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Abstract

Introduction: The course of COVID-19 varies from asymptomatic to severe in patients. The basis for this range in
symptoms is unknown. One possibility is that genetic variation is partly responsible for the highly variable response.
We evaluated how well a genetic risk score based on chromosomal-scale length variation and machine learning
classification algorithms could predict severity of response to SARS-CoV-2 infection.

Methods: We compared 981 patients from the UK Biobank dataset who had a severe reaction to SARS-CoV-2
infection before 27 April 2020 to a similar number of age-matched patients drawn for the general UK Biobank
population. For each patient, we built a profile of 88 numbers characterizing the chromosomal-scale length
variability of their germ line DNA. Each number represented one quarter of the 22 autosomes. We used the
machine learning algorithm XGBoost to build a classifier that could predict whether a person would have a severe
reaction to COVID-19 based only on their 88-number classification.

Results: We found that the XGBoost classifier could differentiate between the two classes at a significant level (p =
2-10""") as measured against a randomized control and (p=3-10""*) as measured against the expected value of a
random guessing algorithm (AUC = 0.5). However, we found that the AUC of the classifier was only 0.51, too low

for a clinically useful test.

predict severity.

Conclusion: Genetics play a role in the severity of COVID-19, but we cannot yet develop a useful genetic test to
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Introduction
The course of COVID-19 varies from asymptomatic to
severe (acute respiratory distress, cytokine storms, and
death) in patients. The basis for this range in symptoms
is unknown. One possibility is that genetic variation is
partly responsible for the highly variable response to
infection.

Human genetic variation can affect susceptibility and
resistance to viral infections [1]. For instance, variants in
the gene IFITM3 affect the severity of seasonal influenza
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[2]. Patients hospitalized from seasonal influenza had a
particular allele of the gene IFITM3 at a higher rate than
expected from the general population. Laboratory work
determined that this particular allele can alter the course
of the influenza virus infection.

We have previously shown that chromosomal-scale
length variation is a powerful tool to analyze genome-
wide associations [3]. This method is particularly appeal-
ing for genetic risk scores because it includes epistatic
effects that might be missed with conventional genome-
wide association studies. Others have used machine
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learning in combination with copy number variation to
predict cancer risk [4].

The purpose of this paper is to evaluate how well a
genetic risk score based on chromosomal-scale length
variation and machine learning classification algorithms
can predict severity of response to SARS-CoV-2 infec-
tion. We evaluated this approach on a dataset of 931 pa-
tients who had a severe reaction to COVID-19 in the
early part of the 2020 global pandemic. These patients
had been previously genotyped as part of the UK
Biobank.

Methods

Data was obtained from the UK Biobank under Applica-
tion Number 47850. First, we downloaded the “I2r” files
from the UK Biobank. Each chromosome has a separate
“12r” file. Each “I12r” file contained 488,377 columns and
a variable number of rows. Each column represented a
unique patient in the dataset, who is only identified by
an encoded identification number. Each row represented
a measurement at a different location in the genome.
The values in the file represent the log (base 2) of the ra-
tio of measured intensity measured in a microarray rela-
tive to the expected two copies at that location in the
genome.

After downloading the “12r” data from the UK Bio-
bank, we computed the mean 12r value for a portion, we
chose 25%, of the chromosome for each patient in the
dataset. This process produced a dataset where each per-
son was represented by a series of 88 numbers. Each
number represents the length variation for 25% of the 22
non-sex chromosomes. A value of 0 (log, ration) repre-
sents the nominal average length of that portion of the
particular chromosome. We «call this dataset the
chromosomal-scale length variation (CSLV) dataset.

This CSLV dataset was matched with the UK Biobank
COVID-19 dataset. The COVID-19 data were provided
to UK Biobank by Public Health England. UK Biobank
matched the person in the Public Health England data
with UK Biobank’s internal records to produce the per-
son’s encoded participant identification number. The
dataset we have provided by UK Biobank contains the
participant ID, date the specimen was taken, laboratory
that processed the sample, whether the patient was an
inpatient when the sample was taken, and the result
(positive/negative) of the test. The UK Biobank con-
tinues to update the data approximately biweekly.

