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Abstract

Background: Age-related macular degeneration (AMD) is the most common, progressive, and polygenic cause of
irreversible visual impairment in the world. The molecular pathogenesis of the primary events of AMD is poorly
understood. We have investigated a transcriptome-wide analysis of differential gene expression, single-nucleotide
polymorphisms (SNPs), indels, and simple sequence repeats (SSRs) in datasets of the human peripheral retina and
RPE-choroid-sclera control and AMD.

Methods and results: Adaptors and unbiased components were removed and checked to ensure the quality of
the data sets. Molecular function, biological process, cellular component, and pathway analyses were performed on
differentially expressed genes. Analysis of the gene expression datasets identified 5011 upregulated genes, 11,800
downregulated genes, 42,016 SNPs, 1141 indels, and 6668 SRRs between healthy controls and AMD donor material.
Enrichment categories for gene ontology included chemokine activity, cytokine activity, cytokine receptor binding,
immune system process, and signal transduction respectively. A functional pathways analysis identified that
chemokine receptors bind chemokines, complement cascade genes, and create cytokine signaling in immune
system pathway genes (p value < 0.001). Finally, allele-specific expression was found to be significant for Chemokine
(C-C motif) ligand (CCL) 2, 3, 4, 13, 19, 21; C-C chemokine receptor (CCR) 1, 5; chemokine (C-X-C motif) ligand
(CXCL) 9, 10, 16; C-X-C chemokine receptor type (CXCR) 6; as well as atypical chemokine receptor (ACKR) 3,4 and
pro-platelet basic protein (PPBP).

Conclusions: Our results improve our overall understanding of the chemokine receptors’ signaling pathway in
AMD conditions, which may lead to potential new diagnostic and therapeutic targets.
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Background
Age-related macular degeneration (AMD) is the most
common, progressive, and polygenic disease responsible
for visual impairment in individuals over the age of 60
[1]. The number of individuals with AMD has steadily
increased, and it is estimated to reach 196 million people
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affected by 2020, given the increasing longevity of the
worldwide population [2]. Because AMD is a progressive
degenerative disease, having the intermediate stage puts
one at risk for the more advanced forms of AMD.
Clinically, two forms of advanced AMD are recognized:
geographic atrophy and neovascular AMD. Geographic
atrophy is characterized by the loss of an area of the
RPE and choroid that results in the gradual decline in
the number of photoreceptors. Neovascular or “wet”
form of AMD is characterized by the growth of abnor-
mal new blood vessels from the choroid into sub-RPE
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and subretinal regions. These poorly developed neovessels
cause hemorrhage and exudation of fluid in the macular
region interfering with the function of the retina leading
to loss of vision. Even though treatments aimed at inhibit-
ing blood vessel growth can effectively slow the progres-
sion of “wet” AMD, no useful treatments exist for the
atrophic (“dry”) form of the disease, which accounts for
the majority of all AMD cases [3]. Several biological pro-
cesses have been implicated in the pathogenesis of AMD,
including complement activation [4], inflammation [5],
and oxidative stress [6]. Studies of gene expression regard-
ing the AMD phenotype are becoming increasingly im-
portant in assessing the relevance and possible functions
of AMD risk loci and in moving beyond genetic associ-
ation to uncover the specific pathways involved in the de-
velopment and progression of the disease [7, 8]. Many of
the studies to date investigating AMD gene association
are based on genome-wide association (GWA) [9] such as
association with HtrA serine peptidase 1 (HTRA1)/age-re-
lated maculopathy susceptibility 2 (ARMS2) and CFH [10,
11]. However, most of the variants investigated so far are
tag single-nucleotide polymorphisms (SNPs) or noncoding
SNPs within large intergenic regions, thus making it
difficult to ascertain the function of disease-associated var-
iants. Coding variants can cause truncated transcripts that
can affect protein synthesis, and function or stability.
Here, RNA-Seq allows for a global analysis of the tran-
scriptome of the affected tissue in an unbiased manner
with the capacity to measure the expression of individual
genes [6]. Moreover, RNA-Seq analysis can also assess the
different isoforms of each gene, alternative splice events,
novel, and rare transcripts, and identify the role of
ncRNAs. RNA-Seq also has a lower frequency of false-
positive rates and a higher reproducibility [12, 13].
Understanding which genes are perturbed in the patho-

physiology of AMD could pave the way for the identifica-
tion of biomarkers as potential predictors of disease onset
and can be validated as potential therapeutical targets.
Also, the identification of potential therapies may be facili-
tated by high-throughput systems using biological ana-
lyses, particularly at the transcriptome levels.
Global gene expression assays, however, only provide in-

formation about the transcriptome profile at the time of
sampling which in turn can be affected by the rate of
translation, and by the rate of protein turnover [14], thus,
all genomics, proteomics, and transcriptome analysis
methodologies are required for a complete understand-
ing of gene and protein interaction involved in the
AMD pathophysiology.
Here, publicly available RNA-Seq datasets representing

total mRNA harvested from human ocular tissues from
healthy and AMD donors were analyzed using unique
analysis pipelines. The dataset was analyzed for differen-
tially expressed genes (DEGs) and using these DEGs,
pathway enrichment analysis and functional annotation
analyses were performed. From the results, we identify
the most dysregulated pathways such as chemokine sig-
naling pathway, complement cascade pathway, and cyto-
kine signaling, and biological processes, such as cell
communication, cell surface receptor signaling pathway,
signal transduction, biological adhesion, and numerous
chemokine receptors, which may be significant players
in the pathophysiology of AMD.

