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Convergent lines of evidence support BIN1
as a risk gene of Alzheimer’s disease
Jin Zhu1, Xia Liu2, Hongtao Yin3, Yan Gao1 and Hao Yu1*

Abstract

Genome-wide association studies (GWAS) have identified several susceptibility loci of Alzheimer’s disease (AD),
which were mainly located in noncoding regions of the genome. Meanwhile, the putative biological mechanisms
underlying AD susceptibility loci were still unclear. At present, identifying the functional variants of AD pathogenesis
remains a major challenge. Herein, we first used summary data-based Mendelian randomization (SMR) with AD
GWAS summary and expression quantitative trait loci (eQTL) data to identify variants who affects expression levels
of nearby genes and contributed to the risk of AD. Using the SMR integrative analysis, we totally identified 14 SNPs
significantly affected the expression level of 16 nearby genes in blood or brain tissues and contributed to the AD
risk. Then, to confirm the results, we replicated the GWAS and eQTL results across multiple samples. Totally, four risk
SNP (rs11682128, rs601945, rs3935067, and rs679515) were validated to be associated with AD and affected the
expression level of nearby genes (BIN1, HLA-DRA, EPHA1-AS1, and CR1). Besides, our differential expression analysis
showed that the BIN1 gene was significantly downregulated in the hippocampus (P = 2.0 × 10−3) and survived after
multiple comparisons. These convergent lines of evidence suggest that the BIN1 gene identified by SMR has
potential roles in the pathogenesis of AD. Further investigation of the roles of the BIN1 gene in the pathogenesis of
AD is warranted.

Keywords: Alzheimer’s disease, Genome-wide association study (GWAS), Expression level, Candidate gene,
Mendelian randomization

Introduction
Alzheimer’s disease (AD) is the most common neurode-
generative dementia and is clinically characterized by
progressive loss of memory and deficits in thinking,
problem solving, and language [1]. AD is highly heritable
and its estimated heritability ranges from 60 to 80% [2].
Genome-wide association studies (GWAS) have identified
multiple loci containing common variant risk alleles [3–5].
A large-scale GWAS of clinically diagnosed AD and AD-by-
proxy (71,880 cases and 383,378 controls) identified 29 risk
loci, involving 215 potential causative genes [6]. Another
GWAS of late-onset Alzheimer’s disease (21,982 cases and

41,944 controls) identified five novel genome-wide loci, in-
cluding IQCK, ACE, ADAM10, ADAMTS1, and WWOX [7].
These findings offer new routes to enhancing the diagnosis
and the development of drug targets [8]. However, most of
the identified risk single nucleotide polymorphisms (SNPs)
are from noncoding regions [9, 10], making functional inter-
pretation difficult.
One possible hypothesis is that the risk SNPs identi-

fied by GWAS contribute to the risk of diseases through
affecting the expression level of nearby genes in different
tissues [10, 11]. Consequently, to identify the functional
variants from GWAS results, it is useful to integrate data
of gene expression level (e.g., expression quantitative
trait loci, eQTL) into GWAS data of diseases. Therefore,
to prioritize candidate genes underlying GWAS hits, an
integrated analysis method named summary data-based
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Mendelian randomization (SMR) was developed. Using
the principles of Mendelian randomization, the SMR
method could examine whether the expression level of a
gene and a complex phenotype caused by pleiotropy and
discern pleiotropy from linkage [12]. Through the SMR
analysis, several novel candidate genes underlying
GWAS hits of complex diseases or traits were prioritized
for follow-up functional studies [13–16]. Strikingly,
through integrating different omics data, we could gain
further insights into the underlying genetic mechanisms
of GWAS hits and disease [17].
To prioritize AD risk genes and investigate their roles

in AD pathogenesis, we first combined the AD GWAS
data and eQTL using SMR test. Then, we replicate the
identified risk SNPs and genes across multiple samples.
For the replicated risk genes, we compared the expres-
sion patterns in AD patients with healthy controls.

