
Wang et al. Human Genomics
https://doi.org/10.1186/s40246-019-0225-3

RESEARCH Open Access

Human mitochondrial genome
compression using machine learning
techniques
Rongjie Wang1, Tianyi Zang2* and Yadong Wang2*

From IEEE International Conference on Bioinformatics and Biomedicine 2018
Madrid, Spain. 3–6 December 2018

Abstract

Background: In recent years, with the development of high-throughput genome sequencing technologies, a large
amount of genome data has been generated, which has caused widespread concern about data storage and
transmission costs. However, how to effectively compression genome sequences data remains an unsolved problem.

Results: In this paper, we propose a compression method using machine learning techniques (DeepDNA), for
compressing human mitochondrial genome data. The experimental results show the effectiveness of our proposed
method compared with other on the human mitochondrial genome data.

Conclusions: The compression method we proposed can be classified as non-reference based method, but the
compression effect is comparable to that of reference based methods. Moreover, our method not only have a well
compression results in the population genome with large redundancy, but also in the single genome with small
redundancy. The codes of DeepDNA are available at https://github.com/rongjiewang/DeepDNA.

Keywords: Compression, Human mitochondrial genomes, Machine learning

Background
The Human Genome Project (HGP) cost about $3 billion
and took about 13 years, the completion of the Human
Genome Project signs of the beginning of human genome
research in the life sciences has entered a new era of
genome [1]. Since then, The amount of data in the genome
is growing exponentially, even faster thanMoore’s Law [2].
Today’s high-throughput sequencing technology enables
sequencing of individual genomes in a matter of hours,
with sequencing costs less than $1,000. These advances
have allowed researchers to increase the scope for scien-
tific discovery through large amounts of data. However,
the huge amount of genomic data presents new challenges
for efficient storage and transmission.

*Correspondence: tianyi.zang@hit.edu.cn; ydwang@hit.edu.cn
2School of Computer Science and Technology, Harbin Institute of Technology,
Harbin, China
Full list of author information is available at the end of the article

Genome sequences are generally stored in FASTA for-
mat [3]. In this format, genome sequence characters are
stored in ASCII-based, and represented by four diiferent
symbols (called nucleotides or bases), namely (A) adenine,
(C) cytosine, (T) thymine, (G) guanine. The problem we
face is how to effectively compress strings of a certain
length composed of these four elements.
The existing genome compression methods were major

based on the dictionary methods [4–7], and based on
statistical methods [8, 9]. DeepZip [10], as a machine
learning compression method, compression the general
context data at a online learning model. The parame-
ters of compression is updated once after compressing
each character, trying to learn the pattern of input data.
The consequence of this approach is that a lot of time
is spent updating model parameters during compression
and decompression. Another minor defect is that when a
pattern first appears in the input data, the compression
and decompression model cannot be recognized it imme-
diately. It needed to learn the pattern, and then, can be

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

2019, 13(Supp Wang et al. Human Genomics 2019, 13(Suppl 1):49

Wang et al. Human Genomics Page 2 of 8

effectively compressed when these pattern were encoun-
tered again, which affects the compression result. As we
know that genomes within the same species have a highly
similarity, for example, genome similarity between two
human individuals up to 99.9%. Even not in the same
species, the genome similarity between humans and chim-
panzees can be as high as 89% [11]. The banana genome,
which seems to have nothing to do with the human
genome, has a similarity of 50% [12]. In this work, we pro-
poses a static machine learning compression method, use
part of experiment data as a training set, optimal the com-
pressionmodel parameters. Then use the other part as test
data to test the effect of compression model.
In computer vision tasks, the deep learning model

has achieved some good performance, such as using
Convolutional Neural Network (CNN) and Long Short-
Term Memory Networks (LSTM) models to solve text
classification [13], image caption generation [14] and
speech recognition [15], and so on. However, in genome
sequence data compression, for the first time, we tried to
use a deep learning model to learn the sequence of pat-
terns in the genome, and to predict the probabilities of the
next base to be encoded, followed by arithmetic coding
and output compressed data stream.
We verified the validity of our proposedmethod in 1,000

human mitochondrial sequences, and randomly divided
the data set into three parts in proportion (training set,
verification set and test set). Then we trained our model
with the training set, the verification set was used to
select the optimal parameters, and the test set verified the
effectiveness of the deep learning model.
The remainder of this paper is organized as follows:

Section II describes the DeepDNA method in detail,
section III reports the experimental performance of
DeepDNA, conclusion is drawn in Section IV.