Methods
Data source, quality, and preprocessing
The human healthy and AMD condition in the retina and
RPE-choroid-scleral (RCS) RNA-Seq raw paired-end data-
sets obtained from the Sequence Read Archive (SRA)
(https://www.ncbi.nlm.nih.gov/sra/?term=SRP107937) from
the National Centre for Biotechnology Information (NCBI).
Kim et al. produced the original dataset. [15] Eight AMD
and healthy Caucasian close age-matched donor eyes
datasets were used, PMI < 6 h. The mean age for AMD
donors was 84.1 ± 6.9 years, and the healthy donor was
85 ± 3.1 years. Donors in AMD group were diagnosed
histologically with early-stage non-exudative age-related
maculopathy (three donors, six datasets); late stage non-
exudative age-related maculopathy (four donors, eight
datasets); and RPE cell epithelial dystrophy (one donor,
two datasets). Donors in the healthy control group were
selected based on the absence of ocular pathology. Equal
weight was assigned to retinal and RPE/choroid material
with a dataset from the same donor. Detailed information
of datasets is presented in Table 1.
Kim et al. who created and deposited the datasets focused

on the significant differential expression of noncoding RNA
and antisense transcripts in AMD [15], whereas our current
work focuses on chemokines receptors and their pathways,
in the pathophysiology of AMD, using bioinformatics ana-
lysis pipeline (Fig. 1), using the SRA Toolkit (https://www.
ncbi.nlm.nih.gov/sra/docs/toolkitsoft/). The SRA files were
converted to a fastq format into forward and reverse separ-
ate files using the SRA Toolkit split function. These
raw reads were used for visualization of the reads’
quality before and after preprocessing by using FastQC
software (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). The process to remove adapters and
ambiguous quality reads were done using the Trimmomatic-
0.36 tool, here trimming of bases from 3′ and 5′ ends,
maintaining the Phred-score at ≤ 30.

Reference-based assembly
The human genome was aquired from the NCBI genome
(https://www.ncbi.nlm.nih.gov/genome/?term=human) for
reference-based assembly. All the datasets were assembled
separately with reference genomes using Bowtie soft-
ware [16]. Initially, Bowtie indexed the genome with a
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Table 1 Detailed information of age macular degeneration (AMD) datasets with experiment, runs, sex, age, donor id, eye
histological phenotype, and tissue [15]

Experiment Run Sex Age Donor Id Eye histological phenotype Tissue

SRX2848433 SRR5591599 Male 85 Normal_1 Normal Peripheral retina

SRX2848434 SRR5591600 Male 85 Normal_1 Normal Peripheral RPE-choroid-sclera

SRX2848435 SRR5591601 Male 84 Normal_2 Normal Peripheral retina

SRX2848436 SRR5591602 Female 92 Normal_3 Normal Peripheral retina

SRX2848437 SRR5591603 Female 92 Normal_3 Normal Peripheral RPE-choroid-sclera

SRX2848438 SRR5591604 Female 86 Normal_4 Normal Peripheral retina

SRX2848439 SRR5591605 Female 86 Normal_4 Normal Peripheral RPE-choroid-sclera

SRX2848440 SRR5591606 Male 83 Normal_5 Normal Peripheral retina

SRX2848441 SRR5591607 Male 83 Normal_5 Normal Peripheral RPE-choroid-sclera

SRX2848442 SRR5591608 Male 83 Normal_6 Normal Peripheral retina

SRX2848443 SRR5591609 Male 83 Normal_6 Normal Peripheral RPE-choroid-sclera

SRX2848444 SRR5591610 Male 84 Normal_7 Normal Peripheral retina

SRX2848445 SRR5591611 Male 84 Normal_7 Normal Peripheral RPE-choroid-sclera

SRX2848446 SRR5591612 Female 83 Normal_8 Normal Peripheral retina

SRX2848447 SRR5591613 Female 83 Normal_8 Normal Peripheral RPE-choroid-sclera

SRX2848448 SRR5591614 Male 69 AMD_1 Early age-related maculopathy Peripheral retina

SRX2848449 SRR5591615 Male 69 AMD_1 Early age-related maculopathy Peripheral RPE-choroid-sclera

SRX2848450 SRR5591616 Female 85 AMD_2 Early age-related maculopathy Peripheral retina

SRX2848451 SRR5591617 Female 85 AMD_2 Early age-related maculopathy Peripheral RPE-choroid-sclera

SRX2848452 SRR5591618 Male 95 AMD_3 Late non-exudative age-related maculopathy Peripheral retina

SRX2848453 SRR5591619 Male 95 AMD_3 Late non-exudative age-related maculopathy Peripheral RPE-choroid-sclera

