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Abstract

Background: Noninvasive prenatal testing (NIPT) for fetal aneuploidies by scanning cell-free fetal DNA in maternal
plasma is rapidly becoming a first-tier aneuploidy screening test in clinical practices. With the development of
whole-genome sequencing technology, small subchromosomal deletions and duplications that could not be
detected by conventional karyotyping are now able to be detected with NIPT technology.

Methods: In the present study, we examined 8141 single pregnancies with NIPT to calculate the positive predictive
values of each of the chromosome aneuploidies and the subchromosomal microdeletions and microduplications.

Results: We confirmed that the positive predictive values (PPV) for trisomy 13, trisomy 18, trisomy 21, and sex
chromosome aneuploidy were 14.28%, 60%, 80%, and 45.83%, respectively. At the same time, we also found 51 (0.63%)
positive cases for chromosomal microdeletions or microduplications but only 13 (36.11%) true-positive cases. These results
indicate that NIPT for trisomy 21 detection had the highest accuracy, while accuracy was low for chromosomal
microdeletion and microduplications.

Conclusions: Therefore, it is very important to improve the specificity, accuracy, and sensitivity of NIPT technology for the
detection of subchromosomal microdeletions and microduplications.

Keywords: Noninvasive prenatal testing (NIPT), Chromosome aneuploidies, Sex chromosome aneuploidy,
Subchromosomal microdeletions/microduplications

Introduction
In 1997, Lo et al. reported that plasma from pregnant
women carrying male fetuses contained cell-free DNA
(cf-DNA) derived from the Y-chromosome [1]. Then,
cell-free fetal DNA (cff-DNA) was subsequently reported to
be used to detect fetal Down’s syndrome and additional
fetal aneuploidies in clinical practice [2–4]. Now, noninva-
sive prenatal testing (NIPT) for fetal aneuploidies by
scanning cell-free fetal DNA in maternal plasma is rapidly
becoming a first-tier aneuploidy screening test in clinical

practice [5, 6]. An increasing number of clinical studies sug-
gest that NIPT has a high sensitivity and specificity for
screening trisomies 21 (T21), 18, and 13. Several recent
studies have shown that the PPV range of T21 was 65–94%,
T18 was 47–85%, and T13 was 12–62% [7–9].
Large or small subchromosomal deletions and duplica-

tions are always associated with genetic disorders and
syndromes; these are derived from genomic structural
changes, such as copy number variants, resulting from
abnormal gene dosage with a dramatic influence on gene
expression level and phenotype [10]. Currently, the pre-
natal diagnosis of large subchromosomal deletions and
duplications in clinical practice still relies on invasive
testing, such as fetal genetic material, through chorionic
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villus sampling (CVS) and amniocentesis using karyotyp-
ing. With the development of whole-genome sequencing
technology, smaller pathogenic genomic rearrangements
that could not be detected by conventional karyotyping
are now able to be detected. Despite the fact that an
increasing number of studies have been conducted on the
clinical application of NIPT for chromosome aneuploidy
detection, knowledge about microdeletion and microdupli-
cation syndromes (MMSs) detection has not been given
early attention during pregnancy [11]. However, the inci-
dence and severity of the microdeletion and microduplica-
tion are higher for Edwards (trisomy 18) and Patau (trisomy
13) syndromes than the 22q11.2 deletion syndrome (known
as DiGeorge Syndrome (DGS)), with an incidence of 1 in
992 pregnancies in the low-risk population [12–14]. There-
fore, NIPT on subchromosomal microdeletions and micro-
duplications is important for chromosome aneuploidies. This
could help identify high-risk pregnancies and offer the possi-
bility of a confirmatory invasive diagnostic test after counsel-
ing to offer better clinical management during pregnancy
and after birth, where early intervention can potentially
improve the quality of life of the newborn.
In the present study, we examined 8152 single preg-

nancies undergoing NIPT, both for detecting common
chromosome aneuploidies, including trisomy 13, 18, and
21 and sex chromosomes, as well as subchromosomal
microdeletions/microduplications.

Materials and methods
Patients
From March 2016 to May 2017, 8152 pregnant women
(Second Affiliated Hospital, Army Military Medical Univer-
sity) opted for NIPT to avoid fetal T13, T18, and T21 aneu-
ploidies. Informed written consent was obtained from all
pregnant women who agreed to receive NIPT. Pregnancies
with high risks were divided into advanced maternal age,
ultrasound abnormalities, poor fertility history, positive
serum screening, and other groups.

Samples preparation and sequencing
Whole blood samples of 5 to 10mL from pregnant
women were collected in EDTA within 8 h or cell-free
DNA was collected in BCT tubes (Streck Inc.; Omaha,
NE) within 72 h at 4 °C. Afterwards, cfDNA extraction,
library construction, quality control, and pooling were
performed according to the JingXin Fetal Chromosome
Aneuploidy (T21, T18, T13) Testing Kits (CFDA regis-
tration permit No. 0153400300). Following the DNA
sequencing, 15~20 libraries were pooled and sequenced
within ~ 200 bp reads using the JingXin BioelectronSeq 4000
System (CFDA registration permit NO. 20153400309), which
is a type of semiconductor sequencer. Sequencing reads were
filtered and aligned to the human reference genome (hg19).
Fetal DNA concentration was calculated as a quality control

using our previously described method [15]. Samples failing
the quality criteria of cfDNA extraction, library construction,
and sequencing as well as fetal DNA concentration (< 4%)
were kicked out.

Statistics and analysis
Combined GC correction and Z-score testing methods
were used to identify fetal autosomal aneuploidies, as de-
scribed previously [16]. Meanwhile, fetal and maternal
chromosome copy number variations (CNVs) were classi-
fied with our modified Stouffer’s Z-score method as
described previously [15]. In a previous study, a cutoff value
of Z-score > 3 was used to determine whether the ratio of
the chromosomes was increased and if fetal trisomies 21,
18, and 13 were also present. Here, each chromosome with
an absolute value of the Z-score greater than 3 was marked
with chromosome aneuploidies or microdeletions/
microduplications.

Chromosome karyotype analysis
Chromosome karyotype analysis under sterile conditions
was performed on fetal DNA, on cultured amniocytes,
and on lymphocytes according to standard protocols.
The amniocentesis was performed with the guidance of
ultrasound and was centrifuged, inoculated in culture
medium, and cultured at 37 °C. Once many circular
translucent dividing cells had emerged, colchicine was
added and cultured for another 3 h. When the number
of circular translucent cells increased, cells were
harvested for chromosome preparation. Subsequently, 3
mL of the parents’ peripheral blood was collected with
heparin anticoagulation and inoculated in phytohem-
agglutinin (PHA) culture medium for further karyotype
analysis. According to the principle of “An International
System for Human Cytogenetic Nomenclature, ISCN2013”,
a total of 60 dividing phases were counted using an AI
chromosome image analysis system (CytoVision,
Switzerland), and 20 karyotypes were analyzed and repeated
three times.

Fish
Fluorescence in situ hybridization (FISH) was used to
analyze the interchromosomal rearrangement of the pro-
band. The slides were immersed in Citrisolve for 15 min,
jet air-dried, immersed in Lugol solution for 5 min, and
immersed in 2.5% sodium thiocyanate for 30 s. The
slides were then placed in 10-mM citrate/citric acid
solution (pH 6.0) and microwaved on a high setting for
5 min followed by 15 to 45min in 0.4% pepsin solution
(pepsin A/0.9% sodium chloride at pH 1.5) at 37 °C. Ten
microliters of FISH reagent (7-μL LSI buffer and 3 μL
probe) were placed on each slide, and a cover-slip was
added. Slides were then denatured in a Hybrite set at a
melting temperature of 80 °C for 5 min and were
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incubated in a humidified chamber at 37 °C for 12 h.
The slides were then washed in 2 × SSC/0.1% NP40 at
70 °C for 2 min and counterstained with 4′,6-diamidi-
no-2-phenylindole dihydrochloride. The cells were ana-
lyzed by a microscopist (ML) using a fluorescence
microscope equipped with the appropriate filter sets. A
minimum of 50 cells and a maximum of 200 cells were
scored per case. A minimum of 20 abnormal cells was
required for a sample to be considered abnormal [17, 18].

