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Abstract

In this paper, we introduce a network machine learning method to identify potential bioactive anti-COVID-19
molecules in foods based on their capacity to target the SARS-CoV-2-host gene-gene (protein-protein) interactome.
Our analyses were performed using a supercomputing DreamLab App platform, harnessing the idle computational
power of thousands of smartphones. Machine learning models were initially calibrated by demonstrating that the
proposed method can predict anti-COVID-19 candidates among experimental and clinically approved drugs (5658
in total) targeting COVID-19 interactomics with the balanced classification accuracy of 80–85% in 5-fold cross-
validated settings. This identified the most promising drug candidates that can be potentially “repurposed” against
COVID-19 including common drugs used to combat cardiovascular and metabolic disorders, such as simvastatin,
atorvastatin and metformin. A database of 7694 bioactive food-based molecules was run through the calibrated
machine learning algorithm, which identified 52 biologically active molecules, from varied chemical classes,
including flavonoids, terpenoids, coumarins and indoles predicted to target SARS-CoV-2-host interactome networks.
This in turn was used to construct a “food map” with the theoretical anti-COVID-19 potential of each ingredient
estimated based on the diversity and relative levels of candidate compounds with antiviral properties. We expect
this in silico predicted food map to play an important role in future clinical studies of precision nutrition
interventions against COVID-19 and other viral diseases.
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Background
The rapid and continued spread of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) is resulting in
persistent outbreaks of novel coronavirus disease 2019
(COVID-19) across the world [1]. This in turn is having
damaging effects on global economies and healthcare
systems, wellbeing, mental health and societal dynamics, as
a whole. In the absence of effective curative treatments and
validated vaccines, there is an urgent need for innovative
solutions. Combining conventional medical treatments
with nutritional interventions represents one such solution,
which is gaining traction [2, 3]. Considerable recent efforts
have been directed towards identifying new purposes, or
alternative uses, for existing drugs (so-called drug repur-
posing) [4, 5]. This offers an attractive way to circumvent
the slow and costly pathway to new drug development and
regulatory approval. Several examples of repurposed drugs
have been tested or are currently being tested in clinical
trials for deployment against COVID-19 [6]. In particular,
the randomised controlled trials of the corticosteroid
dexamethasone have confirmed its capacity to reduce
mortality by up to a third in COVID-19 patients admit-
ted to hospital for respiratory support [7]. However,
there are no clinically approved drugs or other antiviral
therapeutics for COVID-19 prevention, or for the treat-
ment of non-hospitalised symptomatic patients. These
patients are typically discharged home with basic advice,
but remain at risk of personal clinical deterioration
(especially those with underlying comorbidities) and also
pose an ongoing risk to close contacts.
The human diet is rich with molecules that have been

shown to play a role in both the prevention and treat-
ment of viral diseases, by interacting with drugs to
enhance their potency or by acting as “medicines” them-
selves [8]. Of particular relevance are plant-based foods
which possess a complex profile of molecules of varied
chemical classes such as alkaloids, flavonoids, coumarins,
terpenoids and indoles [9]. Laboratory studies have re-
vealed multiple mechanisms of action by which these
dietary compounds exert their action against functionally
and genetically diverse viruses [10, 11]. Furthermore,
there is a growing body of evidence that poor dietary
habits and diet-related comorbidities such as obesity,
diabetes and cardiovascular disease are at least partially
responsible for disparities in adverse outcomes from
COVID-19 across the globe [12, 13]. One possible ex-
planation for this could be poor gut microbiome health
and pre-existing pro-inflammatory state leading to a dys-
regulated cytokine storm among vulnerable COVID-19
patients that is associated with the high mortality of
such cases [14].
Identification of dietary constituents and consequent

design of phytochemically rich “Hyperfoods” with disease-
beating properties can be a safe and cost-effective method