SRX2848454 SRR5591620 Male 87 AMD_4 Late exudative age-related maculopathy Peripheral retina

SRX2848455 SRR5591621 Male 87 AMD_4 Late exudative age-related maculopathy Peripheral RPE-choroid-sclera

SRX2848456 SRR5591622 Female 83 AMD_5 Late non-exudative age-related maculopathy Peripheral retina

SRX2848457 SRR5591623 Female 83 AMD_5 Late non-exudative age-related maculopathy Peripheral RPE-choroid-sclera

SRX2848458 SRR5591624 Female 86 AMD_6 Other (RPEcell epithelial dystrophy (suspected)) Peripheral retina

SRX2848459 SRR5591625 Female 86 AMD_6 Other (RPEcell epithelial dystrophy (suspected)) Peripheral RPE-choroid-sclera

SRX2848460 SRR5591626 Female 86 AMD_7 Late non-exudative age-related maculopathy Peripheral retina

SRX2848461 SRR5591627 Female 86 AMD_7 Late non-exudative age-related maculopathy Peripheral RPE-choroid-sclera

SRX2848462 SRR5591628 Female 86 AMD_8 Early age-related maculopathy Peripheral retina

SRX2848463 SRR5591629 Female 86 AMD_8 Early age-related maculopathy Peripheral RPE-choroid-sclera
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Burrows-Wheeler index to keep its memory footprint
small. Finally, the RNA-Seq by expectation-maximization
(RSEM) tool extracted the reference transcripts from a gen-
ome with gene annotations in a GTF file. All the annotation
files were merged to obtain a single assembly file [17]. We
obtained good assembly results with the human dataset
when validating the assembly read remapping that was con-
ducted using bowtie2 for each data set, creating the bowtie2
index [16]. CAP3 assembler was used to keep only the
longest isoform for each gene to reduce redundancy [18].

Identification of DEGs
Trinity software supports the use of Bioconductor tool
such as EdgeR to analyze differential expression analysis
in the assembled transcriptome. Finally, the both healthy
controls and AMD comparison transcript counts (matrix
file) were used for differential gene expression using edgeR
(Empirical analysis of digital gene expression in R) pack-
age of Bioconductor with primary parameters such as false
discovery rate (FDR), log fold-change (logFC), log counts
per million (logCPM), and p value [19, 20]. Unigenes with
adjusted q value less than 0.001 (p < 0.001) and the fold
changes more than 4 (logFC > 4) were considered as
significantly differentially expressed unigenes.

Functional annotation
Gene ontology (GO) is an internationally standardized gene
functional classification system that offers a dynamically



Fig. 1 The basic workflow of RNA-Seq analysis. The human data sets collected, quality checked, reference genome mapped, and gene expression
quantification. Gene ontology, functional pathways, gene network analysis, and summarization
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updated controlled vocabulary and a strictly defined con-
cept to comprehensively describe the properties of genes
and their products in any organism. The identified DEGs
were subjected to further functional analysis using the GO
enrichment analysis [21]. DEGs were assigned to their bio-
logically relevant pathways using the KEGG pathway data-
base through the KEGG Automated Annotation Server
(KAAS) [22]. Hypergeometric test using the GO terms and
the KEGG pathway (Kyoto Encyclopedia of Genes and
Genomes, http://www.kegg.jp/) terms were performed, and
the analysis of significant GO terms or KEGG pathway
terms were identified with a p value < 0.05.

Identification of SNPs and indels
The good quality clean reads from each sample were
aligned individually to reference the transcriptome using a
Burrows-Wheeler Aligner (BWA). The read count profile
from the output file (.sam file) of the BWA alignment was
generated by using samtools. For SNP identification, the
sorted alignment files from each sample were used to pro-
duce a bcf file using samtools [23]. The bcf tool was used
to filter the SNPs at a p value < 0.001. The potential SNPs
were identified using read depth (d) ≥ 10, quality depth
(Q) ≥ 30, minimum root mean square mapping quality
(MQ) ≥ 40, and flanking sequence length (l) = 50.
Identification of simple sequence repeats
The identification of simple sequence repeats (SSRs) in
the unigenes of healthy and AMD human datasets was
predicted using the Perl script MISA (MIcroSAtellite;
http://pgrc.ipk-gatersleben.de/misa) tool [24]. Dinucleo-
tide repeats of more than six times and tri, tetra, penta,
and hexanucleotide repeats of more than five times were
considered the search criteria for SSRs.
Gene network analysis
We also performed the functional enrichment and
interaction network analysis using the STRING 10.5
database [25] on using the DEGs as the input files.
STRING tool classified the DEGs according to the GO
categories, such as biological processes (BP), molecular
function (MF), cellular components (CC), and Kyoto
Encyclopedia of Genes and Genomes database (KEGG)
pathways.

http://www.kegg.jp/
http://pgrc.ipk-gatersleben.de/misa
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Results
Quality and pre-processing of datasets
The RNA-Seq paired-end human healthy and AMD data
(SRP107937) were acquired from the National Centre
for Biotechnology Information-Sequence Read Archive
(NCBI-SRA) using the SRA Toolkit (https://www.ncbi.
nlm.nih.gov/sra/docs/toolkitsoft/) with a prefetch func-
tion, save for one file (SRR5591614). The paired 30 SRA
files were converted into fastq files (60 files) with
fastq-dump and split-files functions.
Initially, visualization of the quality of all datasets

before and after trimming the adaptors and going
through the pre-processing steps was performed using
a FastQC tool (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). Finally, low-quality reads were
removed by trimming the bases from 3′ and 5′ end
and maintaining the Phred-score ≤ 30 using the
Trimmomatic-0.36 tool [26]. After cleaning and trim-
ming of low-quality reads and adaptor removal, more
than 97% good quality reads in each stage were
retained. The human healthy and AMD of paired-end
raw data before and after elimination of adapters and
retained reads percentages were tabulated (Additional file 1:
Table S1). These cleaned reads were used for further tran-
scriptome assembly analysis.

Reference-based assembly
The healthy and AMD datasets were assembled separately
with a reference human genome using Bowtie software
[16]. The RSEM (RNA-Seq by expectation-maximization)
tool can extract reference transcripts from a genome with
gene annotations in a GTF file. From this extraction, 93%
and 95% of the reads from healthy and AMD, respectively,
were successfully mapped on a reference transcriptome.
All the annotation files were merged to obtain a single as-
sembly file [17]. The assembled files were used for remov-
ing redundant sequences with CAP3 assembler software
[18]. However, the CAP3 assembler generated 139,575
contigs and 1,610,520 singlets. Both the contig and singlet
files were combined, and sequences below 300 in length
were removed. The final output file was considered the
reference genome for further analysis. All the samples
were given equal weight within a control dataset and a
disease dataset. Therefore, all samples (n = 8) control
(neural retina and RPE/choroid) vs. all AMD compari-
son (neural retina and RPE/choroid) were used for the
analysis.

Differential gene expression analysis
RSEM software was used to calculate the expression
values in the form of fragments per kilobase of exon per
million mapped reads (FRKM). Finally, both the healthy
and AMD comparison transcript counts (matrix file)
were used for differential gene expression using edgeR
(empirical analysis of digital gene expression in R) pack-
age of Bioconductor with primary parameters such as
the false discovery rate (FDR), log fold change (logFC),
log counts per million (logCPM), and p value Unigenes
with a p value less than 0.001 (p < 0.001) and a fold
change of more than 4 (logFC > 4) were considered sig-
nificantly differentially expressed genes. Principle com-
ponent analysis (PCA) was performed for all the samples
in both groups, and the results demonstrated that sam-
ples within the AMD group were separate from those in
the control group. Furthermore, PCA screen plot con-
firmed that principle component 1 (PC1) and 2 (PC2)
accounted for 98% of the total variation in gene expres-
sion. To further investigate the two groups, we performed
hierarchical clustering of all DEGs. Extract clusters of
transcripts with similar expression profiles by cutting the
transcript cluster dendrogram at a given percent of its
height (60%), creating individual transcript clusters and
summarizes expression values for each cluster according
to individual charts (Additional file 1: Figure S2). We dis-
covered 5011 upregulated and 11,800 downregulated
DEGs among the 51,532 totals, in AMD conditions rela-
tive to healthy controls datasets. The hierarchical cluster-
ing heatmap, correlation matrix plot, MA plot, and
volcano plots were generated to represent the up- and
downregulated genes (Fig. 2).

Functional annotation
In the current study, functional assignment and
categorization for the identified DEGs were carried
out using a GO analysis by the GO enrichment analysis
[21]. All the up- and downregulated genes were uploaded
to the GO enrichment analysis tool with the complete hu-
man genome as the background. The MFs, BPs, CC protein
classes, and pathways were predicted in the significantly
enriched GO terms.
The upregulated genes were involved in various mo-

lecular functions, such as protein binding (139 genes),
receptor activity (77 genes), receptor binding (73 genes),
G protein-coupled receptor activity (34 genes), cytokine
activity (16 genes), cytokine receptor binding (10 genes),
chemokine activity (10 genes), and extracellular matrix
structural constituent (8 genes), respectively (Fig. 3a). The
upregulated genes were involved in various biological pro-
cesses, such as RNA metabolic process (33 genes), cell
communication (150 genes), cell surface receptor signaling
pathway (70 genes), signal transduction (142 genes), bio-
logical adhesion (25 genes), cellular component movement
(40 genes), regulation of molecular function (38 genes),
immune system process (62 genes), cellular calcium ion
homeostasis (19 genes), and cytokine-mediated signal-
ing pathway (12 genes) (Fig. 3b). The upregulated genes
were involved in various cellular components, such as
nucleus (42 genes), macromolecular complex (47 genes),

https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/
https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Fig. 2 Graphical representation of differentially expressed genes. a Significantly up- and downregulated genes were represented as a heat map
(red color shows upregulated and blue color shows downregulated genes. b Significantly up- and the downregulated gene was represented as a
matrix correlation plot c MA plot represented by significantly up- and downregulated gene based on the logFC and logCounts. d Volcano plot
represented by significantly up- and downregulated gene based on the logFC and log10 (FDR)
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extracellular matrix (21 genes), protein complex (42
genes), organelle (101 genes), intracellular (150 genes),
cell part (159 genes), extracellular space (59 genes),
extracellular region (75 genes), and extracellular matrix
(27 genes), respectively (Fig. 3c).
The downregulated genes were involved in various

