5 2 0 1

The table shows the number of stars of significance for genic/non-genic
enrichments in the 0.05, 0.01, and 0.005 tails of the empirical p value
distribution for each indicated run (defined as in Table 1 and in the ‘Methods’
section). ‘1’ denotes 95%–97.5% of bootstraps had an enrichment of genic
compared to non-genic SNPs in that empirical tail, ‘2’ denotes 97.5%–99%,
and ‘3’ denotes >99%. ‘0’ denotes that a genic enrichment is not significant
(i.e., that <95% of the bootstraps had an enrichment). Enrichments for the nine
environmental variables that were shown in Hancock et al. [40] are
shown here.
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increase when binned vs. un-binned p values were com-
pared. Second, the proportions of SNPs from each
ascertainment panel in each tail were calculated, and
these proportions were found to be similar to the over-
all proportions of SNPs in each ascertainment panel.
Additionally, when each ascertainment panel was consid-
ered separately, the overlap in the tails of p values was simi-
lar to the overlap in the tails when all three ascertainment
panels were considered together.

Without Siberian populations; 150,000 iterations
Because the Siberian populations, the Naukan Yup’ik and
Maritime Chukchee, live in some of the most extreme
climatic regions among the 60 sampled populations, it
may be possible that removing these populations from
the data set could affect the variability of Bayes factors,
empirical p values, and genic/non-genic enrichments among
independent runs. All pairs of runs using this modified
data set were compared (shown as c's in Table 1).
Pairwise correlations of the log of the Bayes factors
(Table 2c) and p values (Table 2g) as well as fractions of
overlap of SNPs in the 0.05, 0.01, 0.005, and 0.001
tails of the empirical p values (Table 3c) were com-
parable to the correlations between the runs of the
full data set (60 populations with 100,000 iterations
(Table 2a)). This suggests that the inclusion of populations
with extreme environmental variables may not affect run-
to-run variability.
To determine whether excluding the Siberian populations

affected the results of the Bayenv method, each of the runs
without the Siberian populations was compared to the
updated Hancock results published on the dbCline
website (Hancock2) (shown by d's in Table 1). Pairwise
correlations between the log of the Bayes factors of
these pairs (Table 2d), averaged across all pairs, were
similar to correlations between pairs of non-Siberian runs
(Table 2c). However, correlations of empirical p values
between Hancock2 and non-Siberian runs (Table 2h) were
lower than correlations between pairs of non-Siberian runs
(Table 2g) and also lower than the correlations between pairs
of runs using the full data set (Table 2e). Similarly, overlap
in the empirical tails is lower when non-Siberian runs are
compared to the results from Hancock2 (Table 3d), demon-
strating a slight difference in results when these popula-
tions were excluded.
Although genic/non-genic enrichment significance values

varied across runs of the non-Siberian data set (Table 5),
some patterns differed from the results that included
the full data set of 60 populations. The genic/non-genic
enrichment for the absolute latitude variable was less
significant than in runs analyzing all populations (Table 5),
showing a small effect of exclusion of the Siberian
populations. In addition, winter precipitation rate was
sometimes significant in the non-Siberian runs; this
variable was significant in Hancock et al.'s [40] published
data but not in our runs with the full population set using
500,000 MCMC iterations.

Discussion
We have explored the computational replicability of
the Bayenv program [38] in determining evidence for
positive selection in response to climatic variation. We used
genome-wide SNP data from 60 worldwide human
populations and 11 climate variables as in Hancock et al.
[40] and carried out independent Bayenv runs with 100,000
and 500,000 MCMC iterations, as well as with 150,000
iterations while omitting Siberian populations with extreme
climatic variables. In comparing pairs of our runs as well as
each of our runs with the results previously published in
Hancock et al. [40], results from the Bayenv method appear
to be variable across runs in their Bayes factors, empir-
ical p values, and in the values and significances of
enrichments of genic SNPs in the empirical tails. Although
some run-to-run variability is expected in any MCMC
algorithm, we show here that the differences between runs
are sufficient to lead to varying biological conclusions
regarding human adaptation.
In runs with 100,000 MCMC iterations, correlations of

Bayes factors between replicate runs were low (0.66–
0.88) between pairs of our runs, between our runs and
the results of Hancock et al. [40], and between the dif-
ferent versions of results posted by Hancock et al.
(Table 2a). To explore the possibility that the MCMC
had failed to converge, we increased the number of
MCMC iterations to 500,000; although these correla-
tions increased as a result (0.82–0.93) (Table 2b), there
was still substantial run-to-run variability in further
analyses.
Because Bayes factors are dependent on the accuracy of

the null model and, therefore, may be substantially
inflated due to imperfections of this model [40], we
focused further analyses on the empirical p values.
Hancock et al. [40] write, ‘Since we cannot expect the
null model to account fully for the effects of population
structure, we emphasize that we cannot take the BFs
themselves at face value, nor can they be directly com-
pared across climate variables. Therefore, we took a con-
servative approach and conducted subsequent analyses by
comparing each SNP to the empirical distribution.’ In our
analysis, empirical p values were seen to be no more
stable than the Bayes factors themselves, as correlation
coefficients of the empirical p values were in the same
range as the correlation coefficients of the Bayes factors
(Table 2e). As before, the correlation of p values between
runs improved when the MCMC iterations were increased
to 500,000 (Table 2f). Although we recommend using a
large number of MCMC iterations, this does not completely
stabilize Bayenv results from run to run.
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Amounts of SNP overlap in the tails of the empirical
p value distributions showed that the relative ranking
of the SNPs associated with environmental variables
varied across runs, even with a larger number of MCMC
iterations. While the overlap of SNPs between the extreme
tails (i.e., top 0.01%) of two runs was found to be low, we
recognize that this slightly overestimates run-to-run
variability. For example, 24% of the 0.001 tail of Hancock2
overlapped with the 0.001 tail of Blair1; that proportion
increased to 83% with the 0.005 tail of Blair1 (Table 3a).
This suggests that the SNPs with the lowest empirical
p values have generally low p values in all runs. Analysis
of the overlap of SNPs with low empirical p values versus
the overlap of SNPs with high or midrange empirical
p values shows that strong signals are also more reprodu-
cible from run-to-run than weaker signals.
Despite this trend, a SNP's significance and relative rank-

ing nearly always vary from one run of Bayenv to another.
SNPs inferred to be significant using some pre-defined
p-value threshold in one run may not be found to be
significant in another run. Thus, the low fractions of
empirical p-value tail overlap between runs suggest
that caution is advisable in drawing inferences based
on only one run, especially when making conclusions
regarding individual SNPs or genes (see ‘Results’ section).
Finally, we assessed the stability of inferences regarding

the enrichment of genic SNPs among SNPs strongly
associated with a given climate variable. Evidence of
such an enrichment has been argued as evidence of strong
selection on genic regions in response to an associated
environmental pressure [40,45]. Because the stability of
these significances depends only on the ratio of genic to
non-genic SNPs in the empirical tails, as opposed to the
rank of each individual SNP, this measure could be
consistent despite variability of Bayes factors and empirical
p values. However, the significances of climate variables
including summer maximum temperature, summer rela-
tive humidity, summer solar radiation, winter minimum
temperature, winter precipitation rate, and winter solar
radiation varied widely from run to run (Table 5).
Of particular interest are summer solar radiation and

summer relative humidity, both claimed to be significant by
Hancock et al. [40] but for which significance did not hold
in our analyses. For these variables, as well as others,
neither the enrichment values nor the significance of the
enrichment values increased or decreased systematically
when the tail cut-off was more extreme, as suggested in
Hancock et al. [40]. The lack of significance for these
variables in the Hancock2 analysis, which includes all 61
populations, shows that the exclusion of the data from
Australian Aborigines from our analysis is not the
cause for this difference in significance. Thus, replicate runs
demonstrate that these two variables may have been less
crucial in human adaptation than suggested previously [40].
Despite this variability between runs, certain climate
variables show some consistency in genic/non-genic
enrichments and agree with conclusions of Hancock et al.
[40] (Table 5). Winter relative humidity is significant across
all runs, including those in which the Siberian populations
are excluded, suggesting that this may be a robust signal of
adaptation in response to this climatic variable. Absolute
latitude also shows a strong signal and is significant across
all runs that include all populations. That we were able to
replicate the significance of both of these variables,
despite the fact that we did not include the Australian
Aborigines (included in Hancock et al. [40]) underscores
their potential importance in human adaptation.
We note that populations with extreme climate variables

may indeed have an effect on some conclusions drawn
from Bayenv analyses. For example, without the Siberian
populations, an enrichment of genic SNPs was no longer
significant for latitude (Table 5). Thus, while the inclusion
of outlying populations may affect biological conclu-
sions, it does not appear to affect run-to-run variability
(see ‘Results’ section).
In summary, our analysis of the consistency of genic