Methods
AD GWAS data
We obtained complete summary-level of AD GWAS from
the website of Complex Trait Genomics lab (https://ctg.
cncr.nl/software/summary_statistics). The AD GWAS
consisted of 71,880 cases and 383,378 controls [6]. In PGC,
IGAP, and ADSP consortia, individuals were of clinically di-
agnosed AD case-control status. The individuals with one or
two parents diagnosed with AD in UKB were defined as
proxy cases, and patients with two parents were upweighted.
Meanwhile, participants with two parents without AD were
defined as proxy controls, and older cognitively normal
parents were also upweighted [6]. Recently, the value of by-
proxy phenotypes has been demonstrated [5]. More details
about demographic characteristics, genotyping, and statis-
tical analysis were in the original study [6].

eQTL data
In the SMR analysis, we integrated the AD GWAS data
with brain and blood eQTL data, respectively. (1) For
blood eQTL data (n = 31,684), the blood eQTL data was
obtained from the eQTLGen consortium, which con-
sisted of 31,684 individuals [18]. The associations be-
tween SNPs and gene expression levels were calculated
using a Spearman correlation. In total, in the eQTLGen
consortium, 19,960 genes that showed expression in the
blood were tested and 238,340 cis-eQTL SNPs were
identified. (2) For brain eQTL data (n = 1194), the brain
eQTL study was from a meta-analysis of brain eQTL
data [19]. To increase the power of detecting brain
eQTLs, Qi et al. [19] performed a meta-analysis using
three brain eQTL studies, including Genotype-Tissue
Expression (GTEx) [20], CommonMind Consortium
(CMC) [21], and the Religious Orders Study and the
Rush Memory and Aging Project (ROSMAP) [17]. To
correct the overlapped sample, the MeCS approach was

used to combine the eQTL results of 10 brain regions of
GTEx database [19]. In the present study, we only used
the SNPs within 1Mb distance from each gene. More
details were in the original paper [18, 19].

SMR analysis
To prioritize candidate causal genes of AD, we integrated
GWAS and eQTL data through SMR method, which
examine the putative pleiotropic relationships between
AD and eQTL [12]. The SMR method mainly comprises
of two steps. First, genetic variations are used as instru-
mental variables to examine for causative effect of gene
expression on AD. Second, we applied the heterogeneity
in dependent instruments (HEIDI) test implemented in
SMR software to distinguish the causality and pleiotropy
model from the linkage model. If the HEIDI test is signifi-
cant (PHEIDI < 0.05), the identified genes by SMR can be a
result of linkage. To account for multiple testing, we ad-
justed PSMR values using the Bonferroni approach. The set
associated genes were defined as genes with a Bonferroni-
corrected PSMR < 0.05 and PHEIDI > 0.05. The SMR soft-
ware was downloaded from https://cnsgenomics.com/
software/smr.

AD GWAS data for replication analysis
To further replicate the AD GWAS results in SMR, we
investigated the associations between the identified risk
SNPs and AD using the GWAS summary data of Inter-
national Genomics of Alzheimer’s Project (IGAP), which
is a large three-stage study based upon genome-wide
association studies (GWAS) on individuals of European
ancestry [22]. In our study, we extracted the association
results from the stage 1 results of IGAP, consisting of
21,982 AD cases and 41,944 normal controls [22]. More
details of samples, quality control, imputation, and stat-
istical analysis were in the original study [22].

eQTL data for replication analysis
To validate the eQTL results in SMR, we examined the
cis-eQTL effects of risk SNPs using two public databases
as follows. First, we examined the blood eQTL results
using the GTEx database. The genotype data used for
eQTL analyses in GTEx was based on whole exome
sequencing from 838 donors, which all had RNA-seq
data available [23]. The associations between was
performed using FastQTL. Totally, 49 tissues were tested
in GTEx. Second, in the PsychENCODE database, to
replicate the brain eQTL results of SMR analysis, we
used the cis-eQTL data in the prefrontal cortex from the
PsychENCODE project (n = 1387) [24]. The eQTL ana-
lyses of PsychENCODE were performed including100
hidden covariate factors as covariates. Only the data of
SNPs in a 1-Mb window around each gene are available.
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Differential expression analysis of risk genes
To compare the expression level of the risk genes in AD
cases with healthy controls, we performed the differen-
tial expression analysis using the comprehensive AlzData
database (http://www.alzdata.org/) [25]. The AlzData
database consisted of the expression data of four brain
regions, including entorhinal cortex (EC), hippocampus
(HIPP), temporal cortex (TC), and frontal cortex (FC).
After conducting the cross-platform normalization, the
normalized expression data sets were used to perform
different expression analysis between AD cases and con-
trols, using the linear regression model implemented in
R package limma [25]. We used the false discovery rate
(FDR) method to correct for multiple comparisons [25].