molecular functions, such as transporter activity (85
genes), transmembrane transporter activity (77 genes),
ion channel activity (42 genes), ligand-gated ion channel
activity (26 genes), and glutamate receptor activity (13
genes), respectively (Fig. 4a). The downregulated genes
were involved in various biological processes, such as
immune system process (10 genes), signal transduction
(166 genes), cell surface receptor signaling pathway (92
genes), multicellular organismal process (136 genes),
neurological system process (84 genes), nervous system
development (36 genes), neurotransmitter secretion (13
genes), visual perception (13 genes), and neuron-neuron
synaptic transmission (23 genes), respectively (Fig. 4b).
The downregulated genes were involved in various cellular
components, such as integral to membrane (79 genes), cell
projection (46 genes), dendrite (15 genes), neuron projec-
tion (37 genes), synapse (21 genes), and postsynaptic
membrane (9 genes), respectively (Fig. 4c).



Fig. 3 Gene ontology and Reactome pathways of up-regulated genes. a The upregulated genes are involved in different molecular functions. b
The upregulated genes are involved in a different biological process. c The upregulated genes are involved in different cellular components
functions. d The upregulated genes are involved in various Reactome biological pathways
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Pathways analysis
We identified the upregulated genes involved in dif-
ferent reactome pathways, such as extracellular matrix
organization (49 genes), peptide ligand-binding recep-
tors (27 genes), class A/1 (rhodopsin-like receptors)
(47 genes), GPCR ligand binding (53 genes), signal trans-
duction (126 genes), innate immune system (59 genes),
immune system (119 genes), regulation of TLR by en-
dogenous ligand (8 genes), toll-like receptors cascades (21
genes), metabolism of angiotensinogen to angiotensin (5
genes), complement cascade (14 genes), adaptive immune
system (53 genes), chemokine receptors bind chemokines
(15 genes), collagen degradation (16 genes), degradation
of the extracellular matrix (25 genes), assembly of collagen
fibrils and other multimeric structures (13 genes), collagen
formation (13 genes), activation of matrix metalloprotein-
ases (7 genes), cell surface interactions at the vascular wall
(21 genes), hemostasis (57 genes), integrin cell surface in-
teractions (17 genes), amyloid fiber formation (12 genes),
interferon gamma signaling (16 genes), cytokine signaling
in immune system pathway (43 genes), ECM proteogly-
cans (12 genes), MHC class II antigen presentation (16
genes), immunoregulatory interactions between a
lymphoid and a non-lymphoid cell (20 genes), toll-like re-
ceptor 4 (TLR4) cascade (15 genes), G alpha (i) signaling
events (29 genes), platelet activation, signaling, and aggre-
gation (30 genes), G alpha (q) signaling events (19 genes),
and unclassified pathways (388 genes) (Fig. 3d).
The downregulated genes were also involved in various

Reactome pathways, such as phototransduction cascade
(15 genes), visual phototransduction (21 genes), inactiva-
tion, recovery and regulation of the phototransduction
cascade (14 genes), in neurotransmitter receptor bind-
ing and downstream transmission in the postsynaptic
cell (34 genes), transmission across chemical synapses (46
genes), neuronal system (65 genes), GABA receptor activa-
tion (14 genes), activation of G protein-gated potassium
channels (10 genes), inwardly rectifying K+ channels (11
genes), potassium channels (21 genes), trafficking of AMPA
receptors (8 genes), glutamate binding, activation of AMPA
receptors and synaptic plasticity (8 genes), activation of kai-
nate receptors upon glutamate binding (8 genes), and gen-
eric transcription pathway (72 genes), respectively (Fig. 4d).
In the current study, we primarily focused on chemokine

receptors binding in the chemokines pathway, comple-
ments to the cascade pathway, and cytokine signaling in



Fig. 4 Gene ontology and Reactome pathways of downregulated genes. a The downregulated genes are involved in different molecular
functions. b The downregulated genes are involved in a different biological process. c The downregulated genes are involved in different cellular
components functions. d The downregulated genes are involved in various Reactome biological pathways
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immune system pathways. CCL3, ACKR4, CCL19, CCL2,
CXCL10, PPBP, CXCL9, CCL13, CCR1, CCL21, ACKR3,
CXCL16, CCR5, CCL4, and CXCR6 are involved in
the chemokine signaling pathway (Table 2). This path-
way activates the JAK/Stat, Ras, ERK, and Akt path-
ways; NF-kappa B signaling pathway; and toll-like
receptor signaling pathways. C5AR1, CFH, C1R,
C5AR2, CFD, C1QB, C1QC, CD59, CFP, C3AR1, C3,
CR1, C1QA, and C1S are involved in the complement
cascade pathway (Additional file 1: Table S2). There
are 43 genes involved in cytokine signaling in the im-
mune system pathways (Additional file 1: Table S3).

