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Abstract

Background: Genome-wide association studies (GWAS) have significantly contributed to the association of many
clinical conditions and phenotypic characteristics with genomic variants. The majority of these genomic findings
have been deposited to the GWAS catalog. So far, findings uncovering associations of single nucleotide
polymorphisms (SNPs) with treatment efficacy in mood disorders are encouraging, but not adequate.

Methods: Statistical, genomic, and literature information was retrieved from EBI’s GWAS catalog, while we also
searched for potential clinical information/clinical guidelines in well-established pharmacogenomics databases
regarding the assessed drug-SNP correlations of the present study.

Results: Here, we provide an overview of significant genome-wide associations of SNPs with the response to
commonly prescribed antipsychotics and antidepressants. Up to date, this is the first study providing novel insight
in previously reported pharmacogenomics associations for antipsychotic/antidepressant treatment. We also show
that although there are published CPIC guidelines for antidepressant agents, as well as the FDA labels include
genome-based drug prescription information for both antipsychotic and antidepressant treatments, there are no
specific clinical guidelines for the assessed drug-SNP correlations of this study.

Conclusions: Our present findings suggest that more effort should be implemented towards identifying GWA-
significant antipsychotic and antidepressant pharmacogenomics correlations. Moreover, additional functional studies
are required in order to characterise the potential role of the assessed SNPs as biomarkers for the response of
patients to antipsychotic/antidepressant treatment.

Keywords: Antipsychotics, Antidepressants, Pharmacogenomics, Statistical assessment, GWAS catalog, GWAS
findings, Clinically approved guidelines

Background
Pharmacogenomics refers to the use of genomic bio-
markers to predict an individual’s response to drug effi-
cacy and toxicity. Pharmacogenomics has also seen a
raise in terms of research findings, which span over the
last decade. Although additional clinical factors such as
disease severity, diet, and concurrent medications clearly

contribute to the variability in response to drug therapy,
inherited differences in the metabolism and action of
drugs at their target sites or in the pharmacokinetics and
pharmacodynamics of a drug harbor a predominant ef-
fect in the therapy outcome [1, 2]. The complexity of
drug response can be multifactorial and variable over
time, since subjective clinical scales are usually imple-
mented, thus making it challenging to identify genetic
variants that robustly predict drug response.
Over the last decade, genome-wide association studies

(GWAS) have widely focused on tailoring the genetic
background of psychiatric diseases [3, 4]. However, most

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: mkoromina@upnet.gr
1Laboratory of Pharmacogenomics and Individualized Therapy, Department
of Pharmacy, School of Health Sciences, University of Patras, University
Campus, Rion, GR-265 04 Patras, Greece
Full list of author information is available at the end of the article

Koromina et al. Human Genomics            (2020) 14:4 
https://doi.org/10.1186/s40246-019-0254-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-019-0254-y&domain=pdf
http://orcid.org/0000-0002-0519-7776
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:mkoromina@upnet.gr


of these findings usually fail to be replicated in subsequent
genetic studies. Candidate gene studies have also been
performed as an alternative approach, although the sam-
ple sizes have been quite small in some instances [5]. Re-
gardless of each study’s design limitations, genetic studies
have provided useful insight in delineating associations of
genetic variation with psychiatric disease [6–8] and new
ideas about disease etiology. Interesting psychiatric genetic
findings include specific SNPs, which were characterised
as genome-wide significant for both bipolar disorder and
schizophrenia. These SNPs were identified within the fol-
lowing genes: CACNA1CS, ANK3, and ITIH3-ITIH4. In
contrast, SNPs within MHC, ODZ4, TCF4, and other gen-
etic loci were genome-wide significant for either disorder
separately but not for both [9].
GWAS for delineating drug treatment response and tox-

icity for psychiatric disorders have also been performed in
order to tailor antipsychotic or antidepressant treatment.
It is worth noting that most of the identified associations
have not been individually replicated, thus leaving the
pharmacogenomics background of commonly prescribed
antipsychotic or antidepressant drugs quite vague. To this
end, Allen and Bishop performed a systematic review of
the existing literature for GWAS findings for antipsychotic
treatment response. In this review, 15 genome-wide sig-
nificant loci were identified (CNTNAP5, GRID2, GRM7,
8q24 (KCNK9), PCDH7, SLC1A1 and TNIK), seven of
which were replicated in other antipsychotic genome-wide
studies [10]. However, further validation of these findings
is needed in order to demonstrate the clinical utility of
these pharmacogenomics markers.
The United States Food and Drug Administration

