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Abstract

Background: Mathematical approaches have been for decades used to probe the structure of nucleotide
sequences. This has led to the development of Bioinformatics. In this exploratory work, a novel mathematical
method is applied to probe the genetic structure of two related viral families: those of coronaviruses and those of
influenza viruses. The coronaviruses are SARS-CoV-2, SARS-CoV-1, and MERS. The influenza viruses include H1N1-
1918, H1N1-2009, H2N2-1957, and H3N2-1968.

Methods: The mathematical method used is the slow feature analysis (SFA), a rather new but promising method to
delineate complex structure in nucleotide sequences.

Results: The analysis indicates that the nucleotide sequences exhibit an elaborate and convoluted structure akin to
complex networks. We define a measure of complexity and show that each nucleotide sequence exhibits a certain
degree of complexity within itself, while at the same time there exists complex inter-relationships between the
sequences within a family and between the two families. From these relationships, we find evidence, especially for
the coronavirus family, that increasing complexity in a sequence is associated with higher transmission rate but
with lower mortality.

Conclusions: The complexity measure defined here may hold a promise and could become a useful tool in the
prediction of transmission and mortality rates in future new viral strains.
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Background
Since the early 1970s, scientists have attempted to
discover some kind of order or hidden structures in
nucleotide sequences. With the advent of sequencing
techniques in the late 1970s, scientists had the oppor-
tunity to probe nucleic acid sequences for such order
[1–3]. Soon, mathematical approaches were employed to
shed light in this endeavor, leading to the full-blown

field of Bioinformatics [4–7]. We report, for the first
time, the application of slow feature analysis (SFA) to
genetic sequences. SFA is a procedure for extracting
slowly varying, driving signals from a given nonstation-
ary time series and is used here to delineate signals or
structure in nucleotide sequences, which would not
otherwise be detected. Descriptions of this procedure,
which have been successfully applied in many scientific
areas, have been reported previously in detail [8–10].

Methods
SFA is an approach that is designed to optimally identify
low-frequency behavior in a time series, thereby
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delineating its complex structure more effectively. This
analysis is rooted, theoretically, in the time-embedding
theorems. In this method, a one-dimensional time series
is embedded in a multi-dimensional space consisting of
the original time series and lagged copies thereof. SFA
further uses a nonlinear expansion to map this multi-
dimensional input signal onto an even larger feature
space, and then solves a linear problem to find a linear
combination of feature-space variables that minimizes
their time derivative (rate of change) [11]. The objective
of SFA is to find the optimally filtered signals that vary
as slowly as possible but still carry significant informa-
tion. To ensure this, the output signals need to be un-
correlated and have unit variance [12]. This approach
has been successfully applied in many areas, including
climate science [13, 14].
In mathematical terms [8], the goal of SFA is, given an

n-dimensional input signal x(t), to find a set of real-
valued input-output functions gj(x) such that the output
signals

y j tð Þ≔g j x tð Þð Þ

minimize ΔðyiÞ≔ < ẏ2j>t

under the constraints

< y j>t ¼ 0 zero meanð Þ;
< y2 j>t ¼ 1 unit varianceð Þ;

∀i < j :< yiy j>t ¼ 0 decorrelation and orderð Þ

with <∙>t and ẏ indicating temporal averaging and the de-
rivative of y, respectively.
The Δ-value is a measure of the temporal slowness

of the signal y(t). It is given by the mean square of
the signal’s time derivative. Small Δ-values correspond
to slowly varying signals. The first two constraints
avoid the trivial constant solution, while the last con-
straint guarantees that the output functions gj are dis-
tinct and hence extract different information from the
input signal. For a tutorial on this method, the reader
could consult reference [8] or a more recent presen-
tation in [15]. In that tutorial, a simple example of a
two-dimensional input signal x1(t)=sin(t)+cos(11t)

2

and x2(t)=cos(11t) is considered. Both components are
quickly varying, but hidden in the signal is the slowly
varying “feature” y(t)=x1(t)−x2(t)

2=sin(t), which can be
extracted with a polynomial of degree two, namely
h(x)=x1−x2

2.
In the situation with one observable (time series of

some variable) from an unknown system where the ac-
tual state space is not known (as is the case here), em-
bedding is necessary (and essential) to delineate the
underlying dynamics much like in attractor

reconstructions. The SFA algorithm can be summarized
as follows. Consider a time series fxðtÞgt¼t1;…;tn

, where t

denotes time and n indicates the length of the time
series. First, we embed {x(t)} into an m-dimensional state
space using time-delayed copies of x(t):

X tð Þ ¼ x1 tð Þ; x2 tð Þ;…; xm tð Þf gt¼t1;…;tN ;

where x1(t) = x(t); x2(t) = x1(t − τ); x3(t) = x1(t − 2τ), and
so on, τ is the delay, and N = n – m + 1. Then, nonlinear
expansions (usually second-order polynomials) are used
to generate a k-dimensional function state space:

H tð Þ ¼ fx1 tð Þ;…; xm tð Þ; x21 tð Þ;…; x1 tð Þxm tð Þ
;…; x2m−1 tð Þ;…; x2m tð Þgt¼t1;…;tN

;

which can also be written as HðtÞ ¼
fh1ðtÞ; h2ðtÞ;…; hkðtÞgt¼t1;…;tN , where

k ¼ mþm mþ 1ð Þ=2:
The expanded signal H(t) is then centered and nor-

malized to zero mean and unit variance. This process is
referred to as whitening or sphering. Thus, we have

H
0
tð Þ ¼ h

0
1 tð Þ; h0

2 tð Þ;…; h
0
k tð Þ

n o
t¼t1;…;tN

;

where

h
0
j ¼ 0 zero meanð Þ;

h
0
jh

0
j
T ¼ 1 unit varianceð Þ;

h
0
jðtÞ ¼ ½hjðtÞ−hj�=S, and S ¼ 1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1ðhjðtÞ−hÞ2

q
.