Results
Among the 8152 cases undergoing NIPT, we found that
due to the low concentration of fetal DNA, 11 cases
were not eligible for the next analysis, so the remaining
8141 cases were under-analyzed in the present study.
Based on these results, the maternal age for the 8141
pregnancies ranged from 15 to 46 years old. The group
aged 25 to 29 years old was the majority (3328, 40.88%)
group. Pregnant women older than 35 years were 13.79%.
The gestational age at blood sampling ranged from 9 to 34
weeks, and 53.36% of the group had a gestational age from
13 to 16 weeks (see Table 1). The positive rate increased
with maternal age and the number of the positive cases in
four age groups, as shown in Fig. 1. Binomial test were used
to test associations between positive and negative cases in
four age groups according to the single pregnancies, and
the differences were significant (mean≤ 24 ± SD≤ 24 = 1.9833
+ 0.1281, p < 0.05; mean25–29 ± SD25–29 = 1.9867 + 0.11475,
p < 0.05; mean30–34 ± SD30–34 = 1.9836 + 0.1271, p < 0.05;
mean≥ 35 ± SD≥ 35 = 1.9757 + 0.15413, p < 0.05). Weekly time

points of gestation aged from 12 to 26 weeks were tested,
but no significant differences were found. In addition to
that basic information, we also counted the clinical reasons
for NIPT, finding that 13.79% of the group had advanced
maternal age more than 35 years (included), and 26
pregnancy cases had ultrasound abnormalities. Other rea-
sons included poor fertility and high risk in serum
biochemistry screening.
As shown in Fig. 2, we used linear regression analysis to

find the relationship between fetal DNA concentration and
Z value in the positive cases. We found that there was no
obvious linear relationship between them except in
true-positive cases with fetal DNA concentration (r = 0.128,
df = 33, p = 0.02). There were 88 (1.08%) positive cases for
common chromosome and sex chromosome aneuploidies
(SCAs) detection, including 11 cases of trisomy 13, 7 cases
of trisomy 18, 36 cases of trisomy 21, and 34 cases of sex
chromosome aneuploidy (Table 2). Among them, there
were 35 (57.38%) true-positive cases, 26 (42.62%) false-posi-
tive cases, and 27 unverified cases that chose to continue
gestation or to terminate the pregnancy. For the 35
true-positive cases, there were 20 cases for T21, 1 case for
T13, 3 cases for T18, and 11 cases for sex chromosome ab-
normalities. A total of 26 false-positive cases were normal.
Among the 20 cases of T21, two T21 cases were verified as
46,XY,rob(14,21)(q10;q10),+ 21 by amniotic fluid karyotyp-
ing analysis.
In addition, we calculated positive cases of chromo-

somal microdeletions or microduplications as well.
Overall, we found 51 (0.63%) cases for chromosomal
microdeletions or microduplications, with 13 (36.11%)
true-positive cases, 23 (63.89%) false-positive cases, and
15 unverified cases. Of these 23 cases with false posi-
tives, the NIPT result of one case showed chromosome
15 microdeletion; however, the amniotic fluid karyotyp-
ing analysis prompted 46,XX, 1qh+; the rest were proven
normal. Among the 13 cases with true positives, 9 cases
occurred because of genetic mutations, while 4 cases
were inherited from parents. The karyotypes were
confirmed by amniotic fluid karyotyping analysis and
FISH (Table 3).

Discussion
Noninvasive prenatal testing of cell-free DNA in mater-
nal plasma, which is a mixture of maternal DNA and a
low percentage of fetal DNA, revolutionized the
approach to prenatal fetal aneuploidies screening using
massively parallel sequencing [19]. A large number of
validation studies reporting the sensitivity and specificity
of NIPT have been published [3, 20]. Recently, NIPT
was also introduced to subchromosomal copy number
variations (CNVs), typically less than 5Mb in size, that
could either be inherited from parents with or without
symptoms or occur de novo [19, 21]. With the

Table 1 Maternal characteristics and gestational age of blood
sampling

Maternal age at NIPT (years) Number Percent (100%)

≤ 24 1533 18.83

25–29 3328 40.88

30–34 2157 26.50

35–40 1011 12.42

≥ 41 112 1.38

Advanced maternal age (≥ 35 years old) 1123 13.79

Gestational age at NIPT (weeks)

≤ 8 0 0.00

9–12 916 11.25

13–16 4344 53.36

17–20 1509 18.54

21–24 810 9.95

25–28 347 4.26

≥ 29 212 2.60

Unknown 3 0.04

Range (weeks) 9–34 /

/ no data
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Fig. 1 The positive rate of NIPT for aneuploidy and CNV increases with maternal age and the number of positive cases in the four age groups.
Binomial test were used to test associations between positive and negative cases in four age groups according to the single pregnancies and the
differences were significant (mean≤ 24 ± SD≤ 24 = 1.9833 + 0.1281, p < 0.05; mean25–29 ± SD25–29 = 1.9867 + 0.11475, p < 0.05; mean30–34 ± SD30–34 =
1.9836 + 0.1271, p < 0.05; mean≥ 35 ± SD≥ 35 = 1.9757 + 0.15413, p < 0.05)