(FDA; http://www.fda.gov) started incorporating
pharmacogenomics information on its labels especially
after 2005 and the completion of the Human Genome
Project (“www.fda.gov”, [11]). Almost 15 years later,
more than 200 drug labels are accompanied by pharma-
cogenomics information highlighting the progressive ac-
knowledgment of the major regulatory body regarding
this field of precision medicine [12]. Such information is
gathered and represented in detail in the FDA’s Table of
Pharmacogenomics Biomarkers in Drug Labels [13]
bearing variable levels of significance, from informa-
tional to necessary guidance.
The unmet need, for translating the voluminous litera-

ture into the association pairs that could serve as pos-
sible biomarkers in a real-time clinical setting, was
significantly catalyzed by the formation of the renowned
online resource, the Clinical Pharmacogenetics Imple-
mentation Consortium (CPIC; http://www.cpicpgx.org)
in late 2009 [49, 50]. So far, the CPIC has published 23
peer-reviewed and evidence-based guidelines for over 60
drug–gene pairs in an effort to bridge the gap between
the available pharmacogenomics test results and their

usefulness in genome-informed prescribing [15]. As for
the drugs implicated in antidepressant treatment, two
guidelines regarding the selective serotonin reuptake in-
hibitors (SSRI’s) and the tricyclic antidepressants
(TCA’s) and their association with CYP2D6 and
CYP2C19 were published in August 2015 and December
2016, respectively [54, 55].
In this study, we aimed to identify and assess genetic

associations either with GWA or with nominal signifi-
cance for commonly prescribed antipsychotic and anti-
depressant treatment, for which clinical guidelines exist.
For this purpose, we assessed the pharmacogenomics as-
sociations of commonly prescribed antidepressant/anti-
psychotic drugs as these were reported in publications
deposited in the EBI-GWAS catalog.

Results
Assessing the GWAS catalog data for identification of
psychiatric pharmacogenomics findings
First, we began by downloading the pharmacogenomics
GWA findings from 20 research studies and by exclud-
ing review papers (Additional file 1: Table S1). We ex-
tracted the following information from each study: the
assessed drug (type of antidepressant or antipsychotic
compound), the SNP associated with drug response, the
gene within which we identified the specific SNP, the
PubMed ID of the study, as well as the web link.
Subsequently, we performed literature search in order

to annotate the study type of each one of the 20 research
studies. The study findings could be either GWAS find-
ings, or (the findings) could constitute a combination of
findings from GWAS and (genome-wide) cell assays. We
also identified SNPs, which were associated with re-
sponse to more than one drug related to antipsychotic
or antidepressant treatment (Additional file 1: Table S1).
More precisely, 555 drug–SNP correlations were identi-
fied in total, of which 462 drug–SNP correlations were
characterised as unique (Additional file 1: Table S2)
upon removal of any duplicate drug–SNP correlations.
Manhattan plots were also created in order to high-

light the significance levels of the SNP associations with
antipsychotic or antidepressant drug response. Interest-
ingly, one of these variants had a GWA p value exceed-
ing the level of GWA significance (p = 9 × 10-66). This
variant was rs10023464 SNP (AC093720.1 - AC021146.8
intergenic region) that was characterised as a locus asso-
ciated with plasma clozapine–norclozapine ratio in
treatment-resistant schizophrenia patients. Amongst
SNPs, which exceeded the GWA significance level, are
rs11725502 (AC021146.8 - UGT2B10 intergenic region;
p = 5 × 10-15), rs12767583 (CYP2C19; p = 5 × 10-14),
rs7668556 (AC111000.6 - AC111000.1 intergenic region;
p = 4 × 10-13), rs2814778 (ACKR1; p = 4 × 10-21), and
rs117752187 (MIR100HG; p = 6 × 10-11). These SNPs
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were associated with clozapine response, except for
rs117752187, which was associated with paliperidone re-
sponse (Fig. 1).
Another interesting observation from the Manhattan

plots is the higher number of drug–SNP correlations for
antipsychotic drugs compared to antidepressant treat-
ment (Fig. 2). However, this observation could be ex-
plained by the overall limited number of the assessed
GWAS studies.
Regarding the SNPs’ functional protein conse-

quence, more than 90% of the identified GWA-signifi-
cant SNPs were characterised as intronic or intergenic
variants, whilst only 5 were characterised as missense:
rs2236295, rs2307441, rs17815774, rs17727261, and
rs41314643 (Table 1; Fig. 3). rs2236295 (ADO) and
rs2307441 (POLG) were identified within the first
genome-wide association study (GWAS) in Generalized
Anxiety Disorder (GAD), and they were characterised as
potential predictors of venlafaxine extended release (XR)

treatment outcome. Moreover, rs17815774 (TRPM1) and
rs17727261 (CNTNAP5) were identified in a genome-wide
pharmacogenomics study and they were associated with
the response to treatment with risperidone. Lastly, in an-
other GWAS study, rs41314643 (NMNAT2) was associ-
ated with the risk of clozapine-induced agranulocytosis/
granulocytopenia.
Μoreover, we assessed the number of drug–SNP cor-

relations, after removing any duplicate associations, and
we observed a high number of common SNPs associated
with antidepressant or antipsychotic efficacy and toxicity
(Table 2). An almost equal number of low frequency,
rare, and SNPs with no 1000 Genomes MAF was also
observed, whilst the lowest number of drug-SNP correla-
tions was found within SNPs with intermediate fre-
quency (Table 2). This observation indicates that a
couple of the identified drug-common SNP associations
could be correlated with potential clinical actionability
of these SNPs.

Fig. 1 Manhattan plot of the significant associations of pharmacogenomics variants as identified in the GWAS studies deposited in the GWAS
catalog. These variants have been associated with response to antipsychotic treatment. The red line denotes the genome-wide threshold of
significance (p = 5× 10-8) and the blue line the suggestive threshold of significance (p = 10-5)
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Measuring the association strength of the identified SNPs
based on their allele frequency
As explained in the Methods section, odds ratio
values (ORs) and confidence interval values (CIs)
were retrieved and assessed for the identified SNPs
(Fig. 4). These values provide an estimation for the
protective or risk effect of these SNPs and can be dir-
ectly associated with the potential clinical outcome.

More precisely, in this section, we aim to delineate
the SNP effect on the risk for showing adverse drug
reactions (ADRs) by analysing odds ratio values and
their association with ADR risk. The drug–SNP asso-
ciations with OR higher than 1 were associated with
an increased risk for developing ADRs, whilst drug–
SNP associations with OR less than 1 were associated
with a lower risk for developing ADRs.

Fig. 2 Manhattan plot of the significant associations of pharmacogenomics variants as identified in the GWAS studies deposited in the GWAS
catalog. These variants have been associated with response to antidepressant treatment. The red line denotes the genome-wide threshold of
significance (p = 5 × 10-8) and the blue line the suggestive threshold of significance (p = 10-5)

Table 1 Functional annotation of the five identified missense variants within the psychiatric pharmacogenomics GWAS studies of
interest in this study

Variant type rsID Gene Drug correlation Protein damaging pred. (SIFT*, Polyphen2#)

missense rs4314643 NMNAT2 Clozapine Benign (0.13, 0.232)

missense rs2236295 ADO Venflaxine Benign (0.74, 0.007)

missense rs17815774 TRPM1 Risperidone Benign (0.07, 0.191)

missense rs2307441 POLG Venlafaxine Benign (0.16, 0.334)

missense rs17727261 CNTNAP5 Risperidone Benign (0.06, 0.006)

SIFT and Polyphen2 are in silico tools used to assess the protein damaging effect of missense variants
*SIFT score for protein damaging prediction (< 0.05; deleterious)
#Polyphen2 score for deleterious variants ( > 0.908; probably damaging, 0.446 < score ≤ 0.908; possibly damaging)
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Additional data (Additional file 2: Figsure S1–S10)
show the ORs and CIs plotted for all identified SNPs
and color-coded based on the drug compound. Two
graphs, one with OR less than 1 and one with OR bigger
than 1, were created for the 5 different classes of MAFs:
common (1000 Genomes MAF higher than 10%), inter-
mediate (1000 Genomes MAF between 5 and 10%), low-
frequency (1000 Genomes MAF between 1 and 5%), rare
(1000 Genomes MAF less than 1%), and finally variants
for which there was no MAF in the 1000 Genomes
Project.
We observed that there were an equally high number

of common SNPs that had ORs either below 1 or above
1, thus hinting at a decreased or increased possibility

with drug toxicity, respectively. Similar observations
were also applied for GWA-significant drug—intermedi-
ate frequency SNP correlations.
In contrast, most of the rare and low-frequency variants

had high ORs, usually higher than 5, thus suggesting that
these variants can be potentially used for further clinical
tests. Our findings indicate that the majority of SNPs with
frequency less than 5% have high ORs, thus hinting that
these SNPs may be associated with increased drug toxicity.
SNPs that have an OR less than 1 indicate an inversed as-
sociation, which is basically defined as protection against
the drug response (Additional file 2: Figures S5–S10).
Interestingly, all low-frequency and rare SNPs as well as
SNPs that were not annotated in 1000 Genomes, with