SNPs and indels identification
Since a significant number of SNPs and indels were ini-
tially mined, to narrow down the count, a quality value
of 20 and read depth of 4 were applied as filtering cri-
teria to identify significant SNPs and indels (Fig. 5a, b).
We identified both the SNPs and indels in both the
healthy and AMD human datasets; here, 114,513 SNPs
were found in the healthy datasets, 42,016 SNPs were
found in AMD datasets, and 145 SNPs were found in
both the healthy and AMD datasets. For the indels, 4626
were found in healthy datasets, 1141 in AMD human
datasets, and 14 in both data sets.

SSRs markers identification
We performed SSRs identification in human healthy and
AMD datasets using the MISA tool. The results showed
the total number of identified SSRs (6668), number of SSR
containing sequences (3340), number of sequences con-
taining more than one SSR (1546), and number of SSRs
present in compound formation (618). Among all the
identified SSRs, A/T single-nucleotide SSRs (4653) have a
higher distribution in unigenes. Figure 5c represents the
information of mononucleotides (4732), dinucleotides
(985), trinucleotides (817), tetranucleotides (98), pentanu-
cleotides (31), and hexanucleotides (5) repeats.

Gene network analysis
The up- and downregulated genes were used to con-
struct gene-gene interactions using the STRING tool
(https://string-db.org/), which also hid the disconnected
nodes in the network. The results showed the analyzed
number of nodes (581), expected number of edges (1113),
a number of edges (1628), average node degree (5.6),

https://string-db.org/


Table 2 List of chemokine receptors bind chemokines pathway genes, UniProtKB, gene symbol, GenBank id, Gene name, logFC,
p value KEGG pathways

UniProtKB Gene symbol GenBank ID Gene name logFC p value KEGG

P10147 CCL3 NM_002983 C-C motif chemokine 3 4.25663907 7.14E-07 hsa:6349

Q9NPB9 ACKR4 NM_016557 Atypical chemokine receptor 4 7.260759683 1.45E-14 hsa:51554

Q99731 CCL19 NM_006274 C-C motif chemokine 19 12.30108718 2.93E-14 hsa:6363

P13500 CCL2 NM_002982 C-C motif chemokine 2 5.52247071 6.79E-12 hsa:56477

P02778 CXCL10 NM_001565 C-X-C motif chemokine 10 6.770426736 4.33E-09 hsa:3627

P02775 PPBP NM_002704 Platelet basic protein 6.083239276 4.56E-11 hsa:10895

Q07325 CXCL9 NM_002416 C-X-C motif chemokine 9 7.708086768 2.59E-10 hsa:4283

Q99616 CCL13 NM_005408 C-C motif chemokine 13 12.37011547 1.81E-14 hsa:6357

P32246 CCR1 NM_001295 C-C chemokine receptor type 1 6.996085978 4.47E-16 hsa:2826

O00585 CCL21 NM_002989 C-C motif chemokine 21 7.794499691 5.22E-08 hsa:6366

P25106 ACKR3 NM_020311 Atypical chemokine receptor 3 5.141169632 6.05E-11 hsa:57007

Q9H2A7 CXCL16 NM_001100812 C-X-C motif chemokine 16 5.167455173 1.45E-10 hsa:58191

P51681 CCR5 NM_001100168 C-C chemokine receptor type 5 5.636608022 7.70E-09 hsa:1234

P13236 CCL4 NM_002984 C-C motif chemokine 4 7.794499691 5.22E-08 hsa:6351

O00574 CXCR6 XM_005264809 C-X-C chemokine receptor type 6 4.131178122 3.85E-06 hsa:10663

Fig. 5 Comparisons of control vs. human AMD of the differentially expressed genes of SNPs and Indels were illustrated by Venn diagrams. a The
Venn diagram is represented SNPs of differential expressed genes in control vs. human AMD. b The Venn diagram is represented Indels of
differential expressed genes in control vs. human AMD. c The simple sequence repeats (SSRs) of differential expressed genes represented by bar
diagram in human AMD
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average local clustering coefficient (0.374), and PPI enrich-
ment p value < 1.0e-16. Overview of the nodes and total in-
teractions tree is presented in Additional file 1: Figure S1.
Individual pathways nodes were isolated for the presen-