Methods
Overview
For a length of T sequence steam x1:T = x1, x2, . . . , xT ,
where each variable xi ∈ �, i ∈[1,T], for genome
sequence, � = {A,C,G,T}. The probability of the entire
sequence x1:T is:

p (x1:T) = p (x1) p (x2|x1) p (x3|x1:2) · · · p (
xT |x1:(T−1)

)

=
T∏

t=1
p

(
xt|x1:(t−1)

)

(1)

Therefore, the probability density estimation problem of
sequence data can be converted into a univariate condi-
tional probability estimation, that means, the probability
of a sequence can be viewed as the product of its prob-
ability of sub-sequence. The more likely a sequence is to

occur, the lower its entropy value and the better compres-
sion result. In other words, the more accurate the predic-
tion of conditional probability events of sub-sequence, the
better the compression effect achieved. The conditional
probability can be expressed as p(xt|x1:(t−1)) of xt given
x1:(t−1), which fed into the arithmetic encoding tool, to get
the final compressed file.
GivenN sequences data, the sequence probabilitymodel

needs to learn amodel pθ

(
xt|x1:(t−1)

)
, to maximize the log

likelihood function of the entire data set.

max
θ

N∑

n=1
log pθ

(
x(n)
1:Tn

)
= max

θ

N∑

n=1

Tn∑

t=1
log pθ

(
x(n)
t |x(n)

1:(t−1)

)

(2)

We can use the neural network model to estimate the
conditional probability pθ

(
xt|x1:(t−1)

)
. Suppose a neural

network f (θ), whose input is the historical information
x1:(t−1) = x1, x2, . . . , xt−1, the output is the occurrence
of next base xt , the output four nucleotides probabilities
satisfy:

∑

xt∈{A,C,G,T}
pθ

(
xt|x1:(t−1)

) = 1 (3)

Where θ represents the neural network parameter, the
conditional probability pθ

(
xt|x1:(t−1)

)
can be obtained

from the output of the neural network.
The architecture of our neural network model

DeepDNA is shown in Fig. 1, the framework mainly has
six layers: the first layer is the single one-hot represen-
tation, which convert the genome sequence nucleotides
{A,C,G,T} to vectors. The second convolution layer
extracts the context short-term correlation in the genome.
The third layer is the pooling layer to remove the noise.
The fourth layer, LSTM, extracted the long-term correla-
tion in the genome. The fully connected layer and the last
layer are used for outputting next nucleotides {A,C,G,T}
probabilities.
The following subsections describe how we apply CNN

to extract genome sequences local features, LSTM to
capture long-term dependencies over window features
sequence and fed output layer to the arithmetic coder for
getting the bit-stream respectively.

Convolutional Neural Network (CNN)
One-dimensional convolution operation corresponds a
series of filters sliding over the genome sequence identify
the sequence characteristics at different positions in the
genome, it takes the one-hot encoding of the genome as
input, where one can be defined as:

Wang et al. Human Genomics 2019, 13(Suppl 1):49

Wang et al. Human Genomics Page 3 of 8

Fig. 1 The architecture of the DeepDNA model. Firstly, the input genome sequence is transformed into one-hot 4-dimensions bit matrix;
A convolution layer activated by a rectified linear units acts as a local feature extractor, its output is a matrix with column matrix of the convolution
filter and the row matrix of the position in the input sequence; A max-pooling procedure is used to reduce the size of the output matrix and only
preserve the main features; The subsequent Long Short-Term Memory network (LSTM) layer is considered as acting the role of capturing sequence
long-term features; A flattened fully connected layer is to collect LSTM outputs; The last layer performs a sigmoid non-linear transformation to a
vector that serves as probability predictions of the sequence base