Fig. 3 Plot of the number of pharmacogenomics variants assessed in the present study against their Variant Effect Prediction (VEP) consequence.
NMD, nonsense mediated decay; 5’UTR, variant in the 5’UTR region; 3’UTR, variant in the 3’UTR region
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ORs between 0 and 1, have been associated with reduced
probability for drug toxicity.
Amongst the SNPs with high ORs were rs117375960

and rs188843168, which were excluded from the forest
plots in order to allow a clearer presentation of the find-
ings. rs117375960 was identified within NT5C2 and was
associated with the response to citalopram and escitalo-
pram (p = 2 × 10-6, OR = 142.86). Similarly,
rs188843168 (ATP5MD) was also associated with the re-
sponse to citalopram and escitalopram (p = 4 × 10-7, OR
= 449.83). Both of these SNPs are associated with an in-
creased risk for drug toxicity induced from citalopram
or escitalopram treatment.
Forest plots were also created for variants that had

ORs higher than 10. As also stated in the Methods sec-
tion, this OR cut-off value was selected since the major-
ity of the clinical studies suggest an OR greater than 10,
as sufficient enough for decision-making. However, since
the ORs for most of these variants were quite high, it
was difficult to provide an accurate estimate of the con-
fidence intervals for these variants. The high ORs com-
bined with the statistically significant association of the
identified SNPs provide evidence for the potential role

of these variants as biomarkers for antipsychotic drug
toxicity.

Lack of CPIC guidelines for the presented antipsychotic
drug–SNP correlations
In an effort to mine valuable pharmacogenomics informa-
tion from the CPIC online resource, we found out that the
commonly prescribed antipsychotic agents, namely cloza-
pine, risperidone, haloperidol, perphenazine, aripiprazole,
iloperidone, and olanzapine, are not yet accompanied by a
corresponding pharmacogenomics (PGx) guideline. How-
ever, all the aforementioned drugs are associated with
CYP2D6 bearing a CPIC level B or C, while their corre-
sponding CPIC guideline will be compiled in the future.
Of note, the US regulatory body already includes pharma-
cogenomics information regarding CYP2D6 in the re-
spective drug labels, either vaguely commenting on the
pharmacokinetics of the administered agent (as in the case
of risperidone-CYP2D6) or proposing specific genome-
informed dose adjustment (as in the case of aripiprazole-
CYP2D6). Two SNRI’s, venlafaxine and duloxetine, are
deemed to be accompanied by a CPIC guideline in the fu-
ture regarding their association with CYP2D6. As for the

Table 2 Number of common (MAF > 0.10), intermediate frequency (MAF 0.05–0.10), low frequency (0.01–0.05) and rare variants
(MAF < 0.01) for each assessed drug

Drug Common
(N genes
or SNPs)

Interm
(N genes
or SNPs)

Low freq
(N genes
or SNPs)

Rare
(N genes
or SNPs)

No1000 G MAF
(N genes or SNPs)

Total
(per drug)