Fig. 2 The relationship between fetal DNA concentration and Z value in true-positive cases. a True positive group of the trisomy sample (r= 0.102, df = 21,
p= 0.076), false positive group of the trisomy sample (r=− 0.035, df = 17, p= 0.537). b True positive group of the total sample (r= 0.128, df = 33, p= 0.02),
false positive group of the total sample (r=− 0.003, df = 55, p= 0.361)
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widespread use of whole genome analysis technology, an
increasing number of microdeletion and microduplica-
tion syndromes connected to certain phenotypes have
been diagnosed and researched [22, 23]. In general,
microdeletions occurred more frequently than microdu-
plications [7].
In this study, we are the first to use NIPT to screen a

large population in the Chongqing area. This NIPT tech-
nology uses a semiconductor sequencing platform (SSP)
to reliably detect subchromosomal deletions/duplications
in women carrying high-risk fetuses. Here, we reviewed
the use of NIPT in the context of screening for common
chromosome aneuploidies as well as subchromosomal
microdeletions and microduplications within a cohort of
8141 single pregnancies (with 11 unqualified samples
ruled out) using 4.89 million reads. From our results, we
learned that the maternal age for 8141 pregnancies ranged
from 15 to 46 years. The group aged 25 to 29 years made
up the majority (3328, 40.88%) of the group. Pregnant
women over 35 years old were 13.79% of the group. The
gestational age at blood sampling ranged from 9 to 34
weeks, and 53.36% of the group had a gestational age from
13 to 16 weeks.
There were a total of 88 (1.08%) positive cases for com-

mon chromosome and sex chromosome aneuploidies

(SCAs) detected, including 11 cases of trisomy 13, 7 cases
of trisomy 18, 36 cases of trisomy 21, and 34 cases of sex
chromosome aneuploidies. The positive predictive value
(PPV) for common chromosomal aneuploidies in our
present study was 57.38%, and for T21, T18, and T13, the
PPV was 80%, 60%, and 14.28%, respectively. In several
recent studies, the PPV range of T21 was 65–94%, the
PPV range of T18 was 47–85%, and the PPV range of T13
was 12–62% [8, 9, 24]. Our results fall within this range.
Interestingly, the PPV for SCAs was 45.83%, obviously
higher than that of T18 and T13. In this study, the
true-positive rate of T13 is relatively low, which may be re-
lated to the size of chromosome 13 or the GC ratio on
chromosome 13. Zhang et al. showed that such a test was
less successful for detecting trisomy 18 and trisomy 13
compared with trisomy 21 [3]. The mixed results may be
related to the GC bias caused by sample preparation or
sequencing procedures. The differences in the inherent
GC content of the chromosomes combined with the
sequencer-related GC bias explained the significant correl-
ation between the read coverage and the corresponding
GC content. For example, chromosome 13 had a relatively
low GC content, and the PCR and sequencing process
enriched chromosomes with a higher GC content, leading
to a relatively low read coverage for chromosome 13 and

Table 2 NIPT results for chromosome aneuploid and microdeletions/microduplications validated by fetal karyotyping analyses or FISH

No. of
chromosome

Aneuploid Microdeletions and microduplications

Positive
cases

True-positive
cases

False-positive
cases

Unverified Positive
cases

True-positive
cases

False-positive
cases

Unverified

Chr1 / / / / 1 0 0 1

Chr2 / / / / 1 1 0 0

Chr3 / / / / 2 0 1 1

Chr4 / / / / 3 1 1 1

Chr6 / / / / 1 1 0 0

Chr7 / / / / 4 1 2 1

Chr8 / / / / 10 1 8 1

Chr9 / / / / 1 0 1 0

Chr10 / / / / 1 1 0 0

Chr13 11 1 (14.28%) 6 (85.71%) 4 1 / / 1

Chr14 / / / / 2 1 1 0

Chr15 / / / / 4 1 3 0

Chr16 / / / / 2 0 2 0

Chr18 7 3 (60%) 2 (40%) 2 6 1 0 5

Chr20 / / / / 3 0 2 1

Chr21 36 20 (80%) 5 (20%) 11 3 2 1 0

Chr22 / / / / 2 1 1 0

X or Y 34 11 (45.83%) 13 (54.17%) 10 4 1 0 3

Total 88 (1.08%) 35 (57.38%) 26 (42.62%) 27 51 (0.63%) 13 (36.11%) 23 (63.89%) 15