for developing tailored nutrition-based therapeutic strat-
egies against many diseases, including COVID-19 [15].
However, it is vitally important to appreciate that the
modern era of molecular gastronomy has resulted in a
growing expectation for food to fulfil taste, aesthetic, sen-
sory and health-centred requirements. For these reasons,
the design of such “Hyperfoods” requires multi-faceted
optimisation, taking into account not only pro-health ben-
efits but also considering visual aesthetics (e.g. colour, tex-
ture) and sensory (e.g. taste mouthfeel) characteristics
[15]. At present, the landscape of potential drug-like mole-
cules in food is unimaginably vast. Thanks to advances in
high-throughput mass spectrometry technologies and ma-
chine learning, identification and molecular networking of
thousands of these molecules from various food sources
has become possible [16]. Investigating the influence of a
single drug or food component on any particular viral in-
fection takes months to years of experimental research.
Examples of experimentally derived phytochemicals with
antiviral properties include hesperedin and naringin in cit-
rus foods, tannic acid in black tea, emodin in rhubarb and
myristicin in dill and parsley [17, 18]. Given the vast mo-
lecular space, the traditional practicalities of investigating
the influence of a single molecule or food component
would take far too long to have an impact on the current
COVID-19 crisis.
Coronaviruses cannot survive or replicate without host

assistance. In fact, all viruses have naturally evolved a
sophisticated array of molecular strategies designed to
exploit the host’s cellular machinery to promote viral
survival and replication. These strategies rely on a com-
plex network of physical interactions between viral and
host genes and proteins (so-called virus-host interactome
networks, here and further due to the specifics of the
existing interaction datasets, “gene” and “protein” terms
can be used interchangeably) [19]. The conventional anti-
viral drug development paradigm assumes that one drug
targets one viral protein [20]. In this regard, molecular
docking computational simulations have been extensively
performed to discover plant-based bioactive molecules for
specific SARS-CoV-2 protein targets [21]. This approach
has multiple drawbacks among which is the robustness of
complex virus-host interaction networks to individual pro-
tein perturbations. The putative effects of vaccines and
drugs against SARS-CoV-2-specific gene or protein targets
can also be complicated by escaped viral mutants [22].
Here, we hypothesise that an effective anti-COVID-19

preventative or therapeutic intervention should target mul-
tiple biochemical networks implicated in virus entry and
pathogenesis such as angiotensin-converting enzyme-2
(ACE2)/G protein Mas receptor (MasR) axis, mitogen-
activated protein kinase (MAPK) cascade, and toll-like
receptor signalling pathways [23]. Building on our previous
work on cancer-beating molecules from food sources [15]
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and other recent network medicine studies for computa-
tional drug repurposing against COVID-19 [24], we have
combined network-based machine learning methods,
mobile supercomputing and interactomics data to identify
food-based bioactive molecules targeting SARS-CoV-2-hu-
man interactome networks. We have first calibrated the
proposed machine learning workflows to predict experi-
mentally confirmed drugs with anti-COVID-19 properties.
Once calibrated, the models were used to discover drug-
like molecules in foods. The discovered molecules/sources
were used to compile a list of antiviral “Hyperfoods”
weighted by the highest diversity and levels of antiviral
molecules against SARS-CoV-2-human interactome net-
works. We envision that the list of phytochemically rich
“Hyperfoods” revealed in this work will serve as a funda-
mental pillar in the design of a precision nutrition inter-
vention strategy against COVID-19.

Results and discussion
Genome-wide network-based machine learning for
predicting drug and food molecules targeting SARS-CoV-
2-host interactome
We have used the random walk propagation algorithm
to learn the effects of SARS-CoV-2 on human interac-
tome networks governing regulatory and biochemical
pathways. The SARS-CoV-2 virus exploits human biomo-
lecular network machinery to promote viral entry, survival,
replication, spread and shedding. The propagated SARS-
CoV-2-host interactome profile was subjected to the Gene
Set Enrichment Analysis (GSEA), which highlighted mul-
tiple potential mechanisms by which the coronavirus exerts
its activity on the host (Additional file 1). These include
membrane surface proteins (ACE2), regulation of pro-
grammed cell death pathways (caspase 8 and p38/MAPK
signalling), genomic replication pathways (RNA polymerase
pathways), immune-modulatory signalling circuits (toll-like
receptors, the nuclear factor-kB (NF-kB), JAK/STAT sig-
nalling pathways) and inflammatory axes (e.g. interleukin
pathways; see section 4 of Additional file 2 for additional
details).
The ranking of drug and food molecules was based on