enrichments between runs demonstrates the importance
of performing multiple runs of Bayenv. Two independent
runs can potentially lead to very different biological
conclusions. Significance of a particular environmental
variable in multiple Bayenv runs constitutes much stron-
ger evidence for its relevance and importance for human
adaptation.
A new version of the Bayenv method, Bayenv 2.0 [53],

has recently been released. Running the new version
with 100,000 MCMC iterations produces slightly more
stable results among runs than the old version; however,
the variability is comparable to the runs of the old version
with 500,000 MCMC iterations (results not shown).
Gunther et al. note that their inclusion of non-parametric
analyses in Bayenv 2.0 helps to account for potential false
positives due to outlying populations [53]; however, our
results suggest that results run on the previous version
of the Bayenv program that do not include outlying
populations may still lead to varying results across runs.
Thus, while we suggest using the new version, the results
described in this manuscript remain relevant to the
application of Bayenv 2.0.
It can be difficult to disentangle stability and specificity,

and we recognize that some of the run-to-run variability of
this method may be due to less strong signals of environ-
mental adaptation (i.e., winter minimum temperature as
compared to latitude). However, as every run may be
different, it is still advisable to carry out multiple runs
when making biological conclusions, especially when the
signal tested may not be strong to begin with. Averaging
Bayes factors of two or more independent runs before
calculating the empirical p values produces more stable
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empirical p values and genic/non-genic enrichments
(results not shown). Additionally, individual SNPs that
show large Bayes factors in at least one run could be
rerun with more MCMC iterations to determine a
Bayes factor value to which all iterations converge.
Unfortunately, this process would not be as useful for a
genome-wide analysis, as a large set of SNPs is necessary
for the calculation of the empirical p values and the
genic/non-genic enrichments.

Conclusions
We conclude that, in using the Bayenv method, relying
on the relative rankings of SNPs calculated from only one
run of the program may lead to biological conclusions that
might not have been reached with another independent
run of the program. Neither increasing the number of
MCMC iterations nor removing outlying populations
completely eliminated this variability. Thus, we suggest
carrying out several independent runs of the Bayenv ana-
lysis to assess variability of the Bayes factors and empirical
p values across runs. We also suggest averaging Bayes
factors from independent runs to produce more stable
results. With these modifications, future discoveries of
environmental adaptation within species using the Bayenv
method will be more accurate, interpretable, and easily
compared between studies.

Methods
Populations
Allele frequency data on 623,318 SNPs from samples
of 60 human populations from the freq_data file
(61pops_climate_freqs.txt) on the dbCline website
(http://genapps2.uchicago.edu:8081/dbcline/main.jsp) were
analyzed. The data set included samples from 52 HGDP
populations plus Vasekela !Kung, Amhara, Naukan
Yup’ik, Maritime Chukchee, Luhya, Maasai, Tuscans, and
Gujarati. These were the same populations used by
Hancock et al. [40], with the exception of the Australian
Aborigines, who were not included in the allele frequency
file on dbCline. To translate allele frequencies into allele
counts, the sample sizes from Li et al. [55] were used
for the HGDP populations and from the supplementary
information of Hancock et al. [40] for the additional eight
populations.

Climate variables
The climate data consisted of the 11 variables in
Hancock et al. [40] that are posted on the dbCline website:
latitude, absolute latitude, longitude, winter minimum tem-
perature, summer maximum temperature, summer pre-
cipitation rate, winter precipitation rate, summer radiation
flux, winter radiation flux, summer relative humidity,
and winter relative humidity. Climate data were obtained
for each population directly from the dbCline website
(61pops_climate_freqs.txt).

Covariance matrix estimation
For the set of 60 populations, three covariance matrices,
each one representing a different ascertainment panel
(Illumina 250 K, Illumina 300 K, or Illumina AFR), were
generated using the Bayenv program (as in Hancock et al.
[40]). The program was run for 100,000 MCMC iterations,
and the entries of each matrix were averaged over the last
three output matrices (output every 5,000 iterations).
Visual comparison showed the matrices to be qualitatively
similar to those in Coop et al. [38], and the matrices were
stable from run to run. For our analysis, one covariance
matrix for each ascertainment panel was estimated as
described here and used for all runs.

Bayenv runs
Five independent runs of the Bayenv program were carried
out using the full data set of 60 populations and 11 climate
variables. As with the covariance matrices, SNPs were
analyzed with their corresponding ascertainment panel.
Each run used a different random seed but the same input
data set and 100,000 MCMC iterations. Bayes factors
produced from the three ascertainment panels were
combined into one file for each run. These runs are
referred to as Blair1 - Blair5 (see Table 1).
In a separate analysis, five independent runs of the

Bayenv program were carried out as above, using the same
full data set but increasing the MCMC iterations to 500,000
(referred to as LongBlair1 - LongBlair5) (see Table 1). For
all runs, we use the default MCMC burn-in values.