/ no data
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thus a negative correlation between read coverage and the
GC content among the chromosomes.
Based on a previous study, sex chromosome aneuploidy

was frequently suspected from NIPT. The false-positive
rate for monosomy X was surprisingly high (91%), and the
prediction of other SCAs was more accurate [25]. In
Tables 4 and 5, we showed the positive effects of chromo-
some size, maternal age, and gestational age. We found
that the positive results effected from different chromo-
somes were significantly different, but we could not find
statistical significance in chromosome size, maternal age,
or gestational age (Table 4). In this study, we found two
cases with Robertsonian translocations (der(14;21)). For
the most common Robertsonian translocations
(der(13;14) and der(14;21)), empirical risk data were sum-
marized by Scriven et al. [26], with a risk of 0.4% for an
unbalanced result at a second trimester prenatal diagnosis
and an overall risk of miscarriage of approximately 15% in
the case of der(13;14). For female carriers of der(14;21),
the estimated risk of trisomy 21 at second-trimester pre-
natal diagnosis is 15%, whereas for male carriers, this risk
remains < 0.5%, increasing miscarriage in couples [13, 15].
Cytogenetically, Robertsonian translocation or centric fu-
sion of two long arms of acrocentric chromosomes involv-
ing chromosome 21 are the most common structural

chromosomal aberrations, which occur with an incidence
of ∼ 1 in 1000 in the general population [27]. Although it
seems that the prevalence of these structural abnormal-
ities in males and females is similar, a recent study found
that women carrying Robertsonian translocations carry
the abnormality to the fetus at a rate four times higher
than men [27]. Therefore, we recommend that chromo-
somal karyotypes be detected for parents of such fetuses.
At the same time, we also analyzed the subchromosomal

microdeletions and microduplications, finding 51 (0.63%)

Table 3 The true-positive cases of microdeletions/microduplications results

Case NIPT result CNV location (M) or Z-score CVS FISH Pathogenicity

Case
1

2Z=17.503 46,XY 47,XN+2[15]/46,XN[85] /

Case
2

4p16.3-12(dup:0.1Mb-48Mb);8p23.3-
23.2(del:1-4Mb)

46,XX,der(8)t(4;8)(p12;p23)pat / Wolf-Hirschhorn syndrome
[35]

Case
3

6q26-q27(dup:143 Mb-158Mb);6q25.3-
27(del:162Mb-171Mb)

46,XN,del(6)(q26) 46,XN,del(6) Leigh-like syndrome [36]

Case
4

7Z=28.110 46,XY 7q31.1 (110.82Mb-111.12Mb)×1 NA

Case
5

8p23.1-11(dup:2Mb-37Mb) 46,XN,der(15)t(8;15)(p11.2;p12)pat / Myeloproliferative syndrome
[37]

Case
6

10q26(del:127 Mb-133Mb) 46,XY,del(10)(q26.13) / Chromosome 10q26 deletion
syndrome [38]

Case
7

14q24.3-q32.33(del:44 Mb-105Mb) 46,XN,del(14) / Deafness [39]

Case
8

15q11.2-q13(dup:24 Mb-31Mb) 47,XN,dup(15)(q13) / NA

Case
9

18q22.3-q23(del:72 Mb-77.98Mb) 46,XN,del(18)mat 46,XN,del(8) NA

Case
10

21q11(dup:15 Mb-16Mb) 46,XY 46,XN,dup(21q11.2)(15.4Mb-
15.72Mb)×3

NA

Case
11

21q11.2-q21(dup:15 Mb-25Mb) 47, XN,dup(21)(q21.2)mat / Usher syndrome [40]

Case
12

22q11(dup:17.46Mb-21.52Mb) 47,XY,der(22) 46,XN,dup(22q11.1-
q11.21)(17.42Mb-21.46Mb)×4

DiGeorge syndrome (DGS)
[41]

Case
13

XZ=-17.652 YZ=-0.782 46,X,del(X)(q21),1qh+ / /

/ no data, NA no relevant information

Table 4 The positive result effects from maternal age and
gestational age

Trisomy CNV Total P

TP FP TP FP TP FP

Age

≥ 35 9 4 2 18 11 22 > 0.05*

<35 7 8 11 4 18 12

GA at NIPT (weeks)