their potential interaction capability with COVID-19,
which in turn has been derived from their respective ef-
fects on the human protein-protein (or gene-gene) inter-
action network, commonly referred to as the
interactome. The main assumption here is that for a
given molecule to have an effect against coronavirus, it
should target the same pathways and cellular mecha-
nisms targeted by the disease, but with the opposite
regulatory effect. This action does not necessarily imply
that gene/protein targets have a direct effect, and the ef-
fect can be indirectly exerted through other neighbour-
ing proteins in the network, via gene-gene (protein-
protein) interaction. This approach permits modelling

the systemic genome-wide response to the disease and
drug/food intervention and identifying drug/food-based
compounds with the highest probability of being effect-
ive against COVID-19 (see Fig. 1). Similar network
propagation approaches have been applied in cancer re-
search for drug repurposing [24], for mutation-driven
population stratification [25] and, in our earlier work,
for drug repurposing and food-based anti-cancer mo-
lecular therapeutics [15]. Although there are other ap-
proaches being developed for drug repurposing using
multi-omics and phenotypic data [26], these mandate
additional datasets that are usually not available for
food-based molecules.
The machine learning algorithm parameters were cali-

brated for predicting experimentally validated drugs
against COVID-19 in a cross-validation setting (see sec-
tion 3 in Additional file 2). The optimal balanced classi-
fication accuracy in the range of 80–84.9% was achieved
using an ensemble of parameter settings (3609 models
for aggregated interactome (see Additional file 3) and 15
models for manually curated interactome derived from a
biological pathway database of COVID-19 WikiPathways
(see Additional file 4)). Practically, this resulted in ap-
proximately 8 out of 10 drugs being correctly classified
into their respective classes (i.e. potentially anti-COVID-
19 vs others). For each parameter combination achieving
balanced accuracy above 80%, a ranked list of compounds
(drugs and food molecules) was generated with com-
pounds ranked by the decreasing correlation between
compound and disease profiles. The consensus list of top-
ranked compounds with the highest antiviral ranking and
probability is summarised in Additional file 5. For each
candidate molecule, we also provided a putative mechan-
ism of action and literature reference where available.

Drug repositioning candidates against COVID-19
Our analysis identified imiquimod as the top-ranked drug
with anti-COVID-19 potential. Imiquimod acts as an
agonist of toll-like receptor 7, which is crucial in recognis-
ing single-stranded RNA viruses, such as SARS-CoV-2.
Toll-like receptors generate antiviral immunity and act to
induce favourable type I interferon response, which in
turn induces the expression of interferon-stimulated genes
leading to the inhibition of viral replication [27].
Several widely used chemotherapeutic agents were