Results
SMR analysis identified risk variants and genes for AD
To identify functional variants related to AD, we con-
ducted SMR analysis using the genome-wide signifi-
cantly associated genetic variants as an instrumental
variable to examine the association between the

expression level of each gene and AD. In the SMR ana-
lysis, we integrated AD GWAS with eQTL data from the
blood and brain, respectively. Totally, 6 genes in the
brain and 22 genes in blood were identified after cor-
recting for multiple comparisons (PSMR < 0.05/n; n =
23048; n represent the number of tests across blood and
brain SMR analysis; Fig. 1 and Table 1). Then, we per-
formed the HEIDI analysis for the identified genes to re-
duce the effect of potential linkage. Of the genes
identified in the SMR analysis, 2 genes in the brain and
15 genes in blood were survived after the HEIDI test
(PHEIDI > 1.79 × 10−3, i.e., 0.05/n, with n = 28 being the
total number of HEIDI tests) (Fig. 1 and Table 1), with
one gene in common and 16 unique genes in total. Be-
sides, the SMR analysis identified 14 AD risk SNPs (Fig.
1 and Table 1).

Replication analysis of GWAS and eQTL results
To further investigate the associations between 14 risk
SNPs and AD, we replicated the SNPs results using a
meta-analysis of AD GWASs. All the 14 SNPs showed

Fig. 1 Manhattan plots of SMR results. a SMR analysis using the AD GWAS and blood eQTL results. b SMR analysis using the AD GWAS and brain
eQTL results. The y axis shows the − log10 (P values) of SMR tests. The red line represent the significant level (P < 2.17e− 6)
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Fig. 2 Prioritizing genes at four loci for AD. a, c, e, g The brown dots at top plot represent the association between SNPs and AD in GWAS,
diamonds represent the P values of SMR analysis, and triangles stand for genes without a PeQTL < 5.0 × 10−8. In the bottom plot, the SNPs with
PeQTL of eQTL study were plotted. The genes that survived after the SMR and HEIDI tests were highlighted using red color. b, d, f, h We showed
the effect estimates of SNPs from AD GWAS plotted against those for SNPs from the eQTL analysis. The orange lines represent the estimate of
effect size at the top cis-eQTL. Error bars represent the standard errors of SNP effects size
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nominally significant association with AD (P < 0.05) with
the same effect directions in IGAP GWAS dataset
(Supplementary Table 1). Nine risk SNPs were still sig-
nificant after Bonferroni correction (P < 0.05/14 = 3.57
× 10−3; Supplementary Table 1). To further examine
whether the 9 SNPs were associated with the expression
level of nearby genes, we replicated the blood and brain
eQTL effects identified by SMR using GTEx and
PsychoENCODE datasets, respectively. Of the eight blood
eQTL effects identified by SMR, 3 SNPs (rs11682128,
rs601945, and rs3935067) showed genome-wide cis-eQTL
effects in blood tissues (P < 5 × 10−8; Supplementary Table
2). In the replication analysis of brain eQTL effects, the
SNP rs679515 was replicated in PsychoENCODE database

(Supplementary Table 3). Totally, 4 SNPs (rs11682128,
rs601945, rs3935067, and rs679515) are replicated in blood
and brain eQTL databases, respectively. Therefore, four
SNP-gene combinations, rs11682128-BIN1, rs601945-HLA-
DRA, rs3935067-EPHA1-AS1, and rs679515-CR1, were
strongly suggested to be promising candidates for AD risk.
To better view the SMR results of these 4 SNPs, we plotted
the GWAS, eQTL results, and SMR results in Fig. 2.

Differential expression analysis of the AD risk genes
Considering that the expression level of risk genes might
change and contribute to AD risk, we further investigated
whether the four risk genes are differentially expressed in
AD patients compared to controls by using the AlzData

Fig. 3 Differential expression analysis of candidate genes using AlzData database. We examined the expression level of the risk genes in AD cases
and healthy controls using the AlzData database (http://www.alzdata.org/). a Differential expression analysis of CR1. b Differential expression
analysis of BIN1. c Differential expression analysis of HLA-DRA

Table 2 Expression analysis of risk genes in AD cases and controls using AlzData database