Bayenv runs without Siberia
Five independent runs of the Bayenv program were carried
out using a modified data set and 150,000 MCMC
iterations. In this modified data set, all 11 climate
variables were included, but the Siberian populations
(Naukan Yup’ik and Maritime Chukchee) were excluded
(referred to as W/O Siberia1 - W/O Siberia5; see Table 1).
The aim here was to explore how the Siberian populations,
who live in some of the most extreme climatic regions,
might affect the stability and conclusions drawn from Bayes
factors, empirical p values, and genic/non-genic enrichment
values (see below).

Hancock runs
Bayes factors and empirical p values from Hancock et al.
[40] were obtained from the dbCline website. Following
the Hancock et al. [40] publication, the authors posted a
set of results, which we refer to as Hancock1, which used
fewer burn-ins for the MCMC procedure and thus failed
to converge (Anna Di Rienzo, personal correspondence).
After further correspondence with the authors, a second

http://genapps2.uchicago.edu:8081/dbcline/main.jsp
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set of results that used a longer burn-in was posted
in autumn 2013 (which we refer to as Hancock2). We
examined BF correlations and empirical p value correlations
and overlap between these two data sets (described below).
For calculations of genic/non-genic enrichment (described
below), we performed the analysis on both Hancock1 and
Hancock2. In general, our analysis of the Hancock1
data set gave similar results to those published by
Hancock et al. [40].

SNP p values
As in Hancock et al. [40], we calculated empirical p values
by binning SNPs based on their global allele frequency
(across 60 populations). For each SNP, a transformed rank
statistic was computed by comparing the computed
Bayes factor for the SNP with the Bayes factors from
other SNPs in the same global allele frequency bin.
For this process, all SNPs were analyzed together, and no
distinction was made for SNPs belonging to different
ascertainment panels.

Genic/non-genic enrichments
To calculate genic/non-genic enrichments, a SNP was
defined as genic if it was within 10 kb of a gene and
non-genic if it was greater than 50 kb from a gene
(as in Hancock et al. [40], personal correspondence).
Enrichment in an empirical tail was calculated with
the following equation:

Enrichment ¼
ng
nng
Ng

Nng

;

where ng and nng are the number of genic and non-genic
SNPs, respectively, in the empirical tail, and Ng and Nng

are the number of genic and non-genic SNPs, respectively,
among all tested SNPs. To determine the significance of
the genic/non-genic enrichments, 500-kb regions from
the genome were re-sampled with replacement (also as in
Hancock et al. [40]). Then, given the p values of the SNPs
in the re-sampled regions, we calculated enrichment
values in each empirical tail. This bootstrap re-sampling
procedure was repeated 10,000 times. Significance values
were determined by counting the fraction of bootstrapped
samples with enrichment values above 1. In Table 5, one
star denotes that 95%–97.5% of bootstrapped samples
were enriched, two stars denote 97.5%–99%, and three
stars denote >99%; zero stars denotes that <95% of
bootstrap samples were enriched, and thus that the
genic enrichment is not significant.

Comparison of runs
Each run produces a Bayes factor for each climate variable
for each SNP. From those, the empirical p values were cal-
culated. For each climate variable, the Pearson correlations
of the log of the Bayes factors and the Pearson correlations
of the empirical p values were computed for each pair of
runs compared (see Table 1). For each set of comparisons
(i.e., Blair1-5, or W/O_Sib1-5 vs. Hancock2) the correl-
ation coefficients were then averaged across all relevant
pairs of runs (see letters of Table 1). For all pairs shown in
Table 1, empirical p values were also compared by calculat-
ing the fraction of SNPs in the tail of one run that was
present in the tail of the other run. In another analysis, to
assess differences in run stability by empirical p value,
SNPs were ordered by empirical p value from lowest to
highest and binned into groups of 1,000. Overlaps between
the corresponding bins of different runs (Blair1-5) were
calculated. (This assessed what proportion of the 1,000
most-significant SNPs in Blair1 were present in the 1,000
most-significant SNPs in Blair2, what proportion of SNPs
ranked 1,001–2,000 in Blair1 were present in SNPs ranked
1,001–2,000 of Blair2, and so forth.) Finally, significances
of genic/non-genic enrichment values were calculated for
each run, as described above, and compared.
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