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Abstract

Background: Colon adenocarcinoma (COAD) is one of the common gastrointestinal malignant diseases, with high
mortality rate and poor prognosis due to delayed diagnosis. This study aimed to construct a prognostic prediction
model for patients with colon adenocarcinoma (COAD) recurrence.

Methods: Differently expressed RNAs (DERs) between recurrence and non-recurrence COAD samples were
identified based on expression profile data from the NCBI Gene Expression Omnibus (GEO) repository and The
Cancer Genome Atlas (TCGA) database. Then, recurrent COAD discriminating classifier was established using SMV-
RFE algorithm, and receiver operating characteristic curve was used to assess the predictive power of classifier.
Furthermore, the prognostic prediction model was constructed based on univariate and multivariate Cox regression
analysis, and Kaplan-Meier survival curve analysis was used to estimate this model. Furthermore, the co-expression
network of DElncRNAs and DEmRNAs was constructed followed by GO and KEGG pathway enrichment analysis.

Results: A total of 54 optimized signature DElncRNAs were screened and SMV classifier was constructed, which presented
a high accuracy to distinguish recurrence and non-recurrence COAD samples. Furthermore, six independent prognostic
lncRNAs signatures (LINC00852, ZNF667-AS1, FOXP1-IT1, LINC01560, TAF1A-AS1, and LINC00174) in COAD patients with
recurrence were screened, and the prognostic prediction model for recurrent COAD was constructed, which possessed a
relative satisfying predicted ability both in the training dataset and validation dataset. Furthermore, the DEmRNAs in the co-
expression network were mainly enriched in glycan biosynthesis, cardiac muscle contraction, and colorectal cancer.

Conclusions: Our study revealed that six lncRNA signatures acted as an independent prognostic biomarker for patients
with COAD recurrence.
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Introduction
As one of the most common gastrointestinal malignant
diseases, colon adenocarcinoma (COAD) is the world-
wide leading cause of mortality [1]. Currently, the stand-
ard therapeutic method for COAD is the combination of
surgery and adjuvant chemotherapy or radiation therapy

[2]. Additionally, the early diagnosis for primary or re-
current COAD is also a critical factor for improving the
prognosis of patients [3]. Unfortunately, despite substan-
tial advances in early diagnosis and treatments, poor sur-
vival, high recurrence, and unsatisfactory prognosis
remain an issue due to delayed diagnosis and adverse
drug effects [2, 4]. Therefore, identification of novel
diagnostic, prognostic biomarkers and therapeutic tar-
gets, as well as investigation of the underlying molecular
mechanism of COAD, is required.
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Ideal diagnostic and prognostic biomarkers should be
strongly associated with the prognosis of patients and easy to
detect [5]. Encouragingly, overwhelming evidence has dem-
onstrated that the regulatory roles of noncoding RNAs such
as long non-coding RNAs (lncRNAs) are predominately cor-
related with the development and progression of a wide var-
iety of cancers [6]. LncRNAs are arbitrarily defined as
noncoding RNA with the length > 200 nucleotides, and have
several possible functions, including miRNA sponges, regu-
lating gene transcription and splicing, and forming RNA-
protein complexes [7]. It is now well appreciated that
lncRNAs participate in disease progression by regulating
various key cell biological processes such as cell proliferation,
differentiation, apoptosis, migration, and invasion [8]. To
date, lncRNAs have been revealed abnormal expression in
cancers, and some of which are served as oncogenes or
tumor suppressors [8]. Furthermore, accumulating studies
have shown that lncRNAs are potentially identified as novel
diagnostic, prognostic, and metastasis predictive biomarkers
in various cancers [9–11]. Recently, several lncRNA profiling
has identified several colorectal cancer-specific lncRNAs, and
the following experiments have demonstrated that lncRNAs
such as PCAT-1, RP11-462C24.1, HOTAIR, and MALAT1
are candidate diagnostic biomarkers [12–14]. However, few
studies have investigated lncRNAs as the prognostic bio-
markers for recurrent COAD.
In the current study, lncRNAs related to COAD recur-

rence were screened based on expression profile data
from the National Center for Biotechnology Information
(NCBI) GEO repository and The Cancer Genome Atlas
(TCGA). Next, a recurrent COAD discriminating classi-
fier and a prognostic prediction model were constructed
using the bioinformatics methods. Moreover, co-
expression network and pathways were analyzed. Ac-
cording to this, we aimed to explore a useful prognostic
prediction model for recurrent COAD and provide some
useful insights in improving the prognosis of recurrent
COAD patients.