A →[1, 0, 0, 0]
C →[0, 1, 0, 0]
G →[0, 0, 1, 0]
T →[0, 0, 0, 1]

(4)

Let x ∈ R
T×4 represents the genome sequence with

input length of T, and xi ∈ R
4 is the base vector rep-

resentation of the ith position in the sequence. There
are m filters in total, and the output of filters are o ∈
R

(N−k+1)×m, the convolution operation of each element
oi,j is defined as follows:

oi,j = δ(wj�[xi, xi+1, . . . , xi+k−1]+bj) (5)

where wj ∈ R
k×4 is the jth filter vector, and bj ∈ R is

a shared value for the bias for filter wj, symbol � is a
convolution operation, define as follow:

wj�[xi, xi+1, . . . , xi+k−1]=
k−1∑

n=0
wnjxi+n (6)

Symbol δ is the neural nonlinear activation function, we
select the ReLU [16] operation as the activation function,
which outputs negative value to 0 and as defined below:

ReLU(x) =
{
x if x > 0
0 if x ≤ 0 (7)

We use the max-pooling as the convolution layer
after the output processing for the output vector feature
extraction. Max- pooling operation selects the maximum
value in an unit area as the representative feature of the
sequence, which is used to extract the sequence higher
scale features in the next layer.
To reduce over-fitting, a dropout layer is connected

after the maximum pooling layer. The term “dropout”
refers to the temporary deletion a apart of units in the
neural network, deleting all the links associated with it.
The probability of choosing which unit to be dropped is
independent of the others, and with a fixed probability p.

Long short-termmemory networks (LSTM)
Recurrent neural network (RNNs) propagates historical
message through a concatenation network structure, but
has the problem of long gradient disappearance. Long
Short-Term Memory Networks (LSTM) [17], as a spe-
cial recurrent neural network, was proposed in 1997 to
solve the problem that recurrent neural network (RNNs)
cannot learn long-term dependent correlation. They are

Wang et al. Human Genomics 2019, 13(Suppl 1):49

Wang et al. Human Genomics Page 4 of 8

now widely used in various time series problems and have
achieved a series of excellent results.
LSTM hierarchical transformation function is defined

as follows:

ft = δ(Wf ·[xt , ht−1]+bf)
it = δ(Wi·[xt , ht−1]+bi)
ot = δ(Wo·[xt , ht−1]+bo) (8)
ct = ft � ct−1 + it � tanh(Wc·[xt , ht−1]+bc)
ht = ot � tanh(ct)

Where ft ∈ R
h is a forgetting gate to control which mes-

sages in the old memory unit will be discarded; it ∈ R
h is

an inputting gate to control how much new messages will
be recorded in the current memory unit; ot ∈ R

h is an
output gate to control output in the history unit. Through
the joint control of the above three gates, the problem
of long-term gradient disappearance is solved, and the
dependence of long-term context can be excavated.
The terms Wf , Wi, Wo, and Wc denote weight matri-

ces for forgetting gate, inputting gate, outputting gate, and
unit state connections. The terms bf , bi, bo, and bc denote
the bias vectors of the forgetting gate, inputting gate, out-
putting gate, and unit state connections. xt , ht−1 is the
input sequence data for the current time and state output
for previous time separately.
The symbol δ is function of logistic sigmoid, which

limits output range to [0, 1], defined as:

Sigmoid(x) = 1
1 + e−x (9)

The function of tanh limits output range to [−1, 1],
which is expressed as hyperbolic tangent function and
defined by:

tanh(x) = ex − e−x

ex + e−x (10)

The symbol � represents the dot product operation of
the element, as described in the formula 6.