found to exert potential anti-COVID-19 effect, including
doxorubicin, fluorouracil and gemcitabine. Doxorubicin
is commonly used in the treatment of advanced breast
cancer, bladder cancer and lymphoma, as well as a
number of other malignancies. A previous study has
indicated that SARS-CoV-2 contains residues that are
vulnerable to the reactive glycating agent methylglyoxal,
cellular levels of which are increased by doxorubicin [28].
Fluorouracil is a fluoropyrimidine used for the treatment
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Fig. 1 Schematic diagram of the overall workflow. The random walk with restarts algorithm operating within a mobile supercomputing
DreamLab App is used to simulate how drug and food-based compounds interact with COVID-19-associated viral gene/protein networks. This
has been extrapolated from human genome-wide gene-gene (protein-protein) interactome data and based on known COVID-19 human
proteome viral targets (i.e. human genes/proteins interacting with different stages of the virus life cycle to facilitate replication and/or enhance
viral potency). Both disease and molecular compound impacts are propagated through the interactome network to model the overall cellular
response/interactome perturbation. The resulting compound and disease profiles are then correlated to rank compounds according to their
network “overlap” with “reference” viral profiles. This approach is based on the assumption that to have an effect, candidate compounds should
target the same network component(s) as the one(s) disrupted by the virus. Therapeutic effect can be direct, or indirect, for example where
compounds are found to interact with neighbouring network nodes, resulting in subsequent effect propagation to the desired target
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of a number of solid organ tumours. It is a precursor of
deoxythymidine triphosphate and uridine-5′-triphosphate
(UTP) during biogenesis and interferes with both DNA
and RNA metabolism. This drug is preferentially incorpo-
rated into RNA instead of UTP, which interferes with
RNA processing and protein synthesis and this in turn
can lead to the disruption of viral RNA replication and
elicit an antiviral effect [29]. Gemcitabine has also been
shown to inhibit SARS-CoV-2 replication. It is hypothe-
sised that this effect occurs through targeting of pyrimi-
dine biosynthesis salvage pathways and stimulation of the
innate immune system [30]. Although chemotherapy and
other anti-cancer treatments may result in significant
immune compromise in patients, rendering them more
susceptible to viral and other infectious illnesses [31], the
findings presented here also highlight a double-edged
phenomenon, whereby they may actually exert potential
beneficial effects against COVID-19 infection.
Statins are considered a clinically important break-

through in the prevention and treatment of cardiovascular
disease. Simvastatin and atorvastatin were found to offer
significant anti-COVID-19 potential. The hypothesis is
that statins in general reduce COVID-19 infectivity
through the removal of cholesterol used by SARS-CoV-2
to infect cells [32] and reduce the risk of cardiovascular
complications that are symptomatic of severe COVID-19
infection. In addition, they may enhance innate immune
responses to viral infections through inhibition of the
myeloid differentiation primary response 88 signalling
pathway. Correspondingly, a recent meta-analysis of data
from multiple studies reported a 30% reduction in fatal or
severe disease course in patients with confirmed COVID-
19 infection who were taking statins [33].
Metformin is globally regarded as one of the key phar-

macotherapies in the management of diabetes mellitus. Of
note, it was originally introduced as an anti-influenza
drug, with glucose-lowering capability regarded as a side-
effect of treatment, rather than desired primary endpoint.
The many pleiotropic effects of metformin together with
its widespread utility in modern medicine have earned it
the name “the aspirin of the 21st century” [34]. It activates
the AMP-activated protein kinase, resulting in the phos-
phorylation of angiotensin-converting enzyme II (ACE2),
which leads to conformational and functional changes to
ACE2 that are thought to inhibit SARS-CoV-2 binding
and/or entry [35]. In support of these suggestions, a recent
meta-analysis demonstrated a reduced risk of mortality in
COVID-19 patients receiving metformin [36].

Prediction of “dark matter” of food biochemistry with
anti-COVID-19 properties
In addition to minerals, vitamins and micronutrients, all
plant-based foods contain phytochemicals that are non-
nutritive components in the diet but can exert protective

or disease-beating effects. This phytochemistry has been
exploited extensively for the development of antiviral
drugs with more acceptable side-effect profiles, compared
to synthetically generated drugs [37]. The network-based
analysis presented here identified 52 food-based molecules
based on their capability to target SARS-CoV-2-host inter-
actomes. These molecules belong to a variety of chemical
classes including (iso)flavonoids, terpenoids, phenols and
indoles (see Fig. 2). As highlighted, the presence and
abundance of these molecules are not typically monitored
by national nutritional agencies, which conventionally
focus on minerals, vitamins and macronutrients. These
compounds can be regarded as the “dark matter” of nutri-
tional science. Because of their bitter taste, it is interesting
to note that the food industry routinely removes some of
these compounds through selective breeding and a variety
of debittering processes to improve taste [38]. This has
even led to the suggestion by some cancer research groups
that foods possessing more bitter taste may actually offer
greater health benefits [38].
The (poly)phenolic classes of molecules such as flavo-