Aripiprazole 2 - - - - 2

Bupropion 6 - 5 8 2 21

Clozapine 35 7 16 11 8 77

Citalopram 7 2 7 8 7 31

Duloxetine 1 - - - 1 2

Escitalopram 3 1 1 8 4 17

Haloperidol 6 1 - - 1 8

Iloperidone 5 1 - - - 6

Ketamine 13 2 - - 4 19

Lurasidone 11 - - - 2 13

Olanzapine 10 3 - - 2 15

Oxcarbazepine 4 1 2 - - 7

Paliperidone 56 22 34 56 24 192

Perphenazine 11 1 3 - 1 16

Quetiapine 14 1 1 - 2 18

Risperidone 15 - 1 - 4 20

Sertraline - 1 1 - - 2

Venlafaxine 11 1 2 1 3 18

Ziprasidone 8 1 - 1 - 10

Total (per MAF) 218 45 73 93 65

The number of SNPs counted is equal to the number of genes as duplicates of the same drug–SNP correlations were removed
interm intermediate, low freq low frequency, MAF minor allele frequency
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SSRI’s, citalopram, escitalopram, and sertraline, a pub-
lished CPIC guideline proposes specific therapeutic strat-
egies based on CYP2C19 genotype results. In parallel, the
US regulatory body refers to the pharmacogenomics infor-
mation related to the aforementioned drug–gene associ-
ation pairs in the corresponding drug inserts. It is
noteworthy that there is no mention regarding the vari-
ants discussed in our paper that are deemed ambitious as
for their clinical actionability in either two sources.

Discussion
There is no doubt that GWAS research has yielded
many discoveries in the field of neuropsychiatric and
neurodevelopmental diseases. However, constant re-
search and improvements in “big data” parsing
methods are essential for improvements in the discov-
ery of pharmacogenomics findings. GWAS studies can
be useful in unraveling potential mechanisms and
pathways that underlie human characteristics, dis-
eases, and drug response.

For example, researchers in the Schizophrenia Working
Group of the Psychiatric Genetics Consortium (PGC) per-
formed a GWAS and identified 108 genome-wide signifi-
cant loci [18], thus showing that increased sample sizes
can boost the discovery in schizophrenia genetics research
and psychiatric pharmacogenomics research.
As with most GWAS studies, those focusing on identi-

fication of drug-genomic variant correlations may be
characterised by heterogeneity issues across the different
study sample datasets. Any discrepancies between indi-
vidual studies must be taken into consideration as con-
founding variables. For example, studies included a
broad range of sample sizes, some of which only in-
cluded a single racial or ethnic group; these studies
should be replicated within different populations [51].
Nonetheless, PGx GWAS have resulted in the identifi-

cation of several actionable genetic variants that have
been genotyped and used to inform drug selection and
dosage. However, the most significant PGx GWAS
achievements have been associated with the

Fig. 4 a Odds ratio values of pharmacogenomics (PGx) variants of common (MAF > 0.10) or intermediate (0.05 ≤ MAF ≤ 0.10) frequency are
plotted alongside with the 95% of their confidence intervals. The PGx variants are colored based on the antipsychotic or antidepressant drug of
the association. b Odds ratio values of pharmacogenomics (PGx) variants of low frequency (0.01 ≤ MAF < 0.05); rare (MAF < 0.01) frequency are
plotted alongside with the 95% of their confidence intervals. Moreover, the odds ratio values and the confidence intervals of pharmacogenomics
variants that were not found within the 1000 Genomes project are also plotted. The PGx variants are colored based on the antipsychotic or
antidepressant drug association
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identification of non-HLA markers, such as NUDT15,
which is associated with thiopurine-induced leukopenia
[19].
So far, only a few psychiatric clinical pharmacogenom-

ics and psychiatric PGx GWAS studies have been pub-
lished thus pointing to a need for properly designed
psychiatric pharmacogenomics. Two characteristic ex-
amples of clinical psychiatric PGx studies, which are cur-
rently on-going, are the following: one is the “PREPARE”
by the Ubiquitous Pharmacogenomics (U-PGx; http://
www.upgx.eu) Consortium and the other one is an effort
run at the Karolinska Institute [20, 21]. The “PREPARE”
study aims to perform pre-emptive genotyping of a panel
of clinically relevant PGx-markers, for which guidelines
are available, whilst being implemented across healthcare
institutions in seven European countries. Amongst the
individuals recruited are individuals diagnosed with a
variety of psychiatric disorders and the upper study goal
is the identification of biomarkers associated with anti-
psychotic/antidepressant drug responses [21]. Regarding
the other effort, as run by the Karolinska Institute, find-
ings from this study indicate that CYP2D6 pre-emptive
genotyping would be valuable for individualising risperi-
done and aripiprazole dosing, thus leading to treatment
optimisation [20].
It is worth to note that only about half of the psychi-

atric genome-wide significant associations have been val-
idated in subsequent studies, and more precisely either
in an independent study or in a replication sample. Be-
cause of the possibility of false discovery, the likelihood
of a GWAS signal being a true marker of the tested
phenotype holds fairly limited promise prior to replica-
tion. Overall, findings from both of these efforts high-
light the need for improving and boosting discovery of
clinically relevant psychiatric pharmacogenomics bio-
markers [22].
As of submission of this manuscript, this is the first