Arithmetic encoder
The arithmetic encoder [18] was proposed in 1976 by
Rissanen and Pasco to solve the problem of infinite dec-
imal precision, is a coding approach closest to informa-
tion entropy when data distribution was fixed. Instead
of encoding each character to an integer, the arithmetic
encoder encrypts the sequence as a sufficiently precise
numeric value in the interval (0, 1), called sequence iden-
tifier or label. As the encoding progresses, the label inter-
val becomes smaller and smaller, and the next interval
range is fixed by the probability of encoding character.
The decoding operation is similar to encode, given the
character probabilities, the arithmetic decoder predict the
probability to the corresponding character interval. As
long as the decimal representation of the interval iden-
tifier or label is accurate enough, the decoder is able to
recover the whole encoding sequence in lossless.
Figure 2 demonstrates the identifier determination pro-

cedure of arithmetic encoder, for example, coding a
sequence ‘CGTA’, we assume that the probability values of
each base are: p(A) = p(T) = 0.2, p(C) = 0.5, p(G) = 0.1.
At beginning, the initial interval is (0, 1), then the first
base ‘C’ limited the interval to (0.2, 0.7), base ‘G’ limited
the interval to (0.55, 0.6), and so on · · · . The latter interval
is a subset of the former interval, so the range will be more
and more smaller, lastly, the identifier is limited the inter-
val to [0.59, 0.592]. We can choose any point within this
interval, like a middle value 0.591, its binary value stream

Fig. 2 Arithmetic encoding process. It illustrates the sequence label determination process when encoding a sequence ’CGTA’, assume that the
probability values of each base: p(A) = p(T) = 0.2, p(C) = 0.5, p(G) = 0.1

Wang et al. Human Genomics 2019, 13(Suppl 1):49

Wang et al. Human Genomics Page 5 of 8

is the arithmetic coded description of the raw sequence
‘CGTA’.
The decoding process is similar to encoding. First, base

‘C’ is decoded according to 0.591 within the interval
(0.2,0.7), while the next decoding process 0.591 within the
interval (0.55,0.7), the base ‘G’ is decoded, and so on · · · ,
until decoded the last base ‘A’, and the whole sequence
‘CGTA’ is decoded.
Consider an input sequence xi−1, xi−2, . . . , xi−k+1 for

the compression model, the output for the model is
the predict the next base xi. The estimate probabilities
p(xi|(xi−1, xi−2, . . . , xi−k+1), hi−1) is provided into arith-
metic encoder to obtain the final output bit-streams,
where hi−1 is the deep learning model former state.
According to the theory of Shannon entropy [19], the
number of output bits for the base xi is determined by:

H = −log2(p(xi|(xi−1, xi−2, . . . , xi−k+1), hi−1) (11)

That is, the more accurate the probability of our model
estimation, the higher the probability of corresponding
coding base, the smaller the output bit-tream, and the
better the compression effect we get.

Model setting & training
In the deep learning model, we make comprehensive use
of the local feature capture ability of CNN and the long-
term feature extraction ability of LSTM. Our deep learn-
ing model implementation uses the Keras [20] library,
which is an open resource for deep learning derived on the
backend of Theano [21].
Comprehensive setting for the model structure are

described as follows:

• Input layer (Input nucleotides: 64 ×4)
• Convolutional Neural Network (CNN) layer (Filters

no.: 1024, window size: 24 ×4, stride: 1.)
• Max-Pooling layer (Window size: 3 ×4, stride: 1.)
• Dropout layer (Probability: 0.1)
• Long Short-Term Memory networks (LSTM) layer

(LSTM units: 256)
• Dropout layer (Probability: 20%)
• Fully connected layer (Units: 1024)
• Sigmoid output layer (Units: 4)

In the deep learning model, all parameters are ini-
tialized according to random and uniform distribution
unif (−0.05, 0.05), and entire biases are initialized to 0.We
use mini-batch training (default size: 64) to minimize the
cross entropy loss function on the training data set. Val-
idation losses were assessed at the end of each training
epoch to monitor the convergence. We utilized about 10
epochs to complete the training, each of which took about
∼6 h.
The loss function of cross-entropy is defined as:

L(y, ŷ) = −1
n

n∑

t=1

4∑

i=1
yi(t)log(ŷi(t)) (12)

Where ŷi(t) is the probability of prediction character at
time t being nucleotide i, yi(t) is the one-hot vector repre-
sent the real nucleotide at time t, andmini-batches sample
size is n. We exploited the adaptive learning rate RMSprop
[22] designed by Geoff Hinton as the learning rate of the
model.
Both in the encoding and decoding process, it calculated

the nucleotide probability based on the same deep learn-
ing network parameters, so they get the same prediction
probability value, therefore, the original sequence can be
lossless reconstructed by arithmetic coding.