First trimester(9–13 weeks) 0 0 0 0 0 0 /

Second trimester(14–27 weeks) 1 9 13 22 14 31

Third trimester(≥ 28 weeks) 0 1 0 0 0 1

/ no data
*Chi-square test in total sample
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positive cases but with 13 (36.11%) true-positive cases. As
we know, most subchromosomal microdeletions and
microduplications occur randomly [23]. In addition, some
subchromosomal microdeletions and microduplications
had recurrent CNVs, such as 1p36, 3q, 11q23, and
22q11.2 deletion syndromes, with conserved breakpoints
that were almost identical even in unrelated individuals
[28–31]. In this study, we found 13 (36.11%) true-positive
cases for chromosomal microdeletions or microduplica-
tions that were validated by chromosome karyotype analysis
and FISH. Among the 13 true-positive cases, 9 cases
occurred because of genetic mutations, while 4 cases were
inherited from parents. By querying the Online Mendelian
Inheritance in Man (OMIM) database, 7 cases were identi-
fied as syndrome diseases, and 6 cases were pathogenicity
unknown (Table 3). The advantages of using diagnostic
testing must be balanced with the risk of losing a potential
normal pregnancy due to the procedure itself. Broadening
the scope of NIPT seems to be the ultimate goal for pre-
natal screening, thus reducing risks. A major concern is de-
fining for which conditions screening should be offered.
The most prevalent microdeletion is 22q11.2, which causes
DGS. After Down’s syndrome, DGS is the second most
common chromosomal abnormality and cause of congeni-
tal heart disease [32]. Although early diagnosis of CNVs can
help to avoid years of stress experienced by patients, early
treatment can help to improve the symptoms, but CNVs
have variable penetrance. In some cases, children with CNVs
inherited from parents may have different phenotypes.
Therefore, if the NIPT results were positive, validation tests
might be considered, such as chromosome karyotype
analysis, FISH, or chromosomal microarray analysis.
In this work, we demonstrated the feasibility of perform-

ing noninvasive prenatal detection of fetal chromosomal
microdeletions and microduplications on a genome-wide
level and at 3Mb resolution. When stratified by CNV size,
NIPT identified eight samples with CNVs > 10Mb and
seven samples with CNVs < 10Mb. Ai-Hua et al. devel-
oped a method to identify 71.8% of CNVs using 3.5 million
reads, but the performance dropped to 41.2% when CNVs
were below 5Mb [13]. Straver et al. reported the detection
of large CNVs (over 20Mb) with low sequencing depth

(0.15–1.66x), which had limited clinical value [33]. Lo et al.
reported 64.5% (20/31) accuracy when 4–6 million reads
were used to analyze samples with 3 to 42Mb CNVs [34].
However, if CNVs were smaller than 6Mb, only 5 in 13
cases were identified. Several studies have claimed benefits;
however, we suggest that microdeletions have not demon-
strated a sufficiently low false-positive rate to be deemed
practical or ethically acceptable, especially considering
their low PPV [35]. Because a positive NIPT result should
be confirmed using diagnostic techniques and PPV was
still lower for some microdeletions, diagnostic testing
seems preferable when the goal is to maximize the detec-
tion of microdeletion or microduplication syndromes.
NIPT for subchromosomal microdeletions and microdu-

plications was still in its infancy. Until now, no technology
had thoroughly validated their tests to a statistically signifi-
cant level because of the rare occurrence of these chromo-
somal abnormalities. Therefore, it was very important that
the NIPT data must be studied carefully. To be more
efficient, NIPT should use increased DNA concentrations
or optimized bioinformatics algorithms in CNV to detect
CNVs across the whole genome with a very low FPR, as
well as high sensitivity and specificity on real-life samples.

Conclusion
In the present study, we examined 8141 single pregnancies
undergoing NIPT. The results of this study indicated that
the accuracy of NIPT for T21 detection was higher than
that of other chromosome aneuploidies and chromosomal
microdeletions/microduplications; it also indicated that
the positive predictive value for chromosomal microdele-
tion/microduplications was still low. Therefore, it was very
important to improve the specificity, accuracy, and sensi-
tivity of NIPT technology on the detection of subchromo-
somal microduplications and microduplications. As noted
above, the effect of NIPT may be more pronounced with
accurate estimation of the fetal DNA concentration ratio
at earlier gestational ages and optimization of the CNV
bioinformatics algorithm.
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