study focusing on 20 published research articles, as de-
posited in the GWAS catalog, and which assesses GWA-
significant antipsychotic/antidepressant drug–SNP cor-
relations. Interestingly, only two SNPs were identified
within or between clinically approved pharmacogenes,
(rs2472297 between CYP1A1-CYP1A2 and rs12767583
within CYP2C19) and they were both associated with
the response to clozapine. No clinical guidelines either
from CPIC or from FDA exist for the rest of the identi-
fied drug–SNP correlations.
Undoubtedly, implementation of PGx research findings

in the clinic requires lots of time and effort owing to the
ever-increasing need for functional validation studies,
regulatory clearance and development of the appropriate
translational tools. To this end, our findings can be proven
useful for unravelling the background for identification of
pharmacogenomics biomarkers for psychiatric drug

treatment. These findings may be proven meaningful for
informing the findings from pharmacogenomics clinical
studies (i.e., Ubiquitous Pharmacogenomics—U-PGx),
since lots of the assessed antipsychotic/antidepressant
compounds are included in the U-PGx clinical study.
Therefore, the identified drug–SNP correlations may be of
particular interest in future pharmacogenomics clinical
studies and they may be in linkage disequilibrium with
other known psychiatric pharmacogenomics biomarkers.

Conclusions
To our knowledge, this is the first study that summarizes
and provides novel insight in previously identified and
GWA-significant pharmacogenomics associations for
antipsychotic/antidepressant treatment. We showed that
common pharmacogenomics association for anti-
psychotic/antidepressant drugs with genomic biomarkers
might harbour large effect sizes, thus hinting at a poten-
tial clinical utility. We also demonstrate that there are
multiple drug–SNP correlations, for which little or no
clinical information is available and for which no ap-
proved clinical guidelines exist. So far, little is known
about the functional impact of variants on inter-
individual variability in drug response, which are identi-
fied in genomic loci apart from well-characterised phar-
macogenes. Το this end, more effort should be placed
towards the identification of pharmacogenomics bio-
markers for antipsychotic treatments. This can be
achieved by leveraging the information from databases,
such as the GWAS catalog, as well as by updating and
renewing the freely available information regarding clin-
ically approved guidelines (i.e. CPIC, FDA).

Methods
Data collection
The data of this study include all studies recorded by the
GWAS catalog [23] with the date of the datasets down-
load being the 27th of August 2019. Statistical, genomic,
and literature information were retrieved from 20 re-
search articles (Additional file 1: Table S1) [4, 24–46] as
deposited in the GWAS catalog of EBI. The information
of the datasets includes literature sources, phenotype in-
formation, p values, and identified SNPs, ORs and CIs.
The selection of antipsychotic or antidepressant drugs

was based on examples of antidepressant or anti-
psychotic medications, which are the gold-standard
treatment options for schizophrenia and other common
mental conditions. The query criteria in the GWAS cata-
log database were the name of the assessed antipsychotic
or antidepressant compounds.

Statistical analysis
Odds ratio values, chi-square p values, and 95% of confi-
dence intervals were used in order to statistically
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examine the association strength of the GWA significant
SNPs. These statistical measurements were also directly
retrieved from the GWAS catalog. Moreover, drug–SNP
correlations were examined in order to identify potential
associations, which were identified in more than one
study. The results were presented either as Forest plots
or Manhattan plots and they were created in R software
(“https://www.r-project.org” [46–48]). Forest plots were
built in the ‘ggplot2’ R package, while Manhattan plots
were created by implementing the ‘qqman’ R package
[16, 17]. Moreover, forest plots were also created separ-
ately for SNPs with ORs higher than 10, since most
studies suggest 10 as a threshold sufficient enough for
decision-making [52].

Variant annotation
Functional annotation of the identified SNPs and MAF
annotation from the 1000 Genomes Project was per-
formed using the Variant Effect Predictor (VEP) freely
available from ENSEMBL [53].

PGx information mining
Moreover, specific pharmacogenomics information was
retrieved from the FDA’s Table of Pharmacogenomics
Biomarkers in Drug Labels regarding the pharmaceutical
agents currently used in antidepressant and antipsychotic
treatment, as well as from the respective published CPIC
guidelines and their supplementary information [54, 55].
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