Results
Dataset
In order to validate the effectiveness of our proposed
model, 1,000 complete human mitochondrial genome
sequences were used as experimental data, and the aver-
age sequence length of human mitochondrial genome
sequence is 16,500bp. All data were download from the
MITOMAP [23] database in the March 2019. We ran-
domly selected 700 sequences being the training data set,
200 sequences being the verification data set, and 100
sequences being the test data set. In order to make the
sequence consists of only 4 nucleotides (A, C, G, T),
for simplicity, the fuzzy symbols was replaced with a
fixed base “A” in the training process, and all lowercase
nucleotides in the data set were converted to uppercase.
In the compression process, we record the nucleotides
not in the {A,C,G,T} and its position information, record
whether the base is in lowercase or not, so that the
original sequence can be reconstructed in lossless when
decompressing.

Results andmodel analysis
We experimented DeepDNAmethod for training set, ver-
ification set and test set respectively. The training set was
utilized for learningmodel parameters, the verification set
was utilized to determine network structure and model
parameters, and the test set was utilized to verify the
performance of the final selection of model parameters.
As we can be seen from Fig. 3, with the increase of the

number of training mini-batches, the loss function grad-
ually decreases and ultimately tends to converge. There
was a trivial fluctuation point at the final of training,
owing to a few genomics structural variation sites, which
will affected the prediction performance. However, these
structural changes accounted for less than 1% of the total
sequence, that is, a few differences in the data sites of
human mitochondrial genome did not have much impact
on the final compression results.

Wang et al. Human Genomics 2019, 13(Suppl 1):49

Wang et al. Human Genomics Page 6 of 8

Fig. 3 The training loss function values (bpb) as the number of training mini-batches for DeepDNA model. 700 human mitochondrial genome
sequences were trained, and the input length of the base sequence was 64, and the output was the classification of the corresponding four
nucleotides

In order to verify the validity of our proposed DeepDNA
model, we tested our method and the other four meth-
ods on the test set (100 human mitochondrial genome
sequence data). Table 1 lists the compression results of the
DeepDNA method, the Gzip [24] method, MFCompress
[9] method, DMcompress [25] method, which we pro-
posed earlier, the unit of compression results is in bits per
base (bpb). The compression result of DeepDNA corre-
sponds to the average of the lengths of all base prediction
probability output codes in the genome sequence, namely:

DeepDNA(bpb) = − 1
T

T∑

i=1
log2(P(ŷi)) (13)

Where T is the sequence length of compression genome,
and P(ŷi) is the predicted probability value of the
DeepDNA model output corresponding to the base yi of
the genome sequence at i-th position, which can be fed
into arithmetic coding [26] directly and got the compres-
sion bit-streams file.
Table 1 shown that on the human mitochondrial

genome test data set, the compression result of the nor-
mal text compression method Gzip is 1.45 bpb, and the
DMcompress method proposed in our previous work
and MFCompress method both are 0.07 bpb. The deep

learning-based compression method DeepDNA proposed
by us, has a compression result of 0.03 bpb. Our method
DeepDNA has a better result to the other three methods
in the human mitochondrial genome dataset.
Table 1 lists the results of compression of all 100 human

mitochondrial genomes as a group data-set. To verify their
efficiency of compressing on individual genome sequence,
we randomly selected 5 human mitochondrial genomes.
The data is independently compressed and compared
the results. The Table 2 lists the compression results of
the 5 human mitochondrial genome sequences. It can
be seen from the table that our proposed DeepDNA
method achieves the best compression results on all five
independent genomes. Comparing with the current nor-
mal text compression method Gzip, the finite context
model based compression method MFCompress, and our
earlier information entropy-based compression method
DMcompress, the result of compression of DeepDNA is
less than 0.05 bpb.