Gene Entorhinal cortex Hippocampus Temporal cortex Frontal cortex

FC P FDR FC P FDR FC P FDR FC P FDR

CR1 0.23 0.071 0.197 − 0.01 0.896 0.954 0.39 0.033 0.118 − 0.04 0.655 0.906

BIN1 − 0.12 0.265 0.452 − 0.26 0.002 0.028 − 0.09 0.458 0.67 0.11 0.13 0.268

HLA-DRA 0.46 0.042 0.142 NA NA NA NA NA NA NA NA NA

We investigated whether the identified risk genes are differentially expressed in AD patients compared to controls, using a comprehensive database AlzData
(http://www.alzdata.org/). FC fold change, FDR false discovery rate, NA not available
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database (http://www.alzdata.org/) [25]. Comparing AD
patients with controls, the BIN1 gene was significantly
downregulated in the hippocampus (P = 0.002; Fig. 3 and
Table 2), surviving after FDR correction in the original
study [25]. Based on the SMR results, our differential
expression analysis further supports BIN1 as an AD risk
gene. However, the HLA-DRA and CR1 genes showed no
significant differential expression pattern between AD
cases and controls (Fig. 3 and Table 2). The gene EPHA1-
AS1 was not available in the AlzData database.

Discussion
Recently, hundreds of AD risk SNPs have been identified
in GWAS [3–5]. The large majority of risk loci of AD
are located in noncoding regions of the genome. How to
identify the genetic mechanisms underlying risk SNPs
remains a major challenge. Moreover, given that the
gene density and linkage disequilibrium structure, it is
difficult to identify causal SNPs for AD. Based on GWAS
results alone, we could not predict whether the risk
SNPs have functional consequences. In this study, by
using the SMR analysis, we systematically integrate the
AD GWAS and blood or brain eQTL data. Ultimately,
we identified 14 risk SNPs, which affected the expression
level of 16 nearby genes and contributed to risk for AD.
Our results support that the gene expression might play
a mediating role for effects at these risk SNPs. Our find-
ings not only confirmed previous findings, but also
highlighted new risk SNPs and genes underlying AD.
Through SMR analysis, we identified eight novel risk
SNPs that were not genome-wide significant in the ori-
ginal AD GWAS [6]. Hence, some missing heritability
might be identified using SMR. To further confirm the
SMR results, we replicated the GWAS and eQTL results.
Totally, four genes (BIN1, HLA-DRA, EPHA1-AS1, and
CR1) were strongly suggested to be promising candi-
dates for AD risk. We expect these SNPs to be detected
in future genetic association studies with larger sample
sizes. Then, we conducted the differential expression
analysis to compare the expression level of four repli-
cated genes in AD cases and controls. Only the BIN1
gene showed significant differential expression level.
Therefore, we demonstrated that the BIN1 gene contrib-
uted to the risk of AD.
Our study provides convergent lines of evidence

supporting the BIN1 gene as a candidate gene of AD.
First, we identified the AD risk gene BIN1 by integrating
large-scale GWAS and eQTL with SMR analysis.
Second, the SMR results were replicated across GWAS
and eQTL databases. Third, given that the SMR test
identifies AD-associated genes with the underlying
assumption that expression levels of those genes may
have a role in AD pathogenesis, we explored whether
AD risk genes identified by SMR were differentially

expressed in AD patients compared to controls, using
the comprehensive AlzData database [25]. Comparing
AD patients with controls, the BIN1 gene was also sig-
nificantly downregulated in the hippocampus. However,
there were no significant differences in the expression of
other genes. This might be due to the lack of power and
heterogeneity of different expression data sets.
Our SMR results identified that risk SNPs caused the