The criteria for testing and interpretation of results in
the UK Biobank COVID-19 data has evolved. A positive
test in this dataset earlier than 27 April 2020 was a good
indication that the person had severe disease. During
this initial period of the pandemic, SARS-CoV-2 testing
was only performed on symptomatic people and this
particular dataset only includes people tested in a
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hospital. After 27 April 2020, NHS instructed hospitals
to test all non-elective patients admitted, including
asymptomatic patients. The UK Biobank dataset released
after 27 May 2020 includes “pillar 2” positive test results.
These “pillar 2”7 tests include people in hospitals for
non-elective procedures and staff screening. These re-
sults can include asymptomatic patients.

Using the CSLV-COVID-19 dataset, we selected all
people who tested positive before 27 April 2020 and la-
beled these as people having a severe reaction to
COVID-19. We segmented these into three overlapping
datasets, as shown in Table 1. We constructed an age-
matched control group of the same size that had an
identical age profile as those in the severe reaction
group. The age-matched control group was selected
from the entire UK Biobank dataset, excepting those few
who had a severe reaction to COVID-19. Since only a
small fraction of the people in the UK Biobank had a se-
vere reaction to COVID-19, we could rerun the analysis
with a different age-matched control group many times
to build up statistics. We chose this method of selecting
the control group based on the finding that severe reac-
tions to COVID-19 are both a strong function of age
and uncommon (only about 20% of those infected with
SARS-CoV-2 require ICU admission even among those
in their 70s) [5, 6].

We used the H20 machine learning package in R to
create XGBoos t[7] models that were trained to classify
a person in the dataset, consisting of those who had a se-
vere reaction and age-matched controls, based solely on
their chromosomal-scale length variation data.

Results
The results are presented in Fig. 1 and Table 2. As Fig. 1
shows, we found a significant difference between all
three age groupings and their corresponding random
controls. This finding indicates that germ line genetics
of the infected patient, as represented by the set of
chromosomal-scale length variation numbers, is corre-
lated with the severity of COVID-19.

Fig. 1 and Table 3 also show that the AUC (area under
the curve of the receiver operating characteristic curve)
for the XGBoost classification model was about 0.51, but

Table 1 We segmented the dataset into three overlapping
subsets. The first, which we called “1930" contained all UK
Biobank participants born after 1930 who had a severe reaction
to SARS-CoV-2 infection before 27 April 2020. The two subsets
contained people born after 1940 and after 1950

Dataset Number
1930 (< 90 years of age) 981
1940 (< 80 years of age) 880
1950 (< 70years of age) 468
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Fig. 1 This boxplot figure presents the results of the machine learning predictions. We created three different datasets, one which includes all
patients less than 90 years old, the second includes every patient less than 80 years old, and the third with every patient less than 70 years old.
These are indicated as the oldest birthyear “data.” Each dataset included an equal number of patients with a “severe reaction” to COVID-19 and
an equal number of age-matched people drawn from the general UK Biobank population, “normal.” For comparison, we took those three
datasets and randomly permuted the status (“severe reaction” or “normal”) and repeated the process. This randomly permuted dataset is labeled
oldest birthyear “random.” For each dataset, we repeated the whole process 100 times, each time with a different set of age-matched people

1950

Table 2 We compared the difference in mean AUC values
between the various datasets using a t test. The datasets
consisting of people born after 1930, 1940, and 1950 all showed
significant differences with the corresponding random control.
Those three datasets also showed significant differences
between the mean AUC and 0.5. The three random controls did
not show a significant difference between the mean AUC and
0.5, as expected. An AUC value of 0.5 represents a random
classification test, one in which the algorithm is no better than
guessing

p value of t test

1930 data 1930 random 2-107"
1940 data 1940 random 1-107°
1950 data 1950 random 1-107*
05 1930 data 3.10
05 1940 data 4.10"
05 1950 data 3-10°
0.5 1930 random 0.1

0.5 1940 random 04

0.5 1950 random 0.08

still significantly greater than 0.50. A classification model
with an AUC of 0.51 is just slightly better than guessing.

