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Abstract

The past decade has seen major investment in genome-wide association studies (GWAS). Among the many goals of
GWAS, a major one is to identify and motivate research on novel genes involved in complex human disease. To assess
whether this goal is being met, we quantified the effect of GWAS on the overall distribution of biomedical research
publications and on the subsequent publication history of genes newly associated with complex disease. We found
that the historical skew of publications toward genes involved in Mendelian disease has not changed since the advent
of GWAS. Genes newly implicated by GWAS in complex disease do experience additional publications compared to
control genes, and they are more likely to become exceptionally studied. But the magnitude of both effects has
declined over the past decade. Our results suggest that reforms to encourage follow-up studies may be needed for
GWAS to most successfully guide biomedical research toward the molecular mechanisms underlying complex human
disease.
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Background
Since the first successful genome-wide association studies
(GWAS) were published over a decade ago [1–4], thou-
sands have been performed [5]. These studies have iden-
tified tens of thousands of statistical associations between
genetic variants and human diseases [5]. The large invest-
ment in GWAS has been criticized [6], perhaps because
initial hopes for quick clinical impact were overenthusias-
tic [7]. The average time from basic science discovery to
clinical practice is 17 years [8], so it is unsurprising that
few GWAS results directly affect patients yet. But direct
clinical impact is not the only goal of GWAS.
One major goal of GWAS has been to broadly char-

acterize the genetic basis of human traits and complex
disease. GWAS have shown that most traits are highly
polygenic and that most common variants exhibit small
effect size on phenotype [9, 10]. They have also shown
that genetic variants associated with disease are strongly
enriched in regulatory regions [11] and that pleiotropy is
pervasive [12, 13]. They have also enabled polygenic pre-
diction of traits by aggregating the weak effects of many
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variants [14, 15], although not yet with clinical precision
[16]. These insights have motivated a number of large
public genomics projects, such as the ENCODE project to
identify functional genomic elements [17], the Epigenome
Roadmap project to identify tissue-specific epigenomic
regulation [18], the GTEx project to connect genetic vari-
ation with tissue-specific gene expression [19], and the
Human Cell Atlas project to identify and characterize all
cell types in the body [20].
Another major goal of GWAS has been to specifically

identify novel genes involved in complex disease and
steer research toward them [16, 21, 22]. Identifying the
causal genetic variant and the affected gene(s) that drive
an association can be challenging [23], but integrating
data from large genomics projects can provide important
clues [24]. Novel connections between genes and dis-
eases can lead to new treatments. For example, an early
GWAS unexpectedly found variation in complement fac-
tor H to be strongly associated with macular degeneration
[2], spurring the development of complement-based ther-
apeutics [25]. Similarly, associations between variation
in the interleukin-23 receptor and Crohn’s disease [26]
and psoriasis [27] motivated the development of several
treatments that are now in clinical trials [28]. In both of
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these classic examples, going from association to therapy
demanded substantial follow-up research.
Beyond anecdotal examples, how much follow-up

research typically occurs when a gene is newly associ-
ated with complex disease via GWAS? To answer this
question, we assessed the impact of GWAS on subse-
quent biomedical research publications. Our motivation
was that if there is little follow-up research on associated
genes, then important medical innovations are possibly
being missed, and reforms may be necessary to encourage
follow-up research.
Published GWAS are themselves often highly cited, for

example [4, 26, 29]. A systematic comparison also found
that GWAS are more highly cited than comparable candi-
date gene studies [30]. But a paper that cites a GWAS does
not necessarily follow-up on the associations reported by
that GWAS. To quantify how much follow-up research
is motivated by GWAS, we focused on the subsequent
publication record of newly associated genes.
The distribution of biomedical research publications is

highly unequal among human genes (Fig. 1a; [31]). Much
of this inequality stems from historical momentum, driven
by the availability of prior functional information [32] or

research tools [33]. Consequently, many potentially med-
ically important genes may be understudied [34]. Because
GWAS are largely unbiased by previous knowledge about
genes [35], they provide an opportunity for understudied
genes to be brought to the scientific forefront.
We evaluated the effect of GWAS on the biomedical

research literature in three ways. At a broad scale, we
tested whether the distribution of publications among
human genes has changed since the advent of GWAS.
At a narrower scale, we quantified the effect of being
newly associated with complex disease on the subsequent
publication histories of human genes. Lastly, we identi-
fied outlier genes with exceptional publication activity and
tested whether GWAS might play a role in motivating
such activity. Overall, we find that genes newly associated
with complex disease do experience increases in publi-
cation activity, but this effect has declined over the past
decade.

Results
We measured research output on genes using scientific
publications, as collected in the NCBI Gene database [36].
We prefer this manually curated database to automatic
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Fig. 1 Biomedical scientific publications are highly unequally distributed and strongly skewed toward genes involved in Mendelian disease, even
after the advent of GWAS. a The distribution of publications among all human genes is highly uneven. Plotted is the number of publications per
gene, with genes sorted by number of publications. (The gene with the fewest publications is plotted as rank 1, and the gene with the most
publications as rank 20,422.) A few genes are the subject of thousands of publications each, whereas thousands of genes are the subject of fewer
than ten publications each. b The distribution of publications among all human genes is more uneven in the post-GWAS era (2005 and later) than in
the pre-GWAS era (before 2005). Shown in this Gini plot are the cumulative proportions of publications in each category versus gene rank. The
further the curve is from the diagonal, the more uneven the distribution. For comparison, the distribution of publications among yeast genes is
shown, with the yeast x-axis stretched to match the number of human genes. c Highly studied genes tend to be involved in Mendelian disease.
Plotted are the distributions of genes among publication rank for genes of each possible type of disease association and for both the pre- and
post-GWAS eras. (Distributions are not normalized across types of disease association.) In both eras, genes involved in Mendelian diseases are
strongly enriched toward high publication ranks. By contrast, many genes involved only in complex disease rank low in terms of publications
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text mining, because text mining may introduce false pos-
itives when a gene is mentioned in passing. In total, we
considered 553,184 biomedical research publications that
appeared in the annotations for one ormore human genes,
most of which were published after 1995 (Additional file 1:
Figure S1).

Broad patterns of publications on human genes
We used the Online Mendelian Inheritance in Man
(OMIM) database [37] and the EBI-NCBI GWAS cat-
alog [5] to classify genes into those associated with
Mendelian disease (N=1126), complex disease (N=3648),
both (N=595), or no disease (N=15,043). As expected
[31], we found that the distribution of publications among
human genes was highly uneven. A small number of genes
were the subject of many thousands of publications, while
a large number of genes were the subject of only a few
(Fig. 1a).
To quantify the unevenness of publications among

genes, we used the Gini coefficient, which ranges from 0
(perfectly even distribution) to 1 (perfectly uneven). The
Gini coefficient is calculated from the cumulative dis-
tribution of publications versus the gene rank (Fig. 1b).
To quantify the effect of GWAS on the distribution of
publications among human genes, we compared that dis-
tribution before and after 2005. We chose 2005 as the
cutoff between pre- and post-GWAS eras, because that
is the year of the first entry in the GWAS catalog [5].
Other appropriate cutoff years might be 2007, when the
first large GWAS were published, or 2009, to give time for
publication patterns to change. Using either of these cutoff
years does not qualitatively change our results (Additional
file 1: Figure S2). The inequality of publications among
human genes is larger in the post-GWAS era than in the
pre-GWAS era (Gini coefficient 0.73 vs 0.65; Fig. 1b). It is
not inevitable that the distribution of publications should
be so unequal; the Gini coefficient of publications among
yeast genes is much lower at 0.43 (Fig. 1b).
The ultimate goal of most biomedical research is to

improve human health, so the distribution of publica-
tions is expected to be skewed toward genes involved in
human disease. In the pre-GWAS era, genes associated
with Mendelian disease were, almost without exception,
among the most highly studied human genes (Fig. 1c and
Additional file 1: Figure S2). By contrast, many genes
that would later be associated with complex disease were
among the least studied human genes (Fig. 1c). The advent
of GWAS led to the discovery of many genes associ-
ated with complex human disease. The focus of biomed-
ical publications on Mendelian disease genes, however,
remains strong in the post-GWAS era (Fig. 1c). In partic-
ular, many genes associated with complex disease remain
among the least studied genes in the human genome
(Fig. 1c). The distribution of publication ranks for genes

associated only with complex disease has shifted slightly
toward higher ranks in the post-GWAS era compared to
the pre-GWAS era (Mann-Whitney U test, p ∼ 10−9,
N=3648), but the distribution has not changed qualita-
tively. Examining the distributions of publication ranks
at higher temporal resolution also does not reveal any
qualitative changes (Additional file 1: Figure S3).

Subsequent publications on individual genes
To quantify the immediate effect of GWAS on research
into individual newly associated genes, we considered all
genes that were first associated with complex disease via
GWAS before 2015 (N=2442), and we focused on the
calendar year of the first association and the following
2 years. For each new GWAS gene, we compared the pub-
lications over this period with a control non-GWAS gene
chosen to have as similar a prior publication history as
possible (see the “Materials and methods” Section). The
variance in an associated gene’s publications is strongly
correlated with the number of publications on that gene
in the prior 3 years (Fig. 2a). Normalizing the excess in
publications relative to the control gene by the square
root of the number of recent publications normalizes the
variance (Fig. 2b), consistent with a Poisson model for
publication output [38]. The normalized excess in publica-
tions for a GWAS gene is slightly but significantly shifted
(Fig. 2c; one-sample t test, p ∼ 5 × 10−34, N=2442). The
mean normalized excess is 1.24 units, corresponding to a
mean excess of 2.95 publications over the 3 years following
association.
We next sought to identify the factors that determine

how large an effect a GWAS will have on an associ-
ated gene’s subsequent publications. For example, the
more heavily studied a gene was previously, the smaller
the effect of GWAS association (Fig. 2b, Spearman rank
correlation, p ∼ 6 × 10−8, N = 2442).
The strength of a GWAS association is quantified by its

statistical p value and its estimated biological effect size,
which is most commonly an odds ratio. The normalized
publication excess for a newly associated gene is weakly
positively correlated with the p value of its association
(Fig. 2d; p ∼ 1 × 10−4, N=2442). By contrast, the nor-
malized publication excess is not significantly correlated
with the estimated effect size of the reported association
(Fig. 2e; p ∼ 0.14, N=1327).
The strongest predictor of the effect of a GWAS on

future publications for associated genes is the year in
which the GWAS was published. The typical normal-
ized publication excess has declined dramatically since the
early years of GWAS (Fig. 2f; p ∼ 9 × 10−23, N = 2442).
The predictors for the effect of GWAS on subsequent

publications that we have studied may themselves be
correlated; to disentangle their effects, we built a linear
regression model. In that model, the effects of the number
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Fig. 2 Effect on subsequent publications for genes newly associated with complex disease via GWAS. To quantify the short-term effects of GWAS
association, we considered the publication excess of each newly associated gene compared with its control gene. a The variance of the publication
excess is strongly correlated with the associated gene’s number of recent publications. b Normalizing the publication excess by the square root of
the number of recent publications equalizes the variance. It also reveals a trend for the normalized effect of GWAS association to be smaller for more
heavily studied genes. c The distribution of normalized publication excess is shifted toward positive values, indicating a positive effect of GWAS
association on subsequent publications. d The normalized publication excess for a newly associated gene is weakly correlated with the p value of
the association. e It is not statistically significantly correlated with the estimated effect size of the association, as quantified by the reported odds
ratio. f The normalized publication excess is negatively correlated with the publication date of the association. More recently associated genes
experience a smaller increase in subsequent publications. Reported correlations ρ are Spearman rank correlations, and thick black lines in panels
d–f are linear regressions

of recent publications and GWAS publication date are
strong and statistically significant (Table 1). By contrast,
the quantitative properties of the association itself, the p
value and the estimated effect size, have weak effects that
are not statistically significant.
The GWAS catalog uses a relatively liberal p value

threshold of 10−5 for inclusion of associations into the
catalog, and large p value associations may be statistical

Table 1 Linear regression model for the normalized publication
excess of new GWAS genes (N = 1232)

Predictor Coefficient Std. error p value

log10(recent pubs) −0.741 0.281 0.008

−log10(p value) 0.032 0.018 0.083

Estimated odds ratio 0.032 0.061 0.501

GWAS pub. date −0.730 0.078 < 10−19

noise that subsequent researchers properly ignore. To
account for this effect, we repeated our analyses using
only genes for which the first reported association had
p < 10−8, the suggested threshold for testing low-
frequency variants [39]. When we restricted our analysis
to these high-confidence associations (Additional file 1:
Figure S4), we found that normalized publication excess
was no longer significantly correlated with p value
(ρ = 0.044, p ∼ 0.23; N = 724), but it was positively cor-
related with estimated effect size (ρ = 0.094; p ∼ 0.025;
N = 570). The negative correlation between normal-
ized publication excess and GWAS publication date was
stronger than in the full data (ρ = −0.33; p ∼ 7 × 10−20).
The linear regression model (Additional file 1: Table S1)
was similar to the full data, with the effects that were sta-
tistically not significant for p value and estimated effect
size and significant for number of recent publications and
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GWAS publication date. Further restricting our analysis
to associations for which the lower bound of the 95% con-
fidence interval on the estimated odds ratio was larger
than 1.1 (Additional file 1: Figure S5) yielded qualitatively
similar results (Additional file 1: Figure S6 and Table S2).
Association with particular diseases might lead to par-

ticularly intense study. To test this possibility, we consid-
ered the class of disease that each gene was associated
with as an additional predictor in the linear regression
model. Of the 20 disease classes tested, only metabolic
disease had a significant effect on the normalized publi-
cation excess (Additional file 1: Table S3). Further strati-
fying among metabolic diseases, we found that this trend
is driven by studies on type II diabetes and obesity
(Additional file 1: Table S4).

Genes with exceptional publication records
The typical new GWAS gene experiences a modest
increase in subsequent publications, but some exceptional
genes may experience large increases, so-called hot genes.
To identify such genes, we used the model of Pfeiffer
and Hoffmann [38] to predict the number of publications
for each gene in each year, based on that gene’s prior
publication history. We trained the model on all genes
never implicated in complex disease through GWAS. By
comparing the model predictions and publication data,
we then identified particular years in which particular
genes had unexpectedly large numbers of publications
(Additional file 2). For example, complement factor H had
a significant excess of publications in all 3 years following
its association with macular degeneration (Fig. 3a).

The total number of hot genes per year has recently fluc-
tuated (Fig. 3b). Between 2009 and 2016, on average, 0.3%
of genes were hot in any given year. Of the genes that
were newly associated with complex disease via GWAS
within the past 3 years, the probability of being hot was
1.3%. So, being newly associated with complex disease
does increase the probability that a gene will become hot.
The total number of hot genes that were recently associ-
ated with complex disease via GWAS peaked, however, in
2009 (Fig. 3b), even as the number of new GWAS genes
each year has grown (Fig. 3c). Thus, the proportion of hot
genes that were recent GWAS hits has declined (Fig. 3d).
To further quantify the role of GWAS in creating hot

genes, we used a logistic regression model (Table 2). Con-
sistent with the overall probabilities (Fig. 3), this model
showed that being a recent new GWAS hit was an impor-
tant factor in determining whether a gene would be hot.
The effect of being a GWAS hit, however, had a nega-
tive interaction with the year. In other words, the effect of
GWAS on creating hot genes with exceptional publication
records decreased with time.

Discussion
We analyzed the biomedical research publications to
quantify the effect of genome-wide association studies on
published scientific research. We found that even after
the advent of GWAS, publications remain highly skewed
toward Mendelian disease genes, with many complex dis-
ease genes receiving little attention (Fig. 1c). New complex
disease genes identified by GWAS do receive additional
study and subsequent publications (Fig. 2c), but that effect

ba
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Fig. 3 The effect of GWAS in generating exceptionally studied genes. a A significantly elevated number of studies were published on complement
factor H following its association with macular degeneration via GWAS in 2005 [2]. Solid line is the predicted publication history from the model of
Pfeiffer and Hoffmann [38], points indicate actual publication counts, and starred points indicate years with a statistically significant excess
(one-sided Bonferroni-corrected p < 0.05). b The total number of genes exhibiting an unusual excess in publications peaked in 2009, as did the
number of those genes that were recently newly associated with complex disease via GWAS. c The number of genes newly associated with
complex disease through GWAS has grown since the inception of GWAS. d The proportion of genes exhibiting an unusual excess in publications
that were recently identified in GWAS peaked at roughly 20% in 2009 and has since declined
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Table 2 Logistic regression model for whether a gene exhibits a
statistically significant excess in publications in a given year
compared to the expectation of the Pfeiffer and Hoffmann
model [38]

Predictor Coefficient Std. error p value

log10(recent pubs) 3.881 0.068 < 10−32

Year −0.108 0.012 2×10−18

Recent GWAS 4.094 0.361 9 × 10−30

(Year × recent GWAS) interaction −0.569 0.064 1 × 10−18

has declined (Fig. 2f, Table 1). Being newly associated
with complex disease does increase a gene’s chance of
becoming a “hot” gene, but this effect has also declined
(Fig. 3d, Table 2). Together, our results suggest that GWAS
have been successful in bringing research attention to
novel genes involved in complex human disease, but this
influence is waning.
Considering the overall distribution of biomedical pub-

lications, we found that GWAS have not reduced the
inequality among human genes. The distribution of pub-
lications among human genes is characterized by a Gini
coefficient of 0.73 in the post-GWAS era (Fig. 1a). By
comparison, the Gini coefficient of money income among
American households was 0.48 in 2016 [40] and among
global households was 0.625 in 2013 [41]. The inequality
of publications among genes is thus substantially greater
than the inequality of income among households.
Focusing on individual genes, we found that associa-

tion with complex disease via GWAS is correlated with an
increase in subsequent publications (Fig. 2). Interestingly,
the p value and estimated effect size of the association
play a statistically insignificant role in determining the
magnitude of that increase (Table 1 and Additional file 1:
Table S1). We found a stronger effect on the subsequent
publications for genes newly associated with metabolic
disease (Additional file 1: Tables S3 and S4), perhaps
reflecting its recent emphasis in public health [42]. We
also found that association with complex disease via
GWAS does raise the chances of a gene becoming an
exceptionally studied “hot” gene (Fig. 3). But most dra-
matically, we found that the effects of new association via
GWAS havedeclined over the past decade (Figs. 2f and 3d).
The direct results of a GWAS are associations of a dis-

ease with genetic variants, not with genes. For simplicity,
we associated each variant with the closest gene, as long
as that gene was within 500 kb. But many variants are reg-
ulatory, and gene regulation is complex, so some variants
may actually most strongly affect other more distant genes
[23]. Thus, some of the gene associations we study may
be spurious. But this issue has existed since the advent
of GWAS and has not changed markedly since. So, it
cannot explain why the effect of GWAS on subsequent

publications has declined over time. When studying the
effects of genetic evidence on drug development, Nelson
et al. [43] used a more complex approach for assigning
variants to genes. They incorporated linkage disequilib-
rium and attempted to infer regulatory relationships using
expression quantitative trait loci (eQTLs) and DNAse
hypersensitivity sites. When we analyzed their collection
of association data, we found similar results to our orig-
inal analysis, although the effects were somewhat weaker
(Additional file 1: Table S5 and Figure S7). In particular,
we still found a negative relationship between the publica-
tion date of an association and its effect on the subsequent
publications.
Our measures of scientific publications do not neces-

sarily capture the full effects of GWAS on biomedical
research. We considered studies of specific associated
genes, but the broad insights GWAS has given into the
genetic basis of human disease have substantially affected
the biomedical research [10–12, 16]. Motivated by the
example of complement factor H (Fig. 3a), we focused
on the publications in a 3-year window following the
GWAS. Some follow-up studies may take longer, but using
a 5-year window does not change our qualitative conclu-
sions (Additional file 1: Figure S8 and Tables S6 and S7).
GWAS may also promote biomedical research in ways
that do not involve new publications. For example,
drugs with associated genetic evidence are more likely
to progress along the development pipeline [43], sug-
gesting that GWAS promote efficient drug development.
More broadly, we focused on the associations with com-
plex disease, the most common biomedical application of
GWAS. But GWAS for drug response have already pro-
vided important guidance for personalized treatment [44].
Lastly, human GWAS have applications beyond health.
For an evolutionary example, GWAS data have been used
to detect adaptation in the human genome [45].
What explains the declining effect of GWAS on sub-

sequent publications regarding newly associated genes?
Perhaps early GWAS captured most genetic variants of
large effect, so more recent studies find less compelling
associations. But estimated effect size is not a strong pre-
dictor of subsequent publications (Table 1). Moreover,
the typical estimated effect size of new associations has
declined only modestly, and the absolute number of large-
effect associations has grown (Additional file 1: Figure S9).
Or perhaps journal publication criteria have changed over
time, making GWAS less visible or follow-up studies more
challenging to publish. The typical impact factor of jour-
nals GWAS are published in has declined slightly since the
advent of GWAS (Additional file 1: Figure S10A). But the
impact factor of the GWAS publication has only a weak
effect on the publication excess of newly associated genes
(Additional file 1: Figure S10B).When we included GWAS
publication impact factor in our linear regression model,
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its effect was statistically significant but insufficient to
explain the effect of publication date (Additional file 1:
Table S8). Or perhaps researchers are spreading their
effort among newly associated genes, so effects on indi-
vidual genes have declined. But the summed publication
excess over all genes newly associated with complex dis-
ease in a given time period has also declined over the
past decade (Fig. 4). Or perhaps the availability of funding
for follow-up studies has declined, as overall biomedi-
cal research funding has declined in both North America
and Europe [46]. Or perhaps the capacity and interest to
perform follow-up analyses has not kept pace with the
“fire hose” of GWAS results [47]. Our data do not point
toward a definitive explanation, and further investigation
is needed to understand why recent GWAS promote less
follow-up study on associated genes than early GWAS.
Over the past decade, GWAS have undeniably con-

tributed greatly to biomedical knowledge [16]. The devel-
opment of large-scale accessible databases of phenotypic
and genotypic data, such as the UK Biobank [48], will fuel
further contributions. But few GWAS results are directly
medically actionable, so follow-up research is essential to
translate novel associations into medical innovations. Our
results suggest that the ability of GWAS to motivate pub-
lished follow-up research on associated genes is declining.
To maximize the positive impact of GWAS on human
health, this trend must be understood and reversed.

Materials andmethods
Publication data
We obtained Entrez GeneIDs for all 20,422 human
protein-coding genes from NCBI Gene [36] on Decem-
ber 12, 2017. For all those genes, we collected PubMed
identifiers of associated publications from NCBI Gene’s
gene2pubmed file, downloaded December 12, 2017. This

Fig. 4 Total publication excess of new GWAS genes. For 6-month
periods, plotted is the total publication excess (compared to control
genes) of genes newly associated with complex disease via GWAS
during each period

file contains both associations created manually dur-
ing the curation of Gene References Into Function
(GeneRIFs) and associations collected from organism-
specific databases, Gene Ontology, and other curated data
sources. We then obtained date information for each pub-
lication from PubMed, taking the earliest year between
the reported year or EYear, using BioPython [49]. We fol-
lowed a similar procedure for yeast genes. We obtained
impact factor data from the 2016 InCites Journal Citation
Reports [50].