Materials and methods
Data extraction and preprocessing
The gene expression datasets were preliminarily ex-
tracted from the NCBI GEO repository (https://www.
ncbi.nlm.nih.gov/geo/) using search words of “colon
adenocarcinoma and Homo sapiens”. Then, the eligible
dataset were selected in this study according to the fol-
lowing criteria: (1) the samples in datasets were solid tis-
sues of COAD patients; (2) the total number of COAD
samples was not less than 500; and (3) the datasets con-
tained recurrence and prognosis information of samples.
Eventually, GSE39582 was obtained and utilized as train-
ing dataset. This dataset was generated from GPL570
Affymetrix Human Genome U133 Plus 2.0 Array

platform and contained 585 COAD samples and 574
samples had recurrence information [15].
Meanwhile, the RNA sequencing data and correspond-

ing clinical information of COAD patients were down-
loaded from TCGA (https://gdc-portal.nci.nih.gov/).
This dataset was obtained from the platform of Illumina
HiSeq 2000 RNA Sequencing and contained 512 COAD
samples. After the RNA sequencing data was matched
with clinical information, a total of 310 samples contain-
ing recurrence and prognosis information were obtained,
which was utilized as validation dataset. The clinical
characteristics of COAD patients in the training and val-
idation datasets are shown in Table 1.

Screening of differentially expressed RNAs (DERs)
Firstly, all mRNAs and lncRNAs in training and valid-
ation dataset were annotated based on the HUGO Gene
Nomenclature Committee (HGNC, http://www.gene-
names.org/) database [16], consisting of annotated 19,
198 protein coding genes and 4120 lncRNAs. Then, the
overlapping mRNAs and lncRNAs were obtained be-
tween these two datasets. All COAD samples in the
training dataset were divided into recurrence and non-
recurrence groups. The limma package (version 3.34.7,
https://bioconductor.org/packages/release/bioc/html/
limma.html) [17] in R 3.4.1 was utilized to screen DERs
(including mRNA and lncRNA) between recurrence and
non-recurrence samples with the thresholds of false dis-
covery rate < 0.05 and |log2 fold change| > 0.263. Fur-
thermore, bidirectional hierarchical clustering based on
centered Pearson correlation algorithm [18] was per-
formed by pheatmap (Version 1.0.8, https://cran.r-pro-
ject.org/web/packages/pheatmap/index.html) [19] in R
3.4.1 according to the expression values of DERs in the
training dataset.

Screening of signature lncRNAs
The e1071 (Version 1.7-1, https://cran.r-project.org/web/
packages/e1071) [20] and caret package (Version 6.0-76,
https://cran.r-project.org/web/packages/caret) [21] in R was
used to identify optimized signature lncRNAs based on re-
cursive feature elimination (RFE) algorithm. Next, the
SVM-based classifier was built to predict COAD recurrence
based on signature lncRNAs. In addition, the performance
of the classifier was evaluated in the training dataset and
validation dataset, respectively. The area under curve
(AUC) index was calculated to evaluate the predictive
power of the classifier based on receiver operating charac-
teristic (ROC) curve analysis using pROC (Version 1.15.0,
https://cran.r-project.org/web/packages/pROC/index.html)
[22] in R. The corresponding parameters, including sensi-
tivity (Sen), specificity (Spe), positive prediction value
(PPV), and negative prediction value (NPV), were also cal-
culated using pROC.
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Constructions and verification of prognostic prediction
model
The univariate cox regression analysis for the lncRNAs
used for SVM classifier construction was carried out
using survival package (Version 2.41.1, http://bioconduc-
tor.org/packages/survivalr/) [23] in R3.4.1 with the
threshold of log-rank P value < 0.05. Then, independent
prognostic lncRNAs were further screened by multivari-
ate cox regression analysis using survival package (Ver-
sion 2.41.1) [23]. Afterwards, the risk score (RS)
prognostic prediction model was constructed based on
expression levels of independent prognostic lncRNAs
and their regression coefficients estimated from the
multivariate Cox regression model as follows: RS =
∑βlncRNA × ExplncRNA. The βlncRNA represented the inde-
pendent prognostic coefficient and ExplncRNA was de-
fined as the expression value of corresponding lncRNA.
According to the median value of RS, all samples in the
training dataset were divided into high-risk and low-risk
groups. The Kaplan-Meier (K-M) survival curve analysis
was performed to evaluate survival difference between
high- and low-risk group using survival package (version
2.41.1) in R 3.4.1. Moreover, the prognostic significance
of RS was also assessed by including C-index [24], Brier
score [25], and log-rank P value of cox-PH regression
[26]. Similarly, a RS model was also established in valid-
ation set. Accordingly, K-M curves were constructed to
analyze two risk groups and COAD survival. C-index,
Brier score, and log-rank P value C-index were used to
evaluate the predictive accuracy of RS.

