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intronic microRNA hsa-miR-933 on its host
gene ATF2 results in type Il diabetes
mellitus and neurodegenerative disease
development

Abul Bashar Mir Md. Khademul Islam'"@®, Eusra Mohammad'? and Md. Abdullah-Al-Kamran Khan'?

Abstract

Background: MicroRNAs are ~ 22-nucleotide-long biological modifiers that act as the post-transcriptional
modulator of gene expression. Some of them are identified to be embedded within the introns of protein-coding
genes, these miRNAs are called the intronic miRNAs. Previous findings state that these intronic miRNAs are co-
expressed with their host genes. This co-expression is necessary to maintain the robustness of the biological
system. Till to date, only a few experiments are performed discretely to elucidate the functional relationship
between few co-expressed intronic miRNAs and their associated host genes.

Results: In this study, we have interpreted the underlying modulatory mechanisms of intronic miRNA hsa-miR-933
on its target host gene ATF2 and found that aberration can lead to several disease conditions. A protein-protein
interaction network-based approach was adopted, and functional enrichment analysis was performed to elucidate
the significantly over-represented biological functions and pathways of the common targets. Our approach
delineated that hsa-miR-933 might control the hyperglycemic condition and hyperinsulinism by regulating ATF2
target genes MAP4K4, PRKCE, PEA15, BDNF, PRKACB, and GNAS which can otherwise lead to the development of type
Il diabetes mellitus. Moreover, we showed that hsa-miR-933 can regulate a target of ATF2, brain-derived
neurotrophic factor (BDNF), to modulate the optimal expression of ATF2 in neuron cells to render neuroprotection
for the inhibition of neurodegenerative diseases.

Conclusions: Our in silico model provides interesting resources for experimentations in a model organism or cell
line for further validation. These findings may extend the common perception of gene expression analysis with new
regulatory functionality.
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Background

MicroRNAs (miRNA) are short, single-stranded ~ 22-
nucleotides-long RNA molecules, which are partially
complementary to one or more messenger RNA
(mRNA) molecules known as target mRNAs [1]. In
humans, hundreds of miRNA genes are predicted to
be present, and so, the potential regulatory circuitry
afforded by miRNA is huge [2, 3]. They can either
downregulate the gene expression [4] or can also up-
regulate the translation of mRNAs [5]. The expression
of almost 20-30% of all protein-encoding genes may
be altered by miRNAs at this post-transcriptional
level regulation [6]. miRNAs may act as key regula-
tors of processes as miscellaneous as embryonic de-
velopment, cell proliferation, cell growth, tissue
differentiation, and apoptosis. Recent studies of
miRNA expression involve miRNAs in cellular signal-
ing networks and co-regulation with transcription fac-
tors. Accordingly, a mutation in miRNAs, dysfunction
of miRNA biogenesis, and dysregulation may result in
a broad spectrum of diseases. In addition, compo-
nents required for miRNA processing and/or function
have also been implicated in various disorders. Cur-
rently, there have been reported ~ 378 diseases which
are associated with miRNAs [7].

Intronic miRNAs can be defined based on two fac-
tors; first, they must share the same promoter with
their encoded target genes, and second, they are
spliced out of the transcript of such encoded genes
and further processed into mature miRNAs [8]. About
37% of the known human miRNAs are located within
the introns of protein-coding genes preferably known
as host genes [9]. About 26% of the human intronic
miRNAs are transcribed from their own promoters
[10]. But the majority of human intronic miRNAs are
transcriptionally linked to their host gene expression
and processed from the same primary transcript [11].
In humans, most of the intronic miRNAs also show
correlated expression with their host genes [12].
Besides Drosha-processed miRNAs, the second type
of intronic miRNAs, mirtrons are discovered that by-
pass the Drosha cleavage by splicing [13] but exhibit
the same co-expression patterns with their host
genes.