noids, coumarins, stilbenes, indoles and phenolic acids
make up the majority of anti-COVID-19 bioactive
compounds identified by our network-based machine
learning algorithm. These include flavonols (e.g. quer-
cetin, kaempferol and myricetin), flavones (e.g. luteolin
and apigenin), flavanols (e.g. procyanidin B2), flavanones
(naringin), isoflavonoids (daidzein, genistein and legume-
lin) as well as stilbenes (trans-resveratrol), indoles (3-in-
dole-carbinol) and phenolic acids (gallic acid). In edible
plants such as fruits and vegetables, phenolic molecules
are widespread and contribute to their aroma, taste and
colour. These compounds are synthesised in abundance
by plants in response to environmental stimuli and play
an indispensable role in defence against pathogens (in-
cluding viruses) and insects [39]. Their ability to disrupt
the life cycle of SARS-CoV-2 is partially achieved via
interference with viral proteins. For example, among our
top-ranked molecules, epigallocatechin 3-gallate was
demonstrated experimentally to inhibit 3-chymotrypsin-
like protease (3CLpro) [38]; quercetin demonstrated
binding affinity to inhibit 3CLpro and papain-like prote-
ase (PLpro) [40], while trans-resveratrol inhibits nucleo-
capsid (N) proteins [18].
In addition, the identified compounds appear to mitigate

against various patho-physiological processes that develop
in response to COVID-19. For example, regulation of the
renin-angiotensin system (RAS) and expression of
angiotensin-converting enzyme 2 (ACE2), stimulation of
immune system, downregulation of pro-inflammatory
cytokine release and amplification of cytotoxic T lympho-
cyte (CTLs) and natural killer (NK) immune cell pools.
The putative mechanism of action for each of the identi-
fied compounds is summarised in Additional file 5.
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Construction of anti-COVID-19 food map
The potential for particular foods to exert COVID-19
preventative and/or therapeutic effect depends upon the
bioavailability and diversity of bioactive molecules with
antiviral properties contained therein [41]. A key limita-
tion of the existing literature on food-based compounds
is the largely over-simplified view that is commonly
taken, whereby studies have tended to focus on specific
molecular components in isolation, for example specific
flavonoids such as quercetin [42]. However, when candi-
date antiviral agents acting in isolation have been

evaluated in clinical studies, they have failed to consist-
ently confer the same level of benefit [43]. It seems more
plausible that consumption of whole foods, with their as-
sociated phytochemicals en masse may provide greater
health benefits, due to molecular additive or synergistic
effects. It therefore follows that the antiviral properties
of a given food will be governed by two key factors: (1)
the additive, antagonistic and synergistic actions of their
individual components and (2) the way in which these
simultaneously modulate different intracellular pathways
involved in SARS-CoV-2 pathogenesis.

Fig. 2 Hierarchical classification of the top 52 predicted antiviral molecules targeting SARS-CoV-2 human interactome networks
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Based on these assumptions, we have constructed a
food map with the theoretical anti-COVID-19 capacity
of each ingredient ranked according to an “enrichment
score” derived from the diversity and relative levels of
candidate compounds with antiviral properties (Fig. 3;
see section 5 of Additional file 2 for more details). To
identify putative mechanisms responsible for the anti-
COVID-19 properties of predicted foods, we have
simulated the effects of a phytochemical profile of a
given food item on human interactome pathways and
sub-networks, using the random walker algorithm and
gene set enrichment analysis. The analysis showed that
the most influential impacted pathways by predicted
phytochemically enriched foods with anti-COVID-19
properties exhibited a statistically significant overlap
with SARS-CoV-2 disrupted pathways (Additional file 6).

This implies that a phytochemical profile of food ingredi-
ents, rather than individual molecules, exert a combined
effect across multiple host pathways affected by SARS-
CoV-2 (see section 4 of Additional file 2 for additional
details).
The top-ranked phytochemically rich food sources

(called “Antiviral Hyperfoods”) include different berries
(blackcurrant, cranberry and blueberry), cruciferous veg-
etables (cabbage, broccoli), apples, citrus fruits (sweet
orange and lemon), onions, garlic and beans. A recent
study highlighted the potential of cabbage and fermented
vegetable consumption in minimising adverse outcomes
in COVID-19, supporting our results [44]. The present
analysis has demonstrated that this is potentially due to
a profile of anti-COVID-19 compounds from various
molecular classes rather than individual molecules as

Fig. 3 The contained profiles of compounds within specific foods, with predicted effectiveness in targeting SARS-CoV-2-host interactome
networks. Each node in the figure denotes a particular food item, and node size in each case is scaled by the derived enrichment score based on
the diversity and relative levels of molecules with predicted anti-COVID-19 properties. The links between nodes reflect the pairwise correlation
(“similarity”) antiviral profiles in foods; thus, the clusters of foods illustrate molecular commonality between them. A list of foods, constituent food
compounds and enrichment scores can be found in Additional file 8
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previously suggested (see Additional file 6). Similarly,
the complex antiviral molecular profile of berries such
as blackcurrant and blueberries may explain their experi-
mentally observed potency against genetically and
phenotypically diverse viruses [45], though their ability
to protect specifically against COVID-19 is yet to be
evaluated in clinical trials.

Conclusions
Current methods for prevention, treatment and contain-
ment of COVID-19 have not been effective in curbing
the rate of transmission. Figures across the world show a
sustained rise in cases. Non-hospitalised patients are dis-
charged home where they continue to pose a risk to
close contacts, and where they are at ongoing risk of
clinical deterioration (especially those with comorbidities
such as diabetes, obesity and cardiovascular diseases).
For this group of patients, there is a critical need for
innovative and cost-effective out-of-hospital treatment.
The use of precision nutrition strategies is safe and
highly promising in this context. Using a network-based
machine learning method, we have shown that certain
plant-based foods such as berries, cruciferous vegetables,
apples, citrus fruits, onions, garlic and beans are most
enriched in terms of the diversity and relative abundance
of bioactive molecules targeting the SARS-CoV-2-hu-
man interactome.
We acknowledge that the present work is subject to a

number of limitations. Firstly, the cultivation, storage
and cooking methods may influence bioactive molecular
composition in foods. Secondly, it remains unclear
whether these compounds would be present in sufficient
levels to exert beneficial biological activity. Thirdly, the
identified phenolic compounds can be filtered out by
food producers because of their bitter taste to enhance
palatability and taste experience. This raises interesting
practical issues for “Hyperfoods” because increasing the
content of bitter phytonutrients for health benefits may
not be entirely compatible with consumer acceptance.
Fourthly, the proposed methodology only accounts for
interactions between bioactive food compounds and
SARS-CoV-2-human-related molecular networks, with-
out necessarily defining the directionality of these rela-
tionships. Fifthly, the methods described here do not
take into account specific COVID-19 individual molecu-
lar phenotypic characteristics. Finally, drug combina-
tions, drug-drug and drug-food interactions have not
been evaluated in this study; as such, it is not clear
whether these will lead to synergistic or antagonistic
effects where they act on common molecular networks,
or whether this combination will disrupt drug metabol-
ism itself. This will be the subject of the investigation for
future phases of the CORONA-AI project. Nevertheless,
these considerations notwithstanding, we expect this in

silico predicted food map to play an important role in
future clinical studies of precision nutrition interven-
tions against COVID-19. In the near future, the goal will
be to develop a personalised “food passport” for each
patient, designed to provide “smarter” food choices with
the ability to reduce susceptibility to COVID-19 infec-
tion and mitigate against severe and long forms of the
disease. Further clinical validations of our findings are
needed in a randomised double-blind placebo-controlled
trial setting.