Discussion
The Tables 1 and 2 show that our proposed method
can not only achieve compression effect on the multi-
genomes, but also achieve good compression effect on
individual genome data. The other three compression

Table 1 Results for DeepDNA and the other methods compression for 100 human mitochondrial genomes

Dataset Total size Gzip MFCompress DMcompress DeepDNA

(nucleotides) (bpb) (bpb) (bpb) (bpb)

100 human

Mitochondrial genomes 1,656,779 1.45 0.07 0.07 0.03

The measure of space occupied is evaluated in bits per base (bpb)

Wang et al. Human Genomics 2019, 13(Suppl 1):49

Wang et al. Human Genomics Page 7 of 8

Table 2 Detailed results for DeepDNA and the other methods on
randomly selected five sequences from 100 human
mitochondrial genome sequences

Genome ID Gzip
(bpb)

MFCompress
(bpb)

DMcompress
(bpb)

DeepDNA
(bpb)

KF162105.1 2.63 2.09 2.07 0.01

MF058266.1 2.64 2.09 2.07 0.05

KC911416.1 2.64 2.09 2.06 0.01

AY339411.1 2.63 2.09 2.07 0.01

JQ702777.1 2.64 2.08 2.06 0.04

The measure of space occupied is evaluated in bits per base (bpb)

methods have better compression on the multi-genomes
than on the individual genome, because the data redun-
dancy on the multi-genomes is higher than the individual
genome. The neural network model we proposed for loss-
less genome compression is not affected by this limitation.
The neural network parameters, as part of the com-

pression model, obtained through training and learning
directly participate in the compression decompression
process. Thus it avoided the process of continuing to
update parameters during compression/decompression,
saving a lot of time. Because of the consistency between
genomes, we can train the compression model in advance,
and then used directly for compression.

Conclusions
Wedesigned anovel,machine learningmethod, DeepDNA,
which integrates the convolutional neural network (CNN)
and the long short-term memory network (LSTM) for
compressing the genome sequences. Experiment on 1,000
complete human mitochondrial genome sequences have
shown that our method can learn local features of
sequences through convolution layer, and can learn
advanced representations of long-term dependence of
sequences through long short-term memory network
(LSTM). We evaluated the performance of deep learning
model on 100 human mitochondrial genome sequences
compression task and obtained an acceptable result.
Our model indicated the feasibility of compressing

genome sequences via CNN and LSTM network models.
This work will help to better explore the patterns and rules
in genome sequences, assist in decoding the functional
characteristics of sequences, and to help resolve the link
between genes and disease. Because better sequence pre-
diction model will be achieved better compression effect,
and a better sequence prediction model can help solve all
above problems.
In addition, with the exploration of genome sequence

characteristics in future biological analysis, the compres-
sion method can obtain more redundant information,
and get a better improved compression performance.

In the next work, we can explore methods of lossless
compression of the entire human genome, making full
use of as much background information as possible, for
instance, mutations, tandem repeats, motifs, etc., to train
the machine learning model for compression genome
sequences.

Acknowledgements
Not applicable.

About this supplement
This article has been published as part of Human Genomics Volume 13
Supplement 1, 2019: Selected articles from the IEEE BIBM International Conference
on Bioinformatics & Biomedicine (BIBM) 2018: human genomics. The full contents
of the supplement are available online at https://humgenomics.
biomedcentral.com/articles/supplements/volume-13-supplement-1.

Authors’ contributions
RW designed the experiment and was a major contributor in writing the
manuscript. TZ performed the reliability of the experiment. All authors read
and approved the final manuscript.

Funding
Publication costs were funded by the National Key Research and
Development Program of China [Grant No.: 2016YFC0901605,
2016YFC1201702-01], the National High-tech R&D Program of China [Grant
No.: 2015AA020108, 2012AA02A604].

Availability of data andmaterials
The dataset generated and analysed during the current study are available in
the Mitomap repository, https://www.mitomap.org/MITOMAP

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Peng Cheng Laboratory, ShenZhen, China. 2School of Computer Science and
Technology, Harbin Institute of Technology, Harbin, China.