Intronic miRNAs can negatively regulate their host
genes by targeting the 3'-UTR of their host gene,
inhibiting the host gene’s targets, or inhibiting the
transcription of their host genes by a negative feed-
back loop. On the other hand, some intronic miRNAs
can act as a positive regulator of their host gene by
forming a positive feedback loop that upregulates the
function of its host gene, working in concert with the
host gene’s targets, or silencing antagonistic genes to
its host gene [14].

Page 2 of 11

Previous findings [15, 16] showed that the coupled
expression of intronic miRNA and host gene were ob-
served where miRNA can modulate the function of
its host gene. Moreover, Steiman-Shimony et al
showed that intronic miRNAs may target transcripts
whose genes/proteins are targeted by the host gene
which can code a transcription factor [17], but no
functional consequence of those interplays was re-
vealed. Experiments to elucidate the functional regula-
tions of the host gene and intronic miRNA were
done in minuscule to date as they are time-
consuming and extravagant [15, 16].

Like many other regulatory miRNAs, an important
association of intronic miR-933 in various diseases
like dementia [18], hyperlipidemia and cardiovascular
diseases [19], and gastric cancers [20] was reported. It
was also found that ATF2 and miR-933 share a com-
mon promoter [21]. It is evident from the previous
studies that the ATF2 transcription factor is involved
in many diseases ranging from inflammatory diseases,
diabetes, multiple neurodegenerative pathologies, dif-
ferent forms of cancers, etc. [22]. But the link be-
tween intronic miR-933 and host gene ATF2 still
remained elusive.

Although there are several intronic miRNAs that exist
in the human genome, systemic identification of intronic
miRNAs and their role in normal physiology and disease
pathobiology is only explored in few cases [14]. In this
study, after genome-wide identification of all probable
intronic miRNAs, we explored the relationship between
intronic miRNA hsa-miR-933 and its host genes with a
combination of functional enrichment analysis to eluci-
date the functional relationship between them and the
mechanism of these functional regulations. Furthermore,
it was anticipated that the host gene’s and intronic miR-
NA’s common target gene sets for a particular biological
process or pathway can act antagonistically or
synergistically.

Results

A total of 822 intronic miRNAs and their associated host
genes were identified

From the human genome, we identified a total of 822 in-
tronic miRNAs (data not shown). Among these, hsa-
miR-933 was identified as embedded in the first intron
of the host protein-coding gene activating transcription
factor 2 (ATF2). ATF2 is a protein that acts as a tran-
scriptional activator which regulates the transcription of
a variety of genes. We also observed that host gene
ATF2 and miR-933 transcripts share common promoters
(Fig. 1a) and are expressed in many similar tissue types
(Fig. 1b—d). H3K27ac, an activating histone modification
mark, is found to be enriched around the shared pro-
moter of ATF2 and miR-933 (Fig. 1a).
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A unique set of hsa-miR-933 targets identified from

Host (ATF2) target genes were determined from ChiP-seq
various target prediction algorithms

experiments

To enumerate the targets of hsa-miR-933, we have uti-
lized the targets extracted from various microRNA target
databases. From all these databases, we have identified
the commonly predicted unique set of twenty-two genes
to be targeted by the hsa-miR-933 (Additional file 2).

ChIP-seq experiment in the cell line GM12878 from the
ENCODE database [23] provides binding sites of ATF2
protein. For peak-to-target gene annotation, we utilized
the well-known target-calling method “closestBed” im-
plemented in BEDTools [24]. A similar algorithm is also
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utilized by another target-calling program ChIPpea-
kAnno [25]. We have identified candidate target genes
of ATF2 by analyzing its ChIP-seq peaks and the
complete dataset of Homo sapiens 149,604 transcripts of
protein-coding genes as downloaded from Ensembl (re-
lease 70) [26]. By this approach, we have obtained a set
of 10,108 targets of ATF2 (Additional file 3).