Methods
Corona-AI/DreamLab mobile cloud supercomputing
The results presented in this manuscript were derived
from the Corona-AI: phase I project for interactome-
driven drug and food compound search for the potential
anti-COVID-19 treatment. Working with Vodafone
Foundation, the “Corona-AI” project used the freely
available DreamLab app, which runs calculations using a
smartphone computing power while its user sleeps. Tens
to hundreds of thousands smartphones combined to-
gether are used to crunch scientific data at scale rivalling
available supercomputers and by far exceeding the cap-
abilities of the normal desktop PCs. The DreamLab App
can be freely downloaded by anyone willing to donate
the unused computational power of their smartphone to
cancer and coronavirus research. The DreamLab App
runs when a smartphone is being charged: it loads a
small portion of scientific data from the cloud, performs
the computations and sends the results back to the
cloud for scientists to analyse them. This way anyone
can become a citizen scientist and contribute to global
research.

Learning propagation profiles of drugs, foods and
diseases
The main assumption of the methodology used in this
paper was that the drugs/food molecules which were ef-
fective at treatment of the particular disease would have
a similar pattern of affected genes/proteins to the pat-
tern of the genes/proteins affected by the disease. Due to
gene-gene (or protein-protein) interactions within the
cell, disease and drug do not necessarily have to affect
exactly the same genes/proteins—their effects can be
exerted on different, but interlinked proteins and propa-
gated through protein-protein networks. For that, the
aggregated 20,256 genes/proteins were represented as an
array of floats where each value represents how strongly
the protein was affected/perturbed by the disease or the
drug (further referred to as drug or disease profiles).
Zero value would mean no effect or a normal unper-
turbed state.
Gene-gene (protein-protein) connections and drug-

gene/protein connections were filtered according to their
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confidence level (from STRING and STITCH databases)
before disease and drug profile generation and propaga-
tion (these thresholds were among the adjustable param-
eters). Optionally, the number of drug-gene/protein
connections was also capped at specific value equalising
compounds with vastly different numbers of known con-
nections. If this option was used, the top N connections
are taken for each compound and the minimal connection
score is established from them. Then the connections are
thresholded according to this minimal connection score.
This allowed one to include connections with the same
score as the last one in top N.
Genes/proteins directly affected by the drug or disease

receive the initial value of 1.0 (or the score weight in
case of “score_5_weighted” target protein selection).
Then the array of gene/protein perturbations was nor-
malised to the sum of 1.0.
Random walk algorithm with restarts was used to

propagate the perturbation of the genes/proteins through
the network. For a detailed definition of the algorithm, we
refer the reader to section 1 of Additional File 2.
The random walk with restarts was applied to simulate

the perturbations of direct virus-host protein targets on
the whole human interactome. It transforms a short list
of genes/proteins directly targeted by the virus into a
genome-wide profile of gene scores based on their
network proximity to target candidates (referred as the
“SARS-CoV-2 genome-wide response profile”). The
same random walker algorithm was then used to get the
activity profiles of candidate molecules, i.e. drugs or
food-based compounds. The Pearson correlation coeffi-
cient between propagation profiles of food/drug com-
pounds and COVID-19 disease was used to rank
compounds that target SARS-CoV-2-host interactome
networks. The formulation of the Pearson correlation
coefficient can be found in section 2 of Additional file 2.
The parameter settings for interactomes and diffusion

processes for compound ranking were optimised as
described in section 3 of Additional file 2

Compound-protein and protein-protein interactome
construction
The interactome used in this study was constructed as
was described previously in [15]. In brief, a human gen-
ome was constructed from gene or protein sequences
from COSMIC [46], NCBI Gene [47], STRING [48] and
UniProt [49] databases. Fifteen thousand nine hundred
eleven protein sequences matched exactly between data-
bases, 1532 protein sequences were matched as subsec-
tions of larger sequences and 1686 proteins were
matched allowing up to 5% amino acid mismatch. One
thousand one hundred twenty-seven mismatched se-
quences were also included in the final unified set of 20,
256 gene-encoded proteins. The list of genes/proteins

(these two terms are used interchangeably with regard
to the interactome analysis) was further populated with
different gene IDs and synonyms including Ensembl and
HGNC. Protein-protein interactions were obtained from
STRING (~ 11M connections) and BioPlex (~ 100K con-
nections) databases [50] and supplemented with confi-
dence scores (0–999) from STRING.
Drug-protein interactions were obtained from the

STITCH database [51], scored by the confidence level of
0–999 for drugs from DrugBank [52] and DrugCentral
[53] databases as well as food molecules from FooDB
[www.foodb.ca]. Indications for drugs and FDA approval
status were extracted from DrugCentral.