Discussion

The two conclusions of this study are divergent. First, a
genetic difference exists between those who have the
most severe course of COVID-19 and the general popu-
lation. Second, we were not able to exploit this differ-
ence to develop a clinically useful test to distinguish
between people who will experience a severe course of
the disease and those who will not. We could only

Table 3 The mean and standard deviation of the area under
the curve of the receiver operating characteristic curve was
recorded after each of the 100 different XGBoost classification
models. Each run used a different set of people who did not
have a severe reaction to COVID-19. The mean AUC for all three
datasets was well described by a normal distribution, as
confirmed by a Shapiro normality test

Mean AUC SD AUC
1930 data 0515 0.017
1940 data 0516 0.019
1950 data 0511 0.030
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demonstrate a genetic risk test with an AUC of 0.51, just
slightly above 0.50 which represents random guessing.

Although the AUC we found here is too low to be
clinically useful, several avenues for improving the AUC
exist. We were constrained by the data available to com-
pare those who had a severe reaction to COVID-19 with
the general population, but the general population prob-
ably contains a substantial number of people who would
also have a severe reaction to COVID-19. A better ap-
proach would be to compare those who had a severe re-
action to COVID-19 with those who were asymptomatic
or had a mild reaction. Simply having a much larger
number of patients who had a severe reaction might also
lead to an increase in AUC.

Changes in our feature selection and classification al-
gorithm might also improve the AUC. Our feature selec-
tion algorithm that transformed “I12r” data into our final
chromosomal-scale length variation data took averages
over each quarter of a chromosome. We could instead
include smaller chromosome segments. Generally, we
need the number of features to be much less than the
number of observations (patients). So, an increase in the
number of observations would allow an increase in the
number of features. Also, an alternative machine learn-
ing algorithm might improve the AUC. Different algo-
rithms perform differently on different classes of
problems and XGBoost generally performs well on tabu-
lar data [8]. We did a brief test of different algorithms
before choosing XGBoost as the best solution for this
problem. But, for instance, a deep learning algorithm
might have better performance with proper tuning.

Our results add to the recent work done by others on
the link between genetics and severity of COVID-19. For
instance, one study from the Netherlands identified four
young men from two different families who had severe
symptoms of COVID-19 and no preexisting medical
conditions. Detailed genetic studies revealed that these
four men all had a rare loss of function variant of TLR7,
which lies on the X-chromosome [9].

A detailed study of this UK Biobank COVID-19 data-
set found that Black and Asian patients were at a signifi-
cantly higher risk of testing positive compared to white
patients [10]. This study also attempted to derive a poly-
genic risk score. However, when they applied the poly-
genic risk score to a hold-out group, they found that the
mean score was indistinguishable between the group of
people who had tested positive and the group that had
no positive test. In comparison, our work found that
these two groups are distinguishable with a genetic risk
score, but only very slightly. We measured the AUC at
0.51. They [10] do not report an AUC, but an indistin-
guishable test is the equivalent of an AUC of 0.50.

Other more comprehensive metastudies have identi-
fied one specific genetic component behind the severity
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of COVID-19. For instance, one study of COVID-19 pa-
tients who experienced respiratory failure at seven hos-
pitals in Italy and Spain found a fairly strong association
in a cluster of genes lying on part of chromosome 3 and
a borderline association in chromosome 9 encompassing
the ABO blood group locus [11]. The “ANA_B2” June
2020 results posted by the COVID-19 Host Genetics Ini-
tiative [12, 13] also indicate a strong association in
chromosome 3 but fail to reproduce the association in
chromosome 9. The COVID-19 Host Genetics Initiative
“ANA_B2” study compares hospitalized COVID-19 pa-
tients to the general population and are mostly derived
from patients in Europe and Brazil. Neither study
attempted to derive a genetic risk score.

This study has several weaknesses. First, we cannot at-
tribute the severity of COVID-19 to particular genetic
variants. This study only finds correlations and does not
establish a cause and effect. Second, while it is possible
that these correlations relate to underlying biology, it is
also possible that the correlations are related to ancestral
differences that translate to socio-economic differences.
COVID-19 severity is known to be correlated with ra-
cial/ethnic background [14, 15]. The small effect that we
measured might be simply due to the larger complex ef-
fect of racial/ethnic disparities in COVID-19 severity.

Conclusion

In conclusion, we found a significant difference exists be-
tween the structural genomics of those patients in the UK
Biobank who had a severe reaction to the SARS-CoV-2
virus and the general UK Biobank population. However, a
test based upon this difference would not be clinically use-
ful in its present state since it had an AUC of 0.51.
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