Using the Schmidt algorithm, H′(t) is orthogonized
into:

Z tð Þ ¼ z1 tð Þ; z2 tð Þ;…; zk tð Þf gt¼t1;…;tN ;

where the transformed signal matrix Z is column
orthogonal:

zi tð Þ ¼ z j tð Þ ¼ 0; zTi tð Þ∙z j tð Þ ¼ 0; zTj tð Þ∙z j tð Þ ¼ 1;

The final step of SFA is to find the set of coefficients
(a1, a2,…, ak) such that the time series
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y tð Þ ¼ a1z1 tð Þ þ a2z2 tð Þ þ…þ akzk tð Þ

varies as slowly as possible. This set is given by the
eigenvector W1 of the time-derivative covariance matrix

B ¼ ŻTŻ

corresponding to the smallest eigenvalue λ1. Here

Ż tð Þ ¼ ż1 tð Þ; ż2 tð Þ;…; żk tð Þf gt¼t1;…;tN

and

ż j tið Þ ¼ z j tiþ1ð Þ−z j tið Þ:
Using W1, the optimally filtered slow-feature signal

(also known as a driving force factor, which can be com-
posed of one or more components) can be written as:

y tð Þ ¼ rW1∙Z tð Þ þ c; ð1Þ
where r and c are constants derived to best match y(t)
and the original time series x(t).
Once the optimally filtered (low-frequency) SFA signal

has been identified, its significant periodicities can be
found from the time-averaged wavelet power spectrum.
Wavelet analysis has been widely used to analyze local-
ized structures and spectral properties of time series. For
example, [16] provides a detailed description of the
wavelet analysis, along with a very useful toolkit to con-
duct step-by-step wavelet analysis, including a statistical
significance test based on the red-noise surrogate data
(see http://paos.colorado.edu/research/wavelets/). We
here used the Morlet wavelet with the wavenumber set
to 4 to match the smoothness of the SFA-derived slow-
feature signal, focusing, once again, on the spectral peaks
statistically significant at the 5% level. Note also that
SFA is applicable to non-stationary data, so no data pre-
processing is required.
The combination of the SFA and wavelet analyses we

use in the present study has been shown to be more ef-
fective in diagnosing low-frequency periodicities in data
sets of a limited length than direct spectral analysis
methods. Note that the driving force may not necessarily
consist of just one component, but several components,
which, as we will see below, correspond to forcings or
signals at certain time scales. The success of SFA in de-
lineating these slow signals lies in the fact that embed-
ding the time series in high enough dimensions and the
subsequent dynamical procedure removes the noise and
small-scale features that may obscure or suppress those
slow signals, thereby delineating more accurately the
complex structure of a sequence.

Analysis and results
We first analyzed the nucleotide sequences from three
viruses from the same family: SARS-CoV-2, SARS-
CoV-1, and MERS. Those sequences are approxi-
mately 30,450 bases long and part of the now world-
infamous coronavirus family. Since a nucleotide se-
quence is a string of the bases A, T (U in RNA), C,
and G, we first transformed it to a time series of in-
tegers in the interval [1–4] (i.e., A➔1, T/U ➔2, C
➔3, G ➔4). Here, we need to stress that a time series
represents a particular type of process, where some
quantity is sampled in time, t. A nucleotide sequence
is a very similar object, but the “sampling” is over
space. In a time series, we are interested in the de-
pendency of observations at different time scales,
whereas in nucleotide sequences, we are interested in
dependencies in different space scales. As such, the
mathematical tools to identify structures in time can
in principle be applied to identify structure in space,
as long as t is thought as a parameter identifying the
scale. Transforming a nucleotide sequence into a time
series has been used in the past to identify interesting
properties in nucleotide sequences (such as the well-
known period 3; see [4, 5] and references therein).
Note also that the above transformation of A➔1, T/U
➔2, C ➔3, and G ➔4 may, depending on frequency
distribution of A, T/U, C, and G in the sequence, re-
sult in a nonstationary time series. However, unlike
other spectral methods, SFA is not affected by non-
stationarity in the data.
Once we have a time series, we apply SFA, and once

we have the SFA signal (which as we mentioned above
may be comprised of several components, see Eq. 1), we
extract the SFA components by wavelet analysis. Figure 1
shows the SFA signal for SARS-CoV-2 virus for m=15
and τ=1. As explained above, this signal is normalized to
zero mean and unit variance. Figure 2 shows the wavelet
of the time series in Fig. 1. In order to extract the peak
“periods” of the driving force signal, we used the Morlet
wavelet to compute the time-averaged power spectrum
of the wavelet transform [16]. The black solid line in
Fig. 3 is the time-averaged power spectrum of the wave-
let transform of the driving force, and the dashed line
represents the 95% confidence level, estimated using
AR-1 surrogate data [16]. The dots show the periods of
the oscillatory components of the driving force that are
significant above the 95% level.
The significant peak periodicities for SARS-CoV-2 are

as follows1:

1Note here that before we applied SFA to actual nucleotide sequences,
and in order to test the efficiency of SFA when the time series is a
string of integers, we considered artificial sequences of known
periodicities. SFA was able to reproduce the known periodicities.
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Fig. 1 The SFA signal of the nucleotide sequence of SARS-CoV-2. Note the oscillatