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Multiple genotype–phenotype association
study reveals intronic variant pair on SIDT2
associated with metabolic syndrome in a
Korean population
Sanghoon Moon1†, Young Lee1,2†, Sungho Won3 and Juyoung Lee1*

Abstract

Background: Metabolic syndrome is a risk factor for type 2 diabetes and cardiovascular disease. We identified
common genetic variants that alter the risk for metabolic syndrome in the Korean population. To isolate these variants,
we conducted a multiple-genotype and multiple-phenotype genome-wide association analysis using the family-based
quasi-likelihood score (MFQLS) test. For this analysis, we used 7211 and 2838 genotyped study subjects for discovery
and replication, respectively. We also performed a multiple-genotype and multiple-phenotype analysis of a gene-based
single-nucleotide polymorphism (SNP) set.

Results: We found an association between metabolic syndrome and an intronic SNP pair, rs7107152 and rs1242229, in
SIDT2 gene at 11q23.3. Both SNPs correlate with the expression of SIDT2 and TAGLN, whose products promote insulin
secretion and lipid metabolism, respectively. This SNP pair showed statistical significance at the replication stage.

Conclusions: Our findings provide insight into an underlying mechanism that contributes to metabolic syndrome.
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Introduction
Metabolic syndrome is a cluster of metabolic risk factors
for cardiovascular disease and type 2 diabetes that are at-
tributable to both genetic and environmental factors [1–
3]. The National Cholesterol Education Program’s Adult
Treatment Panel III report (2001) defined metabolic syn-
drome as a combination of components such as high
blood pressure, elevated fasting plasma glucose, high
serum triglycerides, and abnormal low-density lipoprotein
(LDL) and high-density lipoprotein (HDL) cholesterol
levels [4]. Because of the fast-growing economy and rapid
industrialization of Korea, metabolic syndrome is likely to
become a major public health problem [5].
Many genetic variants that are associated with metabolic

syndrome have been identified by genome-wide associ-
ation studies (GWASs). However, because these known

genetic variants account for only a fraction of the herit-
ability of metabolic syndrome, the genetic determinants of
this condition remain undefined [6, 7]. Many common
variants with very small effect sizes that are widely distrib-
uted across the genome cannot be identified by the use of
traditional GWAS cutoffs [8]. Experimental sample sizes
must be large because the statistical power to detect asso-
ciations between DNA variants and a trait depends on the
sample size [9]. However, the cost and difficulties of
sample collection inhibit the ability to continuously in-
crease the sample size of GWASs [10]. Joint analysis
approaches that analyze multiple genotypes and pheno-
types have shown improved ability to detect variants rela-
tive to single-variant association analyses of the same-size
sample [11–13]. A statistical approach called the MFQLS
(http://healthstat.snu.ac.kr/software/mfqls/) test enables
the estimation of the genetic relation matrix from
population-based samples [14]. From the results of a sin-
gle test for association with a set of traits, multiple geno-
type–multiple phenotype analysis reduces the number of
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tests and mitigates the multiple testing issues, resulting in
increased statistical power [13, 14]. This approach identi-
fies genetic variants that have pleiotropic effects for meta-
bolic syndrome and other diseases.
We conducted a multiple single nucleotide polymorph-

ism (SNP)–multiple trait analysis to identify genetic
variants associated with metabolic syndrome by utilizing
10,049 samples from Korean subjects. After the multiple-
genotype and multiple-phenotype analysis (multi-SNP–
multi-trait analysis), 27 SNP pairs were associated with
metabolic syndrome in the discovery stage and success-
fully replicated. Of those pairs, from the joint analysis of a
single genotype and multiple phenotypes (single-SNP–
multi-trait analysis), we found that three SNP pairs in the
respective genes SIDT2, UBASH3B, and CUX2 were sig-
nificant in the multi-SNP–multi-trait analysis but not sig-
nificant in the single-SNP–multi-trait analysis. SIDT2 was
not previously reported in the NHGRI-EBI GWAS
Catalog (https://www.ebi.ac.uk/gwas/) [15] and was sig-
nificant in the gene-based SNP set and multi-trait analysis.
The Genotype-Tissue Expression (GTEx) database shows
rs7107152 and rs1242229 on SIDT2 correlates with SIDT2
and TAGLN expression (https://www.gtexportal.org/
home/) [16]. Our findings support the effectiveness of the
multi-SNP–multi-trait analysis to identify new susceptible
loci in complex diseases.

Results
Multi-SNP-multi-trait analysis
We conducted the multi-SNP–multi-trait genome-wide
analysis of metabolic syndrome using 10,049 samples from
Korean subjects. We considered six quantitative compo-
nents of metabolic syndrome: systolic blood pressure
(SBP), diastolic blood pressure (DBP), high-density lipo-
protein (HDL), fasting plasma glucose (FPG), triglyceride,
and waist circumference. Through the multi-SNP–multi-
trait genome-wide analysis, adjusted for age and sex, 27
SNP pairs satisfied a Bonferroni-adjusted P value thresh-
old of P < 0.05 (P = 1.45 × 10−7) and were successfully rep-
licated (Tables 1 and 2). All but four of the mapped genes
(SIK3, SIDT2, UBASH3B, and CUX2) had been previously
reported to be associated with metabolic syndrome, as in-
dicated by a keyword search of “metabolic syndrome” in
the GWAS catalog (Tables 1 and 2).

Single SNP set-multi-trait analysis
The relation of the individual SNPs, including those on
SIK3, SIDT2, UBASH3B, and CUX2, to metabolic syn-
drome was further examined by single-SNP–multi-trait
analysis, adjusted for age and sex. Intronic SNPs on SIK3
showed genome-wide significance in single-SNP–multi-
trait analysis (Table 1), but SNPs on SIDT2, UBASH3B,
and CUX2 not identified by this approach (Table 2).

Gene-based SNP set-multi-trait analysis
We conducted gene-based SNP set–multi-trait analysis on
14,475 SNP sets. The mean and median numbers of SNPs
in a set were 6.895 and 3, respectively (Additional file 1:
Table S1). Table 3 shows the gene-based test results. Three
genes reached a Bonferroni-adjusted P value threshold
(P < 3.45 × 10−6). All three genes satisfied statistical signifi-
cance in the meta-analysis. The number of SNPs in three
genes ranges from 3 to 14. SNP sets in two genes
(PAFAH1B2 and SIDT2) showed significant P values of <
3.45 × 10− 6 in the gene-based test and reached a nominal
P value threshold of < 0.05 in the replication stage.
Although the results of tests in which 14 SNPs were uti-
lized in CUX2 were significant in the discovery stage, there
was only a suggested P value of 0.06 in the replication
analysis (Table 3). Table 3 also shows the SNPs used
in each SNP set.

Expression QTL pattern of identified SNP pair
To examine the correlation between two SNPs (rs7107152
and rs1242229) on the SIDT2 gene and gene expression,
we utilized three online resources: the Genotype-Tissue
Expression (GTEx) project (https://www.gtexportal.org/
home/) [16], the NESDA NTR Conditional Expression
Quantitative Trait Loci (eQTL) catalog (https://eqtl.onder
zoek.io/), and RegulomeDB (http://www.regulomedb.org/)
[17]. All three databases showed that the two SNPs corre-
lated with SIDT2 and TAGLN expressions. The GTEx
project showed that for rs7107152, the statistical signifi-
cance of SIDT2 and TAGLN expression in whole blood
was P = 3.89 × 10−14 and P = 3.59 × 10− 47, respectively
(Additional file 1: Figure S1A), and for rs1242229, the
P values were 3.64 × 10−13 and 4.78 × 10−12, respectively
(Additional file 1: Figure S1B) [16]. Additional file 1:
Figure S1C–F show gene expression patterns by genotype
for the two SNPs. The eQTL catalog showed similar gene
expression patterns for the two SNPs (Additional file 1:
Figure S2). The SNP rs1242229 was mainly expressed in
SIDT2 and TAGLN, whereas the SNP rs7107152 showed
gene expression patterns not only in SIDT2 and TAGLN
but also in PCSK7 and PAFAH1B2 (Additional file 1: Fig-
ure S2). Additional file 1: Figure S3 shows the gene ex-
pression pattern for rs1242229 in RegulomeDB [17].

Correlation test with previously reported SNPs
To calculate the correlation of the identified SNPs
(rs7107152 and rs1242229) in the current study and
nearby SNPs reported in the GWAS catalog (intronic vari-
ant rs530885291, associated with HDL cholesterol level,
and intergenic variant rs508487, associated with triglycer-
ide level), we conducted a pairwise linkage disequilibrium
(LD) analysis utilizing the SNP Annotation and Proxy
Search (SNAP) server (https://www.broadinstitute.org/
snap/snap) [18]. The pairwise LD analysis showed that
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rs1242229 had a squared correlation of r2 = 0.167 with
rs508487 (Fig. 1). The correlation score between
rs7107152 and rs530885291, however, was lower than the
cutoff score.

SNP pair-single trait analysis
A radar chart shows the results of the rs7107152 and
rs1242229 SNP metabolic syndrome-component trait as-
sociation pair analysis (Additional file 1: Figure S4). The
SNP pair correlated with HDL (P = 5.87 × 10−5) and

triglycerides (P = 1.67 × 10−9). Moreover, it showed a sug-
gestive association with diastolic blood pressure (P = 0.07).
But it did not correlate with waist circumference (P = 0.75),
fasting plasma glucose (P = 0.55), systolic blood pres-
sure (P = 0.29).

Discussion
Utilizing the MFQLS test, we found 27 SNP pairs associ-
ated with metabolic syndrome based on multi-SNP–
multiple continuous phenotypes. Our keyword search

Table 2 Three SNP pairs that were significant only in the multi-SNP–multi-trait analysis

SNP pair CHR Position
(hg19)

Gene Annotation Single-multi P value Multi-multi P value
(A Bonferroni-adjusted P value of discovery
stage = 1.45 × 10−7)

Discovery Replication Meta P value Discovery Replication Meta P value

rs7107152 11 117,056,080 SIDT2 Intronic 2.59E-01 8.43E-01 5.51E-01 1.40E-08 2.32E-03 8.17E-10

rs1242229 11 117,062,370 SIDT2 Intronic 5.39E-03 7.68E-02 3.64E-03

rs10892876 11 122,540,281 UBASH3B Intronic 2.93E-01 1.27E-01 1.60E-01 3.34E-12 3.82E-03 4.21E-13

rs12290043 11 122,540,528 UBASH3B Intronic 1.62E-01 1.46E-01 1.12E-01

rs886126 12 111,679,214 CUX2 Intronic 3.51E-01 1.79E-01 2.37E-01 5.09E-13 3.35E-03 5.97E-14

rs2078851 12 111,690,579 CUX2 Intronic 7.31E-05 6.63E-02 6.42E-05

Single-multi P value P value from a single-SNP–multi-trait association analysis, multi-multi P value P value from a multi-SNP–multi-trait association analysis, CHR chromosome,
Meta P value P value from meta-analysis

Table 3 Results from a gene-based SNP set and multi-trait analysis

Gene The number
of SNP

Chromosome Position
(hg19)

Maximum r2 P value
(a Bonferroni-adjusted P value of discovery stage P = 3.45 × 10−6)

Discovery Replication Meta P value

PAFAH1B2 rs12420127 11 117,035,319 0.466 4.00E-07 3.99E-03 3.39E-08

rs10790175 117,034,729

rs10892082 117,039,325

SIDT2 rs2269399 11 117,066,353 0.456 2.31E-07 3.83E-03 1.93E-08

rs1242229 117,062,370

rs1784042 117,065,476

rs7107152 117,056,080

CUX2 rs7952972 12 111,646,519 0.561 3.28E-10 6.34E-02 5.32E-10

rs886126 111,679,214

rs7300082 111,737,115

rs4766553 111,634,281

rs1265566 111,716,376

rs9783423 111,639,456

rs7398833 111,786,892

rs16941414 111,779,792

rs6489979 111,614,736

rs16941284 111,610,723

rs16941319 111,646,853

rs11065851 111,723,739

rs756825 111,598,202

rs7300860 111,754,597
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for the term “metabolic syndrome” found single-variant
association results in the GWAS catalog. The association
of metabolic syndrome or metabolic syndrome-compo-
nent traits with 21 SNP pairs was found in the GWAS
catalog [15], whereas the association of 6 SNP pairs on the
genes SIK3, SIDT2, UBASH3B, and CUX2 was not found
(Table 1). Not only lipid loci but also insulin-associated
loci associated with metabolic syndrome. However, most
of the variants identified were present in known lipid loci.
In contrast, a relatively small number of variants were in
other metabolic syndrome-component traits. For example,
genetic variants such as rs780092 and rs780094 mapped
on the GCKR gene were susceptible variants relative to
total cholesterol, fasting glucose level, and lipid metabol-
ism phenotypes [6, 19, 20]. An SNP from the pairs identi-
fied here, rs2074356, which mapped on the HECTD4
gene, was previously associated with the glycemic trait
[21]. Six of the SNP pairs identified have shown an associ-
ation with the lipid trait–associated LD region spanning
BUD13-ZNF259, APOA5-A4-C3-A1, and SIK3 [6, 13, 19,
22]. Povel et al. [22] reported a systematic review of gen-
etic variants and metabolic syndrome. They suggested that
although disturbances in metabolic syndrome-component
traits have been proposed to activate metabolic syn-
drome, most SNPs associated with metabolic syn-
drome are in genes involved in lipid metabolism [23].
Moreover, Kristiansson et al. [6] showed that genes
from the lipid metabolism pathway are factors in
metabolic syndrome. However, these investigators
found little evidence associated with other metabolic
syndrome-component traits such as hypertension and
glucose intolerance [6]. Our results were consistent
with previous studies.
Through the single-SNP–multi-trait analysis, we iden-

tified four SNP pairs that were associated with metabolic

syndrome but were not in the GWAS catalog. Intronic
SNPs on the SIK3 gene showed genome-wide significance
in the single-SNP–multi-trait analysis (Table 1). SNPs on
the UBASH3B and CUX2 genes could not be identified by
single-SNP–multi-trait analysis (Table 2), whereas the as-
sociation of UBASH3B and CUX2 with metabolic
syndrome-component traits was reported in the GWAS
catalog. For example, two variants, rs7128198 on the
5′-untranslated region and rs7941030 upstream of
UBASH3B, were associated with total cholesterol and
HDL level, respectively [24, 25]. The intergenic variant
rs12229654 between MYL2 and CUX2 showed a pleio-
tropic effect associated with metabolic syndrome, HDL,
and glycemic traits [21, 26]. An association between car-
diovascular disease and rs886126, which also identified in
our study, was previously reported [27].
Utilizing multi-SNP–multi-trait analysis, we found an

association between the SIDT2 gene and metabolic syn-
drome or metabolic syndrome-component traits based on
an association between metabolic syndrome and
rs7107152 and rs1242229. The SNP rs7107152 is within
the DNase cluster in the region of transcription factors
such as ESR1 and FOXA1 (Fig. 1). The SNPs rs530885291
and rs508487 showed in the GWAS catalog as proximal
to rs7107152 and rs1242229, respectively [15]. However,
the pairwise LD score between rs1242229 and rs508487
was low (r2 = 0.167), indicating little correlation between
these two SNPs.
We performed another multi-SNP–multi-trait analysis

based on the SNP set test (gene-based test). SNP sets on
the PAFAH1B2, SIDT2, and CUX2 genes showed signifi-
cant P values in the gene-based test (a Bonferroni-ad-
justed P value threshold is P = 3.45 × 10−6). PAFAH1B2
and SIDT2 reached a replication P value of < 0.05. The
SNP set on CUX2 suggested a P value of 0.06 in the

Fig. 1 Overview of GWAS results showing the significant SNP pair at 11q23.3. The SNP pair is marked by the red vertical bars. Green vertical bars
depict reported SNPs in the GWAS catalog
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replication stage (Table 3); a larger sample size might have
resulted in a significant P value. The SNP set rs7107152
and rs1242229 on SIDT2 was also significant, supporting
the association of SIDT2 with metabolic syndrome.
We found evidence from the three online databases that

rs7107152 and rs1242229, which are in an intron of
SIDT2, correlated with the expression of SIDT2 and
TAGLN (Additional file 1: Figure S1). Two recent eQTL
studies provide further evidence that these two SNPs alter
gene expression that is relevant to metabolic
syndrome-component traits [28, 29]. From the eQTL ana-
lysis between SNP and whole-blood gene expression in
5,257 Framingham Heart Study participants, rs1242229
was reported as a proxy SNP for altered SIDT2 and
TAGLN expression in triglyceride [28]. Huan et al. [29] in-
vestigated cis and trans eQTL by utilization of the human
whole-blood transcriptome data from Framingham Heart
Study pedigrees. The SNP rs7107152 also altered SIDT2
expression in triglyceride [8]. The radar chart shows that
these variants increase HDL and triglyceride levels among
metabolic syndrome-component traits, supporting the
hypothesis that genes are a key factor in the link be-
tween lipid metabolism and metabolic syndrome
(Additional file 1: Figure S4) [6, 22]. We conferred that
lipid traits such as HDL and TG have the greatest impact
on metabolic syndrome, but weak associations such as
DBP may also have an impact. However, due to the limita-
tions of current research, the potential weak association
must interpret carefully. The eQTL SNPs correlated with
SIDT2 and TAGLN expression enriched in the 100-kb re-
gion (117000–117,100 kb) around SIDT2 and TAGLN
(Additional file 1: Figure S5).
SID1 transmembrane family member 2 (SIDT2) is a

lysosomal integral membrane protein that promotes insu-
lin secretion [30]. Recently, Gao et al. [31] described its ac-
tivity in insulin secretion. Sidt2−/− mice exhibit weight loss
and increased fasting glucose levels and impaired glucose
tolerance. These investigators identified mouse SIDT2
function in lipid metabolism. SIDT2-deficient mice have
increased serum triglyceride [32]. TAGLN (Transgelin,
sm22α) is an actin-binding protein expressed in smooth
muscle cells [33]. Yang et al. [34] revealed that the most
enriched pathways caused by SM22α knockout in mice
were lipid metabolism, inflammation, and hematopoiesis.
We hypothesize that the SNP pair associated with meta-
bolic syndrome activate expression of the genes SIDT2
and TAGLN. A difference in gene expression might inhibit
insulin secretion, lipid metabolism, and adipogenesis,
resulting in metabolic syndrome (Additional file 1: Figure
S6). Although evidence supports the association between
the identified SNPs and metabolic syndrome, functional
investigations of the SNPs are needed. However,
functional investigation using identified 27 SNP pairs in
non-coding regions is limited. Given additional

information such as imputed SNPs, a metabolic
syndrome-associated genetic variant in coding regions may
be detected by the statistical test used in the present study.

Conclusions
Our results show that a multi-SNP–multi-trait analysis is
an efficient approach for finding variants that have not
previously been isolated from single-variant–multi-trait
analysis. The advantage of this approach is an increase in
statistical power that results from considering the com-
bined effects of two variants. Because P values of identified
variants such as rs7107152 and rs1242229 did not reach
statistical significance, these variants cannot be identified
by single-variant analysis of the same sample size.
Although previously identified variants are in lipid loci,
these variants and their mapped genes are not reported in
metabolic syndrome. Our findings provide insight into the
genetic variant contribution to metabolic syndrome.

Methods
Study design and participants
To identify susceptible variant sets associated with meta-
bolic syndrome, we conducted a multi-SNP–multi-trait
analysis through the two stages: discovery and replication
analysis (Fig. 2). For the discovery stage, we used genome
data from the Ansan/Ansung cohort in the Korean Gen-
ome Epidemiology Study, which is known as the Korea
Association REsource (KARE) project [35]. In the subse-
quent replication stage, we used the Health Examinees
(HEXA) study cohort, data from which were also used in
the GWASs [26, 27]. All participants were between 40
and 69 years of age. Informed consent was obtained from
all participants. This study was approved by the ethical
committee of the Korea Centers for Disease Control and
Prevention Institutional Review Board. Detailed demo-
graphic information of participants is shown in Table 4.

Quality control in GWAS
The KARE data consisted of 10,004 samples genotyped
with Affymetrix Genome-Wide Human SNP array 5.0
[26, 35]. We selected 8,842 individuals genotyped with
352,228 SNPs from the quality control process. The
quality control criteria and process have been described
[21, 26, 35]. We used 351,983 SNPs for the multi-SNP–
multi-trait analysis after exclusion of 245 SNPs with am-
biguous chromosome numbers and positions. We se-
lected 7,211 of 8,842 participants who did not take
lipid-lowering or anti-diabetes medication. For the repli-
cation analysis, we selected 2,838 of 3,701 participants
from the HEXA study after those taking medication
were excluded.
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Phenotyping
We considered six quantitative traits as components of
metabolic syndrome. We used the National Cholesterol
Education Program Expert Panel on Detection, Evaluation,
and Treatment of High Blood Cholesterol in Adults (Adult
Treatment Panel III) final report guideline as metabolic
syndrome definition [4]. For waist circumference, we used
modified Asian guidelines, which reduce the limit from >
102 cm to > 90 cm for men and from > 88 cm to > 80 cm
for women. Thus, a participant was considered to have

metabolic syndrome if he or she had three of the five fol-
lowing features: (1) triglyceride > 150 mg/dL, (2) HDL <
40 mg/dL for men and < 50 mg/dL for women, (3) waist
circumference > 90 cm for men and > 80 cm for women,
(4) fasting plasma glucose > 110 mg/dL, and (5) blood pres-
sure threshold > 130 mmHg (SBP) and > 85 mmHg (DBP).

Multiple SNP set–multiple trait association analysis
Previously, Won et al. [14] proposed a statistical method
for the joint analysis of multiple phenotypes and

Fig. 2 Schematic diagram of the current study. KARE, Korean Association REsource Project; HEXA, Health Examinees

Table 4 Characteristics of the study participants

KARE HEXA

Case (n = 1328) Control (n = 5870) Not determined (n = 13) Case (n = 309) Control (n = 2529)

Age 53.9 (8.65) 50.52 (8.62) 61.31 (8.02) 54 (7.92) 51.48 (7.88)

Sex (m/f) 561/767 3000/2870 4/9 184/125 1039/1490

SBP 128.15 (18.13) 112.36 (15.52) 128.36 (16.07) 132.19 (13.77) 118.68 (13.47)

DBP 81.97 (11.46) 72.32 (10.49) 74.92 (6.43) 83.54 (9.12) 75.39 (9.47)

FPG 94 (29.82) 84.31 (14.79) 80.67 (1.53) 101.49 (25.38) 90.15 (22.3)

Triglyceride 241.35 (134.62) 138.94 (83.58) 180.92 (122.1) 224.38 (134.91) 106.35 (74.49)

log triglyceride 5.38 (0.44) 4.82 (0.44) 5.04 (0.55) 5.28 (0.5) 4.52 (0.52)

HDL 38.35 (6.78) 46.54 (10.06) 42.58 (8.39) 43.5 (8.88) 57 (13.16)

WC 90.33 (7.01) 79.98 (7.82) 87.27 (7.97) 90.69 (6.86) 80.44 (8.13)

n sample size; SBP systolic blood pressure, DBP diastolic blood pressure, FPG fasting plasma glucose, HDL high-density lipoprotein, WC waist circumference
KARE Korean Association Resource Project, HEXA Health Examinee cohort
Data are shown as the mean (SD)
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genotypes. This method, the MFQLS (http://health-
stat.snu.ac.kr/software/mfqls/), can be utilized for both
quantitative and dichotomous phenotypes. It can be ap-
plied to large-scale, genome-wide association analysis
as well as family-based samples. The empirical power
test showed that it is statistically more efficient than
existing methods. In addition, the genome-wide associ-
ation analysis of 1,801 individuals with obesity showed
that P values from the MFQLS were markedly less than
those from other methods [14]. In our study, two types
of multiple SNP sets, such as paired SNPs and
gene-based SNPs having more than three variants, were
considered to be multiple genotypes. For the
multi-SNP–multi-trait analysis, the MFQLS incorpo-
rates both multiple traits and SNPs into a single test
statistic. For example, given two traits and two SNPs,
the MFQLS tests H0: β11 = β12 = β21 = β22 = 0, where βij
denotes the effect of association between the ith SNP
and the jth trait. The effect of these genotypes and the
statistical significance of this effect are greater when
multiple genotypes and phenotypes are correlated. Of
351,983 SNPs, 344,677 SNP pairs with MAF > 0.01 were
selected (a Bonferroni-adjusted P value threshold, P =
1.45 × 10−7). Additional file 1: Table S2 shows MAF of
identified SNPs. We extended the gene-based
genome-wide association analysis with multiple traits.
To select an SNP set for gene-based analysis, we in-
cluded common SNPs in the first set on the platform
used in the discovery and replication stages. We se-
lected gene-based tag SNPs captured with r2 ≥ 0.8 by
the use of Tagger (http://www.broad.mit.edu/mpg/tag-
ger/) for the second set. Consequently, 14,475 SNP sets
were selected for gene-based analysis (a Bonferroni-ad-
justed P value threshold, P = 3.45 × 10−6). Table 3 and
Additional file 1: Table S1 show information about the
SNP sets used for the gene-based test.
Two-stage analyses such as estimation of correlation

between each SNP and calculation of statistics are used
to run the MFQLS.
The Fisher’s combined probability test was used to cal-

culate the meta-analysis from discovery and replication
results by application of MADAM in the R package.

Single-SNP–multi-trait association analysis
To determine whether a significant SNP pair identified in
the multi-SNP–multi-trait analysis was still significant if a
different approach was used, we performed a joint analysis
between single genotype and multiple phenotypes. An
SNP and multiple traits were incorporated into the statis-
tics of a single test and three traits were given, H0: β1 = β2
= β3 = 0 and H1: not H0, where βi denotes the effect of as-
sociation between a SNP and the ith trait. Covariates such
as age and sex were adjusted in the analysis.

SNP pair–metabolic syndrome-component trait association
analysis
To determine which metabolic syndrome-component traits
are related to the SNP pair rs7107152 and rs1242229, we
performed an association analysis between the SNP pair
and each metabolic syndrome-component trait.

Additional analyses from online data resources
To examine the expression pattern of each SNP of an
identified SNP pair, we utilized three online data re-
sources that provide eQTL information: the portal for
GTEx [16], RegulomeDB [17], and the NESDA NTR
Conditional eQTL Catalog. SNAP was applied to calcu-
late the correlation between identified SNPs and previ-
ously known GWAS SNPs [18].

Additional files

Additional file 1: Supplementary information. Figure S1. Screenshot
of GTEx database for significant SNP pair rs7107152 and rs1242229.
Figure S2. Screenshot of NESDA NTR Conditional eQTL Catalog for
rs7107152 and rs1242229. Figure S3. Screenshot of RegulomeDB for
rs1242229. Figure S4. Radar chart showing the result of the rs7107152
and rs1242229 SNP pair–single trait (metabolic syndrome-component
trait) association analysis. Figure S5. Screenshot from the GTEx database
of the eQTL SNP-enriched region around SIDT2 and TAGLN
(chr11:117,000,000-117,100,000). Figure S6 Model for how significant SNP
pair rs7107152/rs1242229 may affect metabolic syndrome risk. Table S1.
Characteristics of gene-based SNPs set. Table S2. Minor allele frequency of
identified SNPs. (PDF 975 kb)

Additional file 2: MFQLS results. (TXT 16795 kb)
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