Common targets of ATF2 and hsa-miR-933 reveal a
connection between protein GNAS, PRKACB, and PRKCE
Next, to identify what are the genes that could be regu-
lated by both host (ATF2) and intronic miRNA-933, we
sought to determine the common target gene of both in-
tronic miRNA-933 and its host gene ATF2, by Venn dia-
gram overlap analysis. We have found that 15 common
genes are targeted significantly by both hsa-miR-933 and
ATF2 ()(2 = 37.9891, p value < 0.00001) (Additional file 5).
These genes are PEA1S5, ZFHX4, DAB2IP, CYB5B, DLGI,
CANDI1, MAP4K4, KPNAI1, CUXI1, ZNF521, KCMFI,
BDNF, GNAS, PRKACB, and PRKCE (Fig. 1e).

These 15 targets were subjected to protein-protein
interaction (PPI) network analysis which revealed a con-
nection between GNAS, PRKACB, and PRKCE proteins
(Fig. 1f). This information was used to cluster GO annota-
tions and KEGG pathway enrichment analysis.

Intronic miRNA hsa-miR-933 regulates hyperinsulinemia
and hyperglycemia in type Il diabetes mellitus that may
be caused by overexpression of ATF2

In order to illuminate the roles of the genes targeted by
intronic miRNA hsa-miR-933, we have performed the
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enrichment analysis using the target genes for both ATF2
and hsa-miR-933. Significant enrichment (FDR < 0.05) of
the pathways necessary for the development of type II dia-
betes mellitus in terms of GO biological process (Fig. 2a)
and KEGG pathways (Fig. 2b) was observed. Functional
enrichment analysis showed significant enrichment of bio-
logical processes that can disrupt the normal glucose, in-
sulin, and glucagon homeostasis in the cell by positively
and negatively regulating them leading to the development
of type II diabetes mellitus (Fig. 2a, b). The target genes
that were significantly enriched for the development of
type II diabetes mellitus in both modules are GNAS,
PRKACB, PRKCE, MAP4K4, PEA1S5, and BDNF (Fig. 2c).
The functions of the enriched genes are listed in
Additional file 4.

The network analysis using these common target genes
shows ATF2-mediated activation of three genes PRKACB,
PRKCE, and ATKI. PRKACB activates GNAS which pro-
motes glucagon secretion upon glucose starvation. On the
contrary, PRKCE and also MAP4K4 activate ATK1 (Fig. 3).
ATK1 inhibits the expression of PEA15, an overexpressed
protein in type II diabetes mellitus, where it may contribute
to insulin resistance in glucose uptake. Hyperinsulinemia
and hyperglycemia are both the pathophysiologies of type II
diabetes mellitus (Fig. 4a). From this information, it can be
considered for the analysis if hsa-miR-933 can regulate the
overexpressed PEAIS, downregulated BDNF, or other
ATF2 target genes (PRKACB, GNAS, PRKCE, and
MAP4K4) to control type II diabetes mellitus (Fig. 4b).

ATF2 transcription factor has been identified as an
important component of the insulin signaling system
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Fig. 3 Putative regulatory network for the development of type Il
diabetes mellitus by target genes of ATF2 and hsa-miR-933. Modes
of action are shown in different colors

and in maintaining glucose homeostasis in the cell [27].
ATF2 targets genes are involved in insulin action,  cell
function, and type II diabetes mellitus. The other func-
tions of ATF2 target genes include adipocyte dysfunction,
inhibition of insulin signaling, lipid metabolism, glucose
metabolism,  cell dysfunction, and many others [28-30].
ATF2 can also regulate gluconeogenesis for glucose pro-
duction from the liver in response to glucose starvation
[31]. Some ATF2 target genes, for example, BDNF and
PEA15, are also linked to the development of insulin
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resistance under glucose stimulation [32, 33]. On the
other hand, insulin itself activates ATF2 by phosphoryl-
ation of Thr69 and Thr71 [34] by the c-Jun/MAPK path-
way. Improper activation of ATF2 target genes and ATF2
itself under conditions of insulin resistance can contribute
to the development of type II diabetes mellitus [28].

In recent times, microRNAs are considered as a pos-
sible biomarker or a potential therapeutic for treating
type II diabetes mellitus [35]. With this correspondence,
the role of intronic miRNA hsa-miR-933’s functional
regulation on its host gene ATF2 can provide valuable
insight into the progression and control of type II dia-
betes mellitus.

hsa-miR-933 plays a role in neuronal regeneration and
protection by suppressing the overexpressed targets of
host gene ATF2 responsible for neuron death

In order to reveal whether the targets of ATF2 and hsa-
miR-933 are involved in other significant pathways, we
analyzed the functional enrichment using the GOBP
module of the target genes. Interestingly, we have ob-
served a significant enrichment of biological processes
that contrast between the positive and negative regula-
tory cycles of neuron apoptotic process (Fig. 5a). Enrich-
ment analysis with the KEGG pathway module also
shows the significant pathways necessary for the devel-
opment of different diseases related to neuron degrad-
ation, for example, Huntington’s disease, Parkinson’s
disease, and long-term depression (Fig. 5b). The target
genes that were significantly enriched in both modules
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are GNAS, PRKACB, PRKCE, MAP4K4, PEA1S, and
BDNF (Fig. 5c). The functions of the enriched genes are
listed in Additional file 4.

From network analysis, we have tracked down the in-
volvement of ATF2 in the activation of two genes: BDNF
via JUN; PRKCE via FOS. PRKCE directly inhibits JUN
thus repressing the expression of BDNF leading to
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Fig. 6 Putative regulatory network for neurodegenerative disease by ATF2
and miR-933 target genes. Modes of action are shown in different colors

neurodegeneration (Fig. 6). On the other hand, recently, it
was discovered that hsa-miR-933 is a target of BDNF that
may be involved in cell growth, apoptosis, cell prolifera-
tion, or the regulation of the cell cycle. It is thus to be ana-
lyzed if hsa-miR-933 can act as a potential repressor of
neurodegeneration or promote neurodegeneration (Fig.
7).

ATF?2 is highly expressed with large variations in the
brain (Fig. 1d) and plays a role in both neurodegenera-

tion and neurogenesis. ATF2 seems to play a

BDNF

N

miR-933

Target Genes

Target Genes

Neuroprotection
Neuronal Apoptosis

Hyperphosphorylation
of JUN by ATF2
Neuroprotection

Inhibit JNK mediated
phosphorylation of JUN

Fig. 7 Putative controlling model of neurodegeneration by
regulating ATF2 target genes PRKCE and BDNF by miR-933
.




Islam et al. Human Genomics (2020) 14:34

fundamental role in neuronal viability and in neuro-
logical functions in the normal brain. ATF2 is downreg-
ulated in the hippocampus and the caudate nucleus in
Alzheimer’s, Parkinson’s, and Huntington’s diseases [36].

ATF2/JUN heterodimers bind and activate CASP3, a
key executor of neuronal apoptosis [37]. Following death
receptor stimulation, there is phosphorylation and bind-
ing of ATF2/JUN to death-inducing ligand promoters
(FASLG, TNF, TNEFSF10), which allows the spread of
death signals [38]. Neuronal apoptosis requires the sim-
ultaneous activation of ATF2/JUN and downregulation
of FOS [39]. This function is negatively regulated by
phosphorylation of ATF2 by PRKCE, which dictates its
nuclear localization [40].

Loss of functional ATF2 leads to hyperphosphorylated
JNK and p38 which results in somatic and visceral
motor neuron degeneration [41]. On the other hand, ac-
tivated ATF2 promotes apoptosis of various brain cells,
which are cerebellar granule neurons [37]. ATF2/JUN
heterodimers also promote the death of sympathetic
neurons [39]. Sometimes, ATF2/JUN inhibits JNK-
mediated phosphorylation of JUN and protects sympa-
thetic neurons from apoptosis [42].

Another ATF2 target BDNF can play a neuroprotec-
tive role against neural apoptosis [43]. Moreover, re-
cently, brain-derived neurotrophic factor (BDNF) has
been identified as a possible target sequence for hsa-
miR-933 [44]. So, exploiting this information, it can be
analyzed if ATF2 and hsa-miR-933 can play a neuropro-
tective role in neurodegenerative diseases by regulating
their common target gene BDNF.

Discussion

In recent times, biological modifier microRNA (miRNA)
has captured extensive attention for being a potential
candidate for studying their role in the regulation of
gene expression to delineate a variety of physiological
processes related to the progression and pathogenesis of
human diseases.

Almost half of the experimentally identified human
miRNAs are encoded in the introns of annotated
protein-coding genes which can be preferably denoted as
intronic miRNA embedded within the host gene. Along
with the breakthrough discovery of important functions
for these intronic miRNAs, the fact that made research
in this field of such significance is intronic miRNAs are
co-expressed and share similar transcriptional regulatory
mechanisms with their host genes in humans. This par-
allel expression pattern suggests that these intronic miR-
NAs may have functions either similar or opposite to
that of their host genes in a cell type- or tissue type-
specific spatial manner or expression time-specific tem-
poral manner.
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Despite the mounting evidence for their importance in
normal physiology, very little is known about the regula-
tory cascade controlled by intronic miRNA and host
gene in humans to date. In this study, a genome-wide
network-based and data mining approach was adopted
to elucidate the functional relationship between intronic
miRNAs and host gene, and the effects of intronic miR-
NAs on host gene targets to control cellular
homeostasis.

ATF2 is activated by stress kinases, including JNK
and p38. In response to stimuli, ATF2 is phosphory-
lated on threonine 69 and/or 71 by JNK or by p38.
Phosphorylation on Thr69 and Thr71 of ATF2 and
its dimerization are required to activate ATF2 tran-
scription factor activity [30]. At the same time, tran-
scriptionally active dimers of ATF2 protein are
regulated by ubiquitylation and proteasomal degrad-
ation [45], and phosphorylation of ATF2 on Thr69
and Thr71 promotes its ubiquitylation and degrad-
ation [46]. This phosphorylation and dephosphoryla-
tion cascade is an important factor for the positive
regulation of human insulin gene expression [47].

Hyperinsulinemia is a condition when the amount
of insulin circulating in the blood is higher than ex-
pected. Insulin itself can create a positive feedback
loop by activating ATF2 in this pathway solely or me-
diated by MAPKS (preceded by MAP4K4) or PRKCE
which can eventually lead to hyperinsulinemia [34].
Insulin overproduction also leads to the overexpres-
sion of other ATF2 target genes that lead to pB-
pancreatic cell dysfunction—pathophysiology of type
II diabetes mellitus [48].

One of the ATF2 target gene—MAP4K4 is an attenuator
for insulin signaling [49]. MAPK4K4 also plays an import-
ant role in insulin resistance in response to glucose stimu-
lus for the development of type II diabetes mellitus [50].
GNAS and PRKACB are another two ATF2 target genes
that are involved in the regulation of glucagon secretion
[51, 52] and insulin secretion for maintaining glucose
homeostasis in cells. Impairment in this regulation can
lead to hyperglycemia, and the resultant excess glucose in
the bloodstream leads to the development of type II dia-
betes mellitus [52]. Other ATF2 target genes BDNF down-
regulation and PEA15 upregulation are also linked to the
development of insulin resistance under glucose stimula-
tion, pathophysiology of type II diabetes mellitus [32, 33].

All these genes show significant enrichment in the
functional enrichment analysis performed in our study
with ATF2 and hsa-miR-933. Thus, hsa-miR-933 can be
considered as a potential regulator of type II diabetes
mellitus. Recent researches are more focused on consid-
ering microRNAs as the new therapeutics to treat type II
diabetes mellitus [53]. Recently, it has also been discov-
ered that microRNA-30d can induce insulin production
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by targeting MAP4K4 [54]. microRNAs 103/107 can
regulate insulin sensitivity [55]. In this context, it can be
considered if hsa-miR-933 can also regulate MAP4K4 or
other protein kinases (PRKCE, PRKACB) to control type
II diabetes mellitus [56]. Also, recently, brain-derived
neurotrophic factor (BDNF) has been identified as a pos-
sible target sequence for hsa-miR-933 [44]. So, it can
also be considered if hsa-miR-933 can reverse the effect
of insulin resistance in response to glucose stimulus by
upregulating BDNF.

The significant over-representation of genes associated
with type II diabetes mellitus, related pathways, and as-
sociated biological processes identified from our study,
indicates the firm possibility of considering hsa-miR-933
as a potential regulator of treating the complications
linked with the disease.

ATF2 transcription factor is a ubiquitously expressed
protein in humans with a more abundant expression in
the brain. This profuse expression enables it to have a
key role in both neurodegeneration and neurogenesis
[36]. This transcription factor also has a function in
neuronal migration during development [57]. But over-
expression of ATF2 in neuronal-like cell culture pro-
motes nerve cell death [36]. In addition, ATF2 has an
essential role in neuronal viability and in neurological
functions in the normal brain. In neurodegenerative dis-
eases like Alzheimer’s, Parkinson’s, and Huntington’s
diseases, ATF2 is downregulated in the hippocampus
and the caudate nucleus [36]. So, the proper regulation
of ATF2 is necessary for the neurons in the brain’s cen-
tral nervous system.

Activating transcription factor 2 (ATF2) is a member
of the activator protein-1 family of transcription factors
that promote neuronal apoptosis by c-Jun and c-Fos cas-
cade in the cytoplasm. Neuronal apoptosis requires the
simultaneous activation of ATF2/c-JUN and downregu-
lation of ¢-FOS [39]. This function is negatively regu-
lated by phosphorylation of ATF2 by PRKCE, which
dictates its nuclear localization [40]. Loss of functional
ATF2 leads to hyperphosphorylated JNK and p38 and
results in somatic and visceral motor neuron degener-
ation [41]. Sometimes, activated ATF2 also promotes
apoptosis of various brain cells, for example, cerebellar
granule neurons [37].

ATF2/c-JUN heterodimers also promote the death of
sympathetic neurons [39, 42]. In a negative feedback
loop, ATF2/c-JUN also inhibits JNK-mediated phos-
phorylation of JUN and protects sympathetic neurons
from apoptosis [42]. Additionally, ATF2 can also play a
role in neurogenesis by maintaining a subset of neural
progenitor cells [58]. Another ATF2 target BDNF has a
neuroprotective role against neural apoptosis [43, 59].

Considering this fact, ATF2 can be presented as an
important regulator of nervous system viability. The
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most recent research field, treating neurodegenerative
diseases with microRNAs, can be used to modulate any
aberrant expression of ATF2 target genes and subse-
quent abnormality leading to neuronal degradation or to
provide sufficient neuronal protection [60-62]. As stated
earlier, BDNF which is also over-represented in the en-
richment analysis of this study of neurodegenerative dis-
ease has been identified as a possible target sequence for
hsa-miR-933 [44]. So, exploiting this information, it can
be analyzed whether ATF2 and hsa-miR-933 can play a
neuroprotective role in neurodegenerative diseases by
regulating their common target gene BDNF.

Our study of functional enrichment analysis sheds
light on the functional interactions between intronic
miRNAs and host genes. Therefore, these findings can
have potential applications in the development of diag-
nostic and treatment methods.

Conclusion

The outcome of this study shows that intronic miRNAs
and their host genes can coincide with functional rela-
tions. Using a data-driven as well as a knowledge-based
computational approach, common targets of intronic
miRNA and their associated host genes were analyzed
for functional co-relations. A further GO analysis pre-
dicted an intronic miRNA-host gene interaction network
that confirms that the predicted target genes tend to be
regulated simultaneously. Taken together, these results
indicate either synergistic or antagonistic regulatory ef-
fects mediated by either downregulation of genes with
an opposed function or fine-tuning of intronic miRNA
targets, co-operative to the host gene.

Methods

Identification of host gene of hsa-miR-933

Genomic location position data of Homo sapiens micro-
RNA hsa-miR-933 and protein-coding genes were retrieved
from Ensembl (release 70) [26] database using the BioMart
portal. We used the IntersectBed feature of the BEDTools
[24] to find the host gene in which the hsa-miR-933 is em-
bedded. We also cross-checked the promoter of the tran-
scripts of hsa-miR-933 using the web portal http://fantom.
gsc.riken.jp/5/suppl/De_Rie_et_al 2017/ [21].

Obtaining the tissue-wide expression profiles of hsa-miR-
933 and ATF2

We have retrieved the tissue-wide expression data of the
host gene ATF2 from NCBI Bioproject ID: PRJEB4337.
Human miRNA tissue atlas [63] was used to obtain the
gene expression data of hsa-miR-933 in different tissue
types and bodily fluids.


http://fantom.gsc.riken.jp/5/suppl/De_Rie_et_al_2017/
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Identification of the targets of the host gene (ATF2)

After identifying the host gene, we have identified the
targets of the host gene. For this, ChIP-seq experiment
datasets (Additional file 1) of the host gene were re-
trieved from the ENCODE database [64] for analysis.
For target calling, we used the “closestBed” feature of
the BEDTools [24] to identify the nearest transcript from
the ChIP-seq peak as the target gene using Ensembl (re-
lease 70) transcripts.

Identification of the targets of hsa-miR-933

We have extracted the targets of hsa-miR-933 from sev-
eral miRNA target gene databases which include both
experimental and predicted targets, namely TargetScan
v6.2 [6], TarBase v4 [65], PITA v6 [66], PicTar [67], ex-
perimentally validated miRTarBase v4.5 [68], miRBase
[69], and miRecords v4 [70]. A commonly predicted
miRNA target gene set was prepared from the targets re-
trieved from different microRNA target databases for
further analysis.

Identification of common targets of intronic miRNA and
host gene by overlap analysis

To find out the common targets of hsa-miR-933 and its
host gene, we have conducted an overlap analysis using
the interactive tool Venny (v 2.0.2) [71]. The result gen-
erated the list of targets that are both targeted by the
host gene and hsa-miR-933.

Functional enrichment analysis

The functional annotation of target genes is based on
Gene Ontology (GO) [72] as extracted from the Ensembl
database (release 70) [26] and KEGG pathway database
[73]. Accordingly, all genes are classified into the ontol-
ogy categories biological process (GOBP), cellular com-
ponent (GOCC), molecular function (GOMF), and
pathways when possible. The GO/pathway categories
that have at least 10 genes annotated were only consid-
ered. Gitools [74] was used for functional over-
representation analysis and heatmap generation. Result-
ing p values were adjusted for multiple testing using the
Benjamin and Hochberg’s method of false discovery rate
(FDR) [75].

Clustering of biological processes and pathways with a
functional similarity of host genes and intronic miRNA
target gene sets

The host gene confers regulatory control by transcrip-
tional or translational inhibition/activation of the hsa-
miR-933 target genes or vice versa in possibly related
biological processes or pathways. To test this hypothesis
for all hosts and target genes, their respective annota-
tions were compared and clustered manually based on
the literature. Functional gene annotations as provided
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by the GO [72] and KEGG pathway [73] classify genes
according to their molecular function, associated bio-
logical processes, or appearance within defined cellular
components and pathways they appear.

Construction of network with enriched gene sets derived
from functional enrichment analysis
We have constructed the protein-protein interaction
networks of enriched targets of the host gene and the
miRNA hsa-miR-933 using tools STRING (version 10)
[76] for possibly related biological processes or path-
ways. Based on protein-protein interaction, and data and
knowledge-driven approach, the hypothesis for a par-
ticular enriched biological process or pathway was
predicted.

The whole workflow of this study is summarized in
Additional file 6: Figure S1.
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