tation of interactions. Figure 6 demonstrates that the che-
mokine signaling pathway (k04062) (Fig. 6a) has 15 nodes,
82 edges, 10.9 average node degree, 0.844 avg. local clus-
tering coefficient, and 4 expected number of edges with a
PPI enrichment p value < 1.0e-16. The complement path-
way (k04610) (Fig. 6b) has 14 nodes, 44 edges, 6.29
average node degree, 0.695 avg. local clustering coeffi-
cient, and 1 expected number of edges with a PPI
enrichment p value < 1.0e-16. The cytokine-cytokine
receptor interactions pathway (k04060) (Fig. 6c) has
43 nodes, 164 edges, 7.63 average node degree, 0.69
avg. local clustering coefficient, and 14 expected num-
ber of edges with a PPI enrichment p value < 1.0e-16.
Fig. 6 The functional enrichment and gene network analysis. a Subnetwor
and coagulation cascades pathway genes. c Subnetwork cytokine-cytokine
Discussion
The present study elucidates the complete transcriptome
sequencing (RNA-Seq) data analysis of healthy controls
and AMD donor human eye tissues. Functional classifi-
cation and pathway analysis revealed that the chemokine
signaling pathway, complement cascade pathway, and
cytokine signaling in immune system pathway genes and
several other pathways are upregulated in ocular tissues.
Chemokine receptors are small protein-coupled receptor
(GPCR) superfamily and are activated on binding their
cognate ligands of the chemokine family. Chemokine re-
ceptor binding initiates a cascade of intracellular events
which are dissociation of the receptor-associated hetero-
trimeric G proteins into α and βγ subunits. Gα activates
an enzyme known as phospholipase C (PLC) that is asso-
ciated with the cell membrane. PLC cleaves phos-
phatidylinositol (4,5)-bisphosphate (PIP2) to form two
k of chemokine signaling pathway genes. b Subnetwork complement
receptor interactions pathway genes
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second messenger molecules called inositol triphosphate
(IP3) and diacylglycerol (DAG); DAG activates another
enzyme called protein kinase C (PKC), and IP3 triggers
the release of calcium from intracellular stores. These
events promote many signaling cascades, affecting a cellu-
lar response. As per our results suggested that all the
above-mentioned cascade signaling G protein pathway
genes, phospholipase C gene, protein kinase C gene, ion
channel genes: GNA15, GNAO1, GNG3, GNG4, GNGT1,
GNGT2, GRK4, GRK7, GPSM2, RGS3, PLCB2, PIK3CG,
PTK2, PRKCZ, CACNA1A, CACNA1B, CACNA1E, and
KCNJ9 are significantly upregulated in AMD conditions
when compared with healthy controls.
Chemokines are also known to be upregulated in re-

sponse to an infection and inflammation signals; they
play critical roles in inflammatory and infectious diseases
by regulating neutrophil, macrophage, and lymphocyte
trafficking to the pathological sites [27, 28]. Leukocyte
migration during conditions of tissue injury or infection
is a multi-step process involving local upregulation of
proinflammatory chemokine secretion in response to
signaling molecules such as TNF-α and IFN-γ. Presenta-
tion of these chemokines on endothelial cell-surface gly-
cosaminoglycans (GAGs), binding of chemokines to
their cognate receptors on the leukocyte cell surface, ac-
tivation of the leukocyte receptor, and migration of the
leukocytes along the chemokine gradient within the
extracellular matrix toward the site of chemokine release
[29]. While in the eye, these processes are more complex
due to the interplay of retinal microglia, RPE cells, and
blood-retinal barrier (BRB) similar recruitment and acti-
vation of immune cells such as microglia is occurring.
Several chemokines implicated in AMD condition

where CCL3 is reported as a critical regulator of retinal
inflammation, which is associated with the severity of
retinal degeneration and CCL3 is produced by subretinal
microglia from the inner retina that can be a trigger for
additional monocyte infiltration from the circulation via
inner retinal blood vessels [30]. CCL19 is known to be in-
volved in immune-regulatory and inflammatory processes
[31]. CXCL7 is a protein belonging to the CXC-chemokine
family and isoform of beta-thrombo-globulin or proplatelet
basic protein (PPBP) [32]. Atypical chemokine receptor 4
(ACKR4) controls chemokine levels and localization via
high-affinity chemokine binding and is uncoupled from
classic ligand-driven signal transduction cascades, resulting
in chemokine sequestration, degradation, or transcytosis
[33]. CCL2 is involved in the neuroinflammatory processes
that take place in the various diseases of the central ner-
vous system (CNS), which are characterized by neuronal
degeneration [34]. Nawaz et al. reported that autocrine-
autocrine CCL2, CXCL4, CXCL9, and CXCL10 signals in
retinal endothelial cells are enhanced in diabetic retinop-
athy [35]. CCL13 is induced by the inflammatory cytokine
interleukin-1 and TNF-α [36]. CXC-chemokine ligand 10
(CXCL10), which is a potent anti-angiogenic chemokine, is
highly expressed in the retina of patients with AMD and
laser-injured mice. Choroidal endothelial cells express
CXC-chemokine receptor 3 (CXCR3), the CXCL10 re-
ceptor, and genetic ablation of CXCR3 exacerbates
laser-induced choroidal neovascularization in mice
[37]. Previous publications have indicated that some
intraocular cytokine associated with inflammation de-
crease after anti-VEGF therapy in patients with AMD
[38], and our results are consistent with these studies.
AMD is also associated with complementary activation