Construction of co-expression network and functional
analysis
The expression levels of the signature lncRNAs and differ-
entially expressed mRNAs were extracted from COAD
samples in the training dataset. Next, co-expression net-
work was constructed based on Pearson correlation coeffi-
cient (PCC) of the prognostic lncRNAs and DE mRNAs
using cor.test function (https://stat.ethz.ch/R-manual/R-

devel/library/stats/html/cor.test.html) [27] in R3.4.1 and
then visualized by Cytoscape (Version 3.6.1, https://cytos-
cape.org/). Besides, Gene Ontology (GO) functional anno-
tation associated with biological process analysis as well as
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analysis of mRNAs in co-expression net-
work were performed based on Database for Annotation,
Visualization, and Integrated Discovery (DAVID) program
(v 6.8, https://david.ncifcrf.gov/) [28, 29] with the thresh-
old of P value < 0.05.

Results
DERs screening between recurrence and non-recurrence
COAD samples
This study was conducted as indicated in Fig. 1. After anno-
tation, there were 13834 mRNAs and 827 lncRNAs be-
tween training and validation dataset. Subsequently, a total
of 1002 DERs were identified between recurrence (n = 179)
and non-recurrence (n = 375) COAD samples based on the
selective criteria, including 939 DE mRNAs (475 downregu-
lated and 464 upregulated mRNAs) and 63 DE lncRNAs
(13 downregulated and 50 upregulated lncRNAs) (Fig. 2a).
The bidirectional hierarchical clustering analysis indicated
that these DERs could significantly distinguish recurrent
and non-recurrent COAD samples (Fig. 2b).

Signature lncRNA screening
The SVM-RFE algorithm was used to identify the most opti-
mized lncRNA signatures. We found that there were 54 opti-
mized lncRNA signatures when the accuracy was the highest
value of 0.879 (Fig. 3a). Then, a SMV classifier was estab-
lished based on the 54 optimized lncRNAs to differentiate re-
current COAD samples from non-recurrent COAD samples.
ROC curve analysis revealed that this SVM classifier exhib-
ited a good discriminatory power for patients with or without
COAD recurrence in training dataset (AUC 0.989, Sen 0.911,
Spe 0.987, PPV 0.970, and NPV 0.961; Fig. 3b). Similarly, a
SVM-based classifier was also built in validation set and it
had a high accuracy to distinguish recurrent and non-

Table 1 Clinical characteristics of the colon adenocarcinoma samples in the training and validation datasets

Clinical characteristics Training dataset (N=574) Validation dataset (N=310)

Age at pathologic diagnosis (years, mean ± sd) 66.89 ± 13.22 65.73 ± 12.71

Gender (male/female) 317/257 169/141

Pathologic stage (1/2/3/4) 41/267/206/60 51/118/88/43/10

Pathological T (1/2/3/4/–) 13/47/373/118/23 8/55/212/34/1

Pathological N (0/1/2/3/–) 309/134/99/6/26 180/77/53/0/0

Pathological M (0/1/-) 491/61/22 226/43/41

Tumor location (distal/proximal) 348/226 –

Chemotherapy (yes/no) 239/319/16 –

Tumor recurrence (yes/no) 179/375 66/244

Recurrence free survival time (months, mean ± sd) 49.79 ± 40.76 29.66 ± 25.46
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recurrent COAD samples (AUC 0.920, Sen 0.803, Spe 0.877,
PPV 0.739, and NPV 0.930; Fig. 3b).