Disease data
To identify genes associated with Mendelian disease, we
downloaded the Online Mendelian Inheritance in Man
(OMIM) Gene Map of connections from genes to traits
[37] on January 17, 2018. We filtered to keep only entries
with a confidence code of “confirmed” and to ignore
entries indicating a potentially spurious mapping or asso-
ciation with a non-disease trait. We further considered
only entries with Entrez GeneIDs, to avoid ambiguity
among gene names and aliases. This procedure yielded
1878 genes associated with disease traits. Of these, 1543
genes were associated with Mendelian but not complex
multifactorial disease, 157 were associated with complex
multifactorial but not Mendelian disease, and 178 were
associated with both Mendelian and complex multifacto-
rial disease.
To further identify genes associated with complex dis-

ease and to gather GWAS data, we used the January 1,
2017, release of NHGRI-EBI’s GWAS Catalog [5]. We fil-
tered the catalog to remove non-disease traits, by keeping
only entries that were children of the term “disease” (EFO-
0000408) in the Experimental Factor Ontology [51]. To
connect associated variants with genes, we began with the
Mapped Genes column in the catalog. We then connected
each variant with its closest mapped gene, if that gene
was within 500 kb. If a variant was within two overlap-
ping genes, we connected with both genes. This procedure
yielded 4069 genes associated with complex disease. To
analyze the classes of disease, we used the children of the
term “disease” in the Experimental Factor Ontology.
Our analysis of OMIM and the GWAS catalog yielded

5369 total disease-associated genes. Considering genes
associated with only Mendelian disease in OMIM and
not associated with disease through GWAS yielded 1126
Mendelian disease genes. Considering genes associated
with only complex multifactorial disease in OMIM or
associated with disease through GWAS yielded 3648 com-
plex disease genes. The remaining 595 genes were associ-
ated with both Mendelian and complex disease.
Of the disease genes in the GWAS catalog, 2442 were

first associated prior to 2015, so we could analyze three
full years of publication data. For those genes, we identi-
fied odds ratios as reported effect sizes without units for
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variants that had a reported frequency of the risk allele.
For our odds ratio analysis, we analyzed the 1327 genes
for which an odds ratio was reported in the first year of
GWAS association.
We also analyzed the association data of Nelson et al.

[43]. They connected variants to genes using linkage dis-
equilibrium, expression QTLs, and DNAse hypersensitiv-
ity. We filtered their Supplementary Data Set 1 to remove
associations from OMIM, which may be Mendelian dis-
eases. We also manually classified traits as disease or non-
disease (Additional file 3), filtering out the non-disease
traits.

Control genes
For each of our 2442 GWAS genes, we identified its con-
trol gene as the non-GWAS gene with the closest number
of total publications prior to the year the gene was first
associated with complex disease. If multiple genes were
tied for closest, we compared the previous year as well,
continuing either until there was no ambiguity or until
we reached 1950. For the 233 GWAS genes with ambigu-
ous control genes, we compared subsequent publications
between the GWAS gene and the average of the control
genes.

Publication rate model
We used the model of Pfeiffer and Hoffmann [38] to
predict expected per-gene publication rates:

�Pi,t+1 = k1P∗
t + k2Pi,t + k3

1 + (
P∗
t /PS

)α . (1)

Here, �Pi,t+1 is the predicted number of publications for
gene i in year t + 1, and Pi,t and P∗

t are the cumula-
tive number of publications in previous years for the gene
and the average cumulative number of publications for
all genes in the organism, respectively. The term in the
denominator models saturation of publication rates. The
three rate parameters, k1, k2, and k3, and the saturation
parameters, PS and α, were assumed to be identical for all
genes. To fit the parameters to our data, we constructed a
likelihood function by assuming that the number of publi-
cations each year for each gene was independently Poisson
distributed with mean �Pi,t+1 given by Eq. 1. We then
maximized that likelihood with respect to the five model
parameters, using publication data from 1950 to 2015 for
all non-GWAS genes. The maximum-likelihood parame-
ter values were k1 = 0.0214, k2 = 0.225, k3 = 0.00288,
PS = 24.1, and α = 1.67. Five genes each had one
publication prior to 1950 that was not included in the
data fit.
To identify the years in which genes had significantly

elevated publication rates, our null model was that publi-
cations were Poisson distributed withmean given by Eq. 1.

Significant gene years were defined as those in which the
probability of generating at least the observed number of
publications was less than the Bonferroni-corrected sig-
nificance cutoff 0.05/(NgNy). Here, Ng = 20, 442 was the
total number of genes considered, and Ny = 67 was the
total number of years.
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