or deregulation of the spontaneously initiated alternative
complement pathway, leading to the local release of
inflammatory activation products and local inflammation
[39]. Multiple complement components, regulators, com-
plement activation products, and inflammatory proteins
have been identified to be upregulated in AMD condi-
tions, including C3, C3d; the terminal components C5,
C6, C7, C8, and C9; terminal complement regulators vitro-
nectin and clusterin, apolipoproteins apoA1, apoA4, and
apoE; as well as thrombospondin, serum amyloid A
(SAP-A), and SAP-P [23, 40]. CFB is paralogous with com-
plement component 2 (C2). These genes are in tandem in
the major histocompatibility complex class III region, a
cluster of immune-related genes on chromosome 6p and
that carry AMD risk [41]. CFI is a co-factor along with
CFH for the inactivation of C3b. Noncoding polymor-
phisms adjacent to the gene and in an intron of CFI are
associated with an altered risk of AMD [42]. The com-
plement cascade is a soluble part of the innate immune
system. Three different complement pathways activate
enzyme cascades that ultimately lead to cell death. Each
of the three complement pathways (alternative, lectin,
and classical) is a unique method of activating the C3
molecule, initiating pro-inflammatory reactions, and ac-
tivating the terminal complement pathway. Key to the
amplification of the pathway is the fact that C3 is pro-
teolytically activated to C3b due to C3 cleavage and
forms a new C3 convertase molecule that will cleave
more C3. This result in the production of C3bBb3b in
all pathways in addition to C4b2b3b in the classical and
lectin pathways, molecules that act as C5 convertases
[43]. The convertase cleaves C5 into C5a (an anaphyla-
toxin) and C5b, which forms part of the membrane at-
tack complex. C5b binds to C6, C7, C8, and C9 in
sequence and C8 binds the incomplete membrane attack
complex to cell surfaces and up to 16 C9 molecules are
then assembled on the membrane to generate a circular
polymer. The membrane attack complex can also bind to
self-membranes, stimulating the release of growth factors
from vascular endothelium. C3a, C4a, and C5a anaphyla-
toxins are released during these reactions. They are che-
moattractants for phagocytic cells [44].
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Furthermore, genetic variations (DNA polymorphisms)
are known to be associated with phenotypic variation
and may alter gene expression patterns [45]. A genetic
locus at chromosome 10q26 provides strong susceptibil-
ity to AMD; specifically, two AMD-associated polymor-
phisms near ARMS2 and HTRA1 genes have been
suggested to alter the gene expression of either one or
the other gene [10]. One study recently reported that
haplotypes with del443ins54 and rs11200638 variants in-
fluence HTRA1 and ARMS2 expression in genotyped
human placentas [46]. However, another report pre-
sented that the del443ins54 variant does not change
ARMS2 mRNA stability in lymphocytes [11], which is
consistent with our data from retina samples. The poly-
morphic indel at the ARMS2 3′ UTR was associated
with AMD in Caucasian and Japanese data sets [47].
This indel is strongly associated with AMD.
There are a number of limitations of current work as-

sociated with the available dataset and focus of the
current study on chemokine and complement pathways.
First, the current analysis includes both retinal and RPE/
choroid material datasets that may lead to underrepre-
sentation of retina-specific and RPE/choroid-specific
DEG’s output.
Second, only peripheral retinal material was available

for the analysis as a limitation of original SRP107937
datasets generation; thus macular transcriptome events
were potentially missing from the analysis. Third, human
donor data early and late-stage AMD, as well as RPE de-
generation samples were included in the analysis with
the equal weight, thus potentially increasing heterogeni-
city. Fourth, retina and RPE/choroid datasets from the
same donor were included as individual samples with
equal weight. Further analytical efforts that can address
some of the above-listed limitations and answer the
question regarding tissue-specific events in retina and
RPE/choroid are required.

Conclusions
The transcriptome-wide data analysis provides new in-
sights into the differences in gene regulation between
healthy and AMD conditions in the human eye. Ana-
lyses of gene ontology, functional pathway analysis, and
transcriptional regulation networks of differentially
expressed genes showed that chemokine activity, cyto-
kine activity, and immune system activity are dominant
during the AMD development, which is driven by the
higher expression of the chemokine signaling pathway,
complement cascade pathway, and cytokine signaling
pathway genes. Among the DEGs, the CCL3, ACKR4,
CCL19, CCL2, CXCL10, PPBP, CXCL9, CCL13, CCR1,
CCL21, ACKR3, CXCL16, CCR5, CCL4, and CXCR6
(chemokine signaling pathway genes); C5AR1, CFH,
C1R, C5AR2, CFD, C1QB, C1QC, CD59, CFP, C3AR1,
C3, CR1, C1QA, and C1S (complement cascade pathway
genes); and cytokine signaling pathway genes were iden-
tified as potential novel regulators of AMD.

Additional file

Additional file 1: Figure S1. Gene network analysis. Chemokine
signaling pathway (red color spheres), complement and coagulation
cascades pathway (green color spheres) and cytokine-cytokine receptor
interactions pathway (blue color spheres). Figure S2. A. Extract transcript
clusters by expression profile by cutting the dendrogram. B. Principle
component analysis, X and Y axis show principle component 1 and
principle component 2 that explain 98% and 2% of the variance. Table S1.
Human normal and AMD of paired-end raw data before and after removal
of adapters and retained reads percentages. Table S2. List of complement
cascade pathway genes, UniProtKB, gene symbol, GenBank id, Gene name,
logFC, p-value KEGG pathways. Table S3. List of Cytokine signaling in
immune system pathway genes, UniProtKB, gene symbol, GenBank id, Gene
name, logFC, p-value KEGG pathways. (DOCX 920 kb)
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