dysregulation of the gene expression level and increased
the risk for AD. However, our findings for an association
between BIN1 and risk of AD are mixed, suggesting the
complex role of BIN1 in AD risk. First, our SMR results
in blood are consistent with previous studies. At the
BIN1 locus, our SMR results suggested that the risk
allele A of SNP rs11682128 could upregulate the expres-
sion level of the BIN1 gene in blood and increase the
AD risk. Consistent with our results, higher BIN1
mRNA levels in blood were detected in AD patients
compared with controls [26]. Next, our results of the
expression level of BIN1 in brain were different from
previous findings. Using AlzData database [25], we
found that the BIN1 gene was significantly downregu-
lated in AD patients compared to controls in hippocam-
pus (Table 2). Coincidentally, the AD risk allele of BIN1
showed significant associations with memory deficits,
hippocampal volume, and functional connectivity, sug-
gesting the potential role of BIN1 in AD pathogenesis
[27, 28]. However, most of previous evidence showed an
increase of BIN1 expression level in the brains of pa-
tients with AD [29, 30]. Moreover, the increased BIN1
expression level has also been linked to tau pathology
[29–32]. These inconsistent findings might be inter-
preted by the different functions of different domains in
BIN1 gene. Compared to healthy controls, the amount
of the largest isoform of BIN1 was found to be significantly
reduced in the AD brain, and smaller BIN1 isoforms were
significantly increased [31]. Third, we found inconsistency
between SMR results in blood and differential expression
results in brain. This phenomenon may be caused by
diverse roles of BIN1 in AD pathology. Many kinds of
evidence has shown that BIN1 may involve in several AD-
related pathways in AD, including tau and amyloid
pathology, and relevant pathways such as inflammation,
apoptosis, and calcium homeostasis [33]. Additionally,
though previous studies suggested that the genetic architec-
ture underlies the regulation of gene expression across
tissues, there are still some genetic differences between tis-
sues [19]. Therefore, we inferred that the different functions
of different domains and distinct tissue localizations may
indicate the role of BIN1 in the pathogenesis of AD. How-
ever, adequate and reliable research on BIN1 in AD is still
needed in the future.
Compared with these two previous studies, our

present study has some similarities and differences.
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Previous studies have demonstrated that the SMR
method was helpful to prioritize novel AD-associated
genes. For example, Hu et al. identified several candidate
genes by integrating two AD GWASs and five eQTL
studies using SMR test [34]. Then, to improve their re-
sult, Zhao et al. performed a meta-analysis using five AD
GWAS and integrated the meta results with eQTL using
SMR [35]. Several risk genes were identified to be associ-
ated with AD in expression levels by pleiotropy [35].
Notably, all three studies applied SMR to AD GWAS
and brain eQTL data. Hu et al. used two AD GWAS (25,
580 AD cases and 48,466 controls) and five eQTL to
perform SMR test [34]. Zhao et al. used summary statis-
tics from a mega-analysis of five GWAS datasets (369,
957 participants) and three brain eQTL [35]. Meanwhile,
our present study used GWAS data (71,880 AD cases
and 383,378 controls) from the mega-analysis by Jansen
et al. [6], blood eQTL data (n = 31,684), and brain eQTL
data (n = 1194). Generally, the current study had in-
creased the sample size compared with previous studies
[34, 35] and then might improve the statistical power
and accuracy of SMR statistical results. The current
study identified several risk genes which were not iden-
tified by two previous SMR studies [34, 35], such as
NDUFS2, CASTOR3, APH1B, and B4GALT3, extending
the findings of previous studies. Second, we not only
prioritized risk gene using SMR test, but also replicated
the SMR results in IGAP GWAS, GTEx, and Psy-
choENCODE databases. Besides, we also explored the
functional roles of these identified SNPs using differen-
tial gene expression patterns in AD patients and con-
trols. These identified genes using the integrated
computational analyses could be prioritized based on
biological relevance using follow-up laboratory-based
validation using in vitro and in vivo model systems.
Our study has a number of limitations. First, in the

first-stage of SMR analysis, some AD cases of the GWAS
sample were defined based on the parental diagnoses.
Therefore, the SNP associations might be biased. How-
ever, the strategy of AD-by-proxy was demonstrated to
be robust. For example, the diagnosed case-control sta-
tus and the UKB by-proxy phenotype showed high gen-
etic correlation, and a large proportion of novel loci
were replicated in the independent cohort [6]. Further-
more, we replicated the GWAS results using IGAP
samples, which were clinically diagnosed. Therefore, the
biases in AD associations caused by misdiagnosis might
be relatively modest. Second, our study provides several
lines of evidence that the BIN1 gene contributes to the
risk of AD. However, the potential casual gene BIN1 was
identified through using the GWAS and eQTL results of
European population. These prioritized genes might not
be associated with AD in other populations. Thus, these
results should be validated in other populations.

Conclusions
In this study, we combined the GWAS and eQTL data-
sets and identified the risk SNP rs11682128, which
might contribute to AD risk through affecting the ex-
pression level of BIN1 gene. Our SMR analysis could not
only identify functional genes but improve our under-
standing of the pathogenesis mechanism underlying AD.
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