Coronavirus target protein aggregation
Two recent sources for the coronavirus-affected sets of
human genes/proteins were used in this work:

1. The COVID-19 Drug and Gene Set Library which
provides a collection of drug and gene sets related to
COVID-19 research aggregated from multiple
sources using natural language processing techniques
(downloaded on 24 September 2020) [54]. This
set of genes/proteins is further referred to as
the “Aggregated” set. In this set, human genes/
proteins are scored by the number of times they
have been reported as related to COVID-19
with the top score of 88 assigned to STAT1
gene. We generated several subselections of
genes with different cut-offs for the scores: 40,
30, 25 and 20 (counting 72, 143, 248 and 457
genes) referred to as “score_40”, “score_30”,
“score_25” and “score_20” respectively. In these
subselections, the genes are all initially equally
weighted when propagated through interactome
and the chosen score threshold serves as an
adjustable model parameter. We also included a
set of 5000 top genes (with a minimal score of
5, referred to as “score_5_weighted”) with each
gene weighted by its score for the propagation
and a minimal entry set (consisting of CTSB,
CTSL, TMPRSS2 and ACE2 genes [55], first
reported in the literature as involved in the
initial entry of the virus) referred to as
“entry_only”.

2. COVID-19 Pathways Portal on WikiPathways [23]
was used to create a subset of 423 coronavirus-
affected human genes/proteins referred to as
“score_wiki”.

Compound selection
SARS-CoV-2 is a relatively new pathogen, and there is a
very limited number of experimentally validated drugs
which were shown to be effective against it. We manually
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curated a list of such compounds from a literature search
(see Additional file 7). Special care was taken to include
only compounds with experimental rather than predicted
evidence and explainable mechanism of action. Preference
was given to the compounds already included in clinical
trials. This resulted in a list of 49 “positive” class
compounds. Drugs were putatively classified into two sub-
groups—acting through cellular mechanisms directly
against the virus (“Direct-Cell”) or having symptomatic
effects, e.g. anti-inflammatory (“Symptomatic”). This clas-
sification is not strict as drugs may have overlapping
functions. Finally, drugs were checked for direct target
overlaps with the “Aggregated” set of COVID-19-related
genes. Drugs with very few to no overlaps in the top 100
genes were marked as less “reliable”. This resulted in four
subselections for the “positive” class compounds which
were tried in the model parameter optimisation stage: (1)
“Target_Cell”: all drugs acting directly on the host-viral in-
teractome, 27 in total; (2) “Target_Cell_Strict”: same as
above, but only the most “reliable” drugs included, 19 in
total; (3) “Target_Cell_Sympt”: both symptomatic and
host-viral interactome targeting drugs included, 49 in
total; and (4) “Target_Cell_Sympt_Strict”: same as above,
but only the most “reliable” drugs included, 28 in total.
For the “negative” class, both approved and experi-

mental drugs from DrugBank were selected. The anti-
viral drugs designed to target specific viral protein
targets (such as remdesivir, tenofovir and taribavirin)
were designated as neutral (“0”) class and were excluded
from the model calibration. This is because the primary
objective here is to target SARS-CoV-2 host interactome
networks rather than individual viral proteins.
All available compounds from DrugBank and FooDB

which were not included in the “positive” and “negative”
classes were not used at the model calibration and
parameter optimisation stage. Six thousand five hundred
ninety-three compounds formed the input “negative”
class; however, depending upon the specific parametrisa-
tion settings, the final number of negative class com-
pounds varied between 1181 and 4260 due to the drugs
with no connections being automatically removed.
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