Construction and verification of prognostic prediction
model
Based on univariate Cox regression analysis in the train-
ing dataset, a total of 39 DElncRNAs were significantly

associated with the overall survival of patients with
COAD recurrence. Then, six independent prognostic
lncRNAs (LINC00852, ZNF667-AS1, FOXP1-IT1,
LINC01560, TAF1A-AS1, and LINC00174) were ob-
tained by multivariate Cox regression analysis (Table 2).
Among them, two lncRNAs (LINC00852, FOXP1-IT1)
with negative coefficients revealed that their higher

Fig. 1 Workflow of this study
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expressions were correlated with longer survival, while the
remaining lncRNAs (ZNF667-AS1, LINC01560, TAF1A-
AS1, and LINC00174) with positive coefficients indicated
that their higher expression were associated with unfavor-
able survival outcomes. Next, the RS prognostic prediction
model was constructed based on the coefficients of six in-
dependent prognostic lncRNAs and their expression levels

in training dataset as follows: RS = (− 0.9109) ×
ExpLINC00852 + (0.4241) × ExpZNF667-AS1 + (− 0.4840) ×
ExpFOXP1-IT1 + (0.3945) × ExpLINC01560 + (0.4466) ×
ExpTAF1A-AS1 + (0.6742) × ExpLINC00174. Subsequently, the
RS of each patient was calculated and all patients were
then divided into high-risk group (n = 268) and low-risk
group (n = 268) according to the median value of

Fig. 2 Identification of differentially expressed RNAs (DERs). a Volcano map. Blue dots indicate DERs, the red horizontal dotted line represents
false discovery rate (FDR) < 0.05, the two red vertical dotted lines represent the |log fold change (FC)| > 0.263. b A bidirectional hierarchical
clustering map based on DERs. White and black sample bars represent recurrence and non-recurrence colon adenocarcinoma
samples, respectively
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RS (Table 3). Accordingly, the distribution of the RS and
survival status of the GC patients as well as the expression
levels of six prognostic lncRNA signatures were also ob-
tained. As displayed in Fig. 4a, there were high expressions of
risky lncRNAs (ZNF667-AS1, LINC01560, TAF1A-AS1, and
LINC00174) in patients from the high-risk group. Con-
versely, those patients in the low-risk group tended to ex-
press high levels of protective lncRNAs (LINC00852,
FOXP1-IT1). These findings were verified in the validation

dataset as shown in Fig. 4b. Additionally, the effects of six
prognostic lncRNAs on survival outcomes of COAD patients
in high- and low-risk group were also assessed by K-M ana-
lysis in training and validation sets. The results suggested that
there was a lower survival probability for COAD patients in
the high-risk group than that in the low-risk group (training
dataset: a log-rank P value = 1.392e−09, HR = 2.878, 95%CI
2.012–4.118, C-index = 0.744, and Brier score = 0.036; valid-
ation dataset: a log-rank P value = 2.081e−02, HR = 1.786,
95%CI 1.085–2.940, C-index = 0.664, and Brier score =
0.063; Fig. 5).

Construction of co-expression network and functional
analysis
The co-expression analysis between prognostic lncRNAs
and DEmRNAs was performed. There were 198 DE
lncRNA-DE mRNA pairs among 6 lncRNAs, and 162
DE mRNAs (such as CXCL14, EPDR1, PMEPA1, HEPA-
CAM, ST6GALNAC1, and SELENBP1) were obtained
(Fig. 6a). Subsequently, the functional analyses of
DEmRNAs in co-expression network were conducted

Fig. 3 Screening of signature lncRNAs and construction of recurrence colon adenocarcinoma (COAD) discriminating classifier. a Accuracy curve of
the optimized signature lncRNAs using recursive feature elimination (RFE) algorithm. b Receiver operating characteristic (ROC) curve based on the
support vector machine (SVM) classifier in the training dataset (left) and validation dataset (right)

Table 2 Six independent prognostic lncRNAs in colon
adenocarcinoma patients with recurrence

ID Coef P value Hazard ratio 95%CI

LINC00852 − 0.9109 2.73E−03 0.4022 0.2217–0.7296

ZNF667-AS1 0.4241 1.68E−02 1.5282 1.0794–2.1638

FOXP1-IT1 − 0.4840 2.32E−02 0.6163 0.4059–0.9359

LINC01560 0.3945 2.85E−02 1.4836 1.0424–2.1115

TAF1A-AS1 0.4466 3.90E−02 1.5630 1.0229–2.3884

LINC00174 0.6742 4.31E−02 1.9624 1.0210–3.7718
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Fig. 4 A lncRNA-based risk score model in the training and validation dataset. a The training dataset. b The validation dataset. The top row in
each pane shows the distribution of risk score distribution. The middle row in each pane shows the survival status of colon adenocarcinoma
patients. The bottom row in each pane shows the heatmap of the expression of the 6 key lncRNAs. The color, from green to red, shows low to
high expression

Table 3 Independent prognostic factors of colon adenocarcinoma patient with recurrence by univariate and multivariate Cox
regression analysis

Clinical characteristics Univariable Cox Multivariable Cox

HR 95%CI P HR 95%CI P

Age at pathologic diagnosis (years, mean ± sd) 1.011 0.997–1.023 1.268E−01 – – –

Gender (male/female) 1.309 0.940–1.823 1.096E−01 – – –

Pathologic stage (1/2/3/4) 1.866 1.475–2.360 1.754E−07 1.365 0.899–2.073 1.439E−01

Pathological T (1/2/3/4/–) 1.969 1.443–2.686 2.606E−05 1.686 1.199–2.369 2.630E−03

Pathological N (0/1/2/3/–) 1.691 1.387–2.059 5.525E−07 1.328 0.967–1.824 7.921E−02

Pathological M (0/1/–) 1.77 0.861–3.639 1.154E−01 – – –

Tumor location (distal/proximal) 0.346 0.602–1.181 3.217E−01 – – –

Chemotherapy (yes/no) 1.647 1.190–2.277 2.331E−03 0.998 0.669–1.490 9.922E−01

RS model status (high/low) 2.878 2.012–4.118 1.392E−09 2.559 1.747–3.748 1.410E−06

Tumor recurrence (yes/no) – – – – – –

Recurrence free survival time (months, mean ± sd) – – – – – –
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and the results revealed that these genes were signifi-
cantly enriched in 17 GO-BP terms such as regulation of
transcription, and 5 KEGG pathways, including glycan
biosynthesis, cardiac muscle contraction, MAPK signal-
ing pathway, colorectal cancer, and apoptosis (Fig. 6b).

Discussion
In this study, 939 DEmRNAs and 63DElncRNAs were
identified between recurrent and non-recurrent COAD.
Then, 54 optimized signature DElncRNAs were screened
and subjected to a SMV classifier construction. Further-
more, 6 independent prognostic lncRNAs signatures
(LINC00852, ZNF667-AS1, FOXP1-IT1, LINC01560,
TAF1A-AS1, and LINC00174) were screened by univari-
ate and multivariate Cox regression analysis, and the RS
prognostic prediction model for recurrent COAD was
constructed and showed a high predictive value for COAD
samples both in the training dataset and validation dataset.
Furthermore, the co-expression network revealed that
LINC01560 interacted with CXCL14 and EPDR1 while
FOXP1-IT1 was co-expressed with HEPACAM and
ST6GALNAC1.
The mining of accumulating gene expression profile

data in a variety of diseases have been enhanced with
the rapid advances in high-throughput sequencing and
bioinformatics technologies [30]. This study integrated
the eligible expression profile data of COAD samples
with and without recurrence from NCBI GEO and
screened 63 DElncRNAs related to COAD recurrence.
As a powerful classification tool, SVM is widely applied

into cancer genomic subtyping or classification [31].
Due to the classification feature of SVM based on the
large amounts of genomic data, SVM has been used to
distinguish disease subtype [32], as well as discovery
novel biomarkers or drug targets [31]. Similarly, this
study also constructed a recurrent COAD discriminating
classifier using SMV, which presented a good discrimin-
atory capability for recurrent and non-recurrent COAD.
Furthermore, the RS prognostic prediction model for re-
current COAD was constructed based on univariate and
multivariate Cox regression analysis. Computationally,
univariate and multivariate Cox regression were the most
common method to construct the prognostic models and
screen prognostic factors [33].
Co-expression network revealed that LINC01560 was

co-expressed with CXCL14 and EPDR1, and FOXP1-IT1
was co-expressed with HEPACAM and ST6GALNAC1.
Moreover, FOXP1-IT1 was a protective factor while
LINC01560 was a risky factor for COAD recurrence.
Higher expression of LINC01560 was related to poorer
survival, whereas upregulation of FOXP1-IT1 exhibited
good survival. LINC01560 was reported to be aberrantly
expressed in osteosarcoma [34]. CXCL14, termed breast
and kidney expressed chemokine (BRAK), is one con-
served chemokine involved in the activation of various
immune cells such as natural killer cells, immature den-
dritic cells, and macrophages [35]. Consistent with our
study, the report of Zeng et al. has found the signifi-
cantly elevated expression level of CXCL14 in colorectal
carcinoma tissue compared with normal tissues, and

Fig. 5 Performance evaluation of the risk score (RS) prognostic prediction model. a K-M survival analysis based on RS prognostic prediction
model in the training dataset. b K-M survival analysis based on RS prognostic prediction model in the validation dataset
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high CXCL14 expression increased the recurrence risk
of colorectal carcinoma [36]. EPDR1, which encodes for
type II transmembrane protein, is originally identified in
teleost fishes and involved in cell adhesion [37]. Gimeno
et al. have revealed upregulated EPDR1 in colorectal car-
cinoma tissue, and EPDR1 may be a potential biomarker
of tumor invasiveness in patients with colorectal carcin-
oma [38]. However, whether lncRNA-CXCL14/EPDR1
axis was associated with the survival of patients with
COAD recurrence still needs to be investigated in the
following analysis.

HEPACAM is originally discovered in the liver and
then considered as one member of the immunoglobulin
superfamily [39]. Recent studies have demonstrated
HEPACAM was under-expressed in several cancers. A
recent study has shown that HEPACAM was expressed
at low level, and HEPACAM overexpression inhibited
cell proliferation, migration, and invasion in colorectal
cancer [40]. ST6GALNAC1 is a key sialyltransferase for
the biosynthesis of the cancer-associated Sialyl-Tn (STn)
antigen that involved in cell adhesion, invasion, and me-
tastasis in cancers [41]. Several studies have suggested
that ST6GalNAc1 is overexpressed in breast and colon

Fig. 6 Construction of co-expression network and functional analysis. a The co-expression network of differentially expressed (DE) lncRNAs and
DEmRNAs. The red color shows the upregulated lncRNAs or mRNAs, and the green color denotes the downregulated lncRNAs or mRNAs. Squares
and circles, respectively, represent lncRNAs and mRNAs. b GO and KEGG pathways of DEmRNAs. Horizontal axis and vertical axis represent the
gene number and term, respectively; the color and size of the bots indicate the significant P value, and the closer the color is to red, the higher
the significance
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cancer, and upregulation of ST6GalNAc1 promotes
tumor growth and metastasis [42, 43]. Unfortunately,
the relationships between FOXP1-IT1-HEPACAM/
ST6GALNAC1 and prognosis of patients with COAD re-
currence have not been elucidated.
We found that ZNF667-AS1 was another risky factor

for survival evaluation of patients with COAD. Previous
studies have demonstrated that ZNF667-AS1 was dys-
regulated in multiple cancers and associated with tumor
invasion and metastasis [44–46]. Peng et al. recurrently
constructed a lncRNA-related competing endogenous
RNA network and highlighted that ZNF667-AS1 was a
predictor for survival prognosis of gastric cancer [47].
Several researchers also suggested that LINC00174
played significant roles in the molecular pathogenesis of
several cancers, including hepatocellular carcinoma and
colorectal carcinoma [48, 49]. Our analysis revealed that
the overexpression of ZNF667-AS1 was related to the
poor prognosis of patients with COAD recurrence.
However, the influences of ZNF667-AS1, LINC00174,
LINC00852, and TAF1A-AS1 on COAD recurrence
have not been completely illuminated. Therefore, we will
collect more clinical information to explore the effects
of combination of these lncRNA signatures on COAD.
Moreover, corresponding function mechanisms were
also required to investigate by in vitro and in vivo assays
LINC00852, LINC01560, and LINC00174.

Conclusion
In conclusion, this study constructed a SVM classifier for
identifying recurrent COAD patients and prognostic pre-
diction model for COAD recurrence. To our knowledge,
this is the first study to screen six lncRNA signatures for
predicting COAD recurrence, which is important to
develop a novel therapeutic strategy for improving the
survival of patients with COAD recurrence. However, the
underlying mechanism of these lncRNA signatures should
be further investigated.
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