References
1. Collins FS, Morgan M, Patrinos A. The human genome project: Lessons

from large-scale biology. Science. 2003;300(5617):286–90.
2. Schaller RR.Moore’s law:past,present and future. IEEE Spectr. 1997;34(6):52–9.
3. Pearson WR, Lipman DJ. Improved tools for biological sequence

comparison. Proc Natl Acad Sci. 1988;85(8):2444–8.
4. Grumbach S, Tahi F. Compression of dna sequences. In: Data

Compression Conference; 1993. p. 340–50.
5. Grumbach S, Tahi F. Inf Process Manag. 1994;30(6):875–86.
6. Chen X, Kwong S, Li M. A compression algorithm for dna sequences and

its applications in genome comparison. Genome Inform Work Genome
Inform. 2000;10(4):51.

7. Li P, Wang S, Kim J, Xiong H, Ohnomachado L, Jiang X. Plos ONE.
2013;8(11):80377.

8. Kaipa KK, Bopardikar AS, Abhilash S, Venkataraman P. Algorithm for dna
sequence compression based on prediction of mismatch bases and
repeat location. In: IEEE International Conference on Bioinformatics and
Biomedicine Workshops; 2010. p. 851–2.

9. Pinho AJ, Pratas D. Mfcompress: a compression tool for fasta and
multi-fasta data. Bioinformatics. 2013;30(1):117–8.

10. Goyal M, Tatwawadi K, Chandak S, Ochoa I. Deepzip: Lossless data
compression using recurrent neural networks. arXiv preprint. 2018.
arXiv:1811.08162.

Published: 22 October 2019

Wang et al. Human Genomics 2019, 13(Suppl 1):49

Wang et al. Human Genomics Page 8 of 8

11. Tomkins J. Genome-wide dna alignment similarity (identity) for 40,000
chimpanzee dna sequences queried against the human genome is
86-89%. Answers Res J. 2011;4(2011):233–41.

12. D’hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O,
Noel B, Bocs S, Droc G, Rouard M, et al. The banana (musa acuminata)
genome and the evolution of monocotyledonous plants. Nature.
2012;488(7410):213.

13. Zhou C, Sun C, Liu Z, Lau F. A c-lstm neural network for text
classification. arXiv preprint. 2015. arXiv:1511.08630.

14. Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio
Y. Show, attend and tell: Neural image caption generation with visual
attention. In: InternationalConferenceonMachineLearning; 2015. p. 2048–57.

15. Sainath TN, Vinyals O, Senior A, Sak H. Convolutional, long short-term
memory, fully connected deep neural networks. In: 2015 IEEE
International Conference On Acoustics, Speech and Signal Processing
(ICASSP). IEEE; 2015. p. 4580–4.

16. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th international conference on
machine learning (ICML-10). IEEE; 2010. p. 807–14.

17. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.
1997;9(8):1735–80.

18. Salomon D, Motta G. Handbook of Data Compression: Springer; 2010.
19. Shannon CE. A mathematical theory of communication. Bell Syst Tech J.

1948;27(3):379–423.
20. Chollet F, et al. Keras, GitHub. GitHub repository. 2015. https://github.

com/fchollet/keras.
21. Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G,

Turian J, Warde-Farley D, Bengio Y. Theano: A CPU and GPU math
compiler in Python. In: Proc. 9th Python in Science Conf. vol. 1. IEEE; 2010.
p. 3–10.

22. Tieleman T, Hinton G. Lecture 6.5-rmsprop, coursera: Neural networks for
machine learning: University of Toronto, Technical Report; 2012.

23. Mitomap. A human mitochondrial genome database. 2018. http://www.
mitomap.org.

24. Deutsch P, Gailly J-L. Zlib compressed data format specification version
3.3. Tech Rep. 1996.

25. Wang R, Teng M, Bai Y, Zang T, Wang Y. Dmcompress: Dynamic markov
models for bacterial genome compression. In: 2016 IEEE International
ConferenceonBioinformatics and Biomedicine (BIBM). IEEE; 2016. p. 776–9.

26. Witten IH, Neal RM, Cleary JG. Arithmetic coding for data compression.
Commun ACM. 1987;30(6):520–40.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Wang et al. Human Genomics 2019, 13(Suppl 1):49

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Overview
	Convolutional Neural Network (CNN)
	Long short-term memory networks (LSTM)
	Arithmetic encoder
	Model setting & training

	Results
	Dataset
	Results and model analysis

	Discussion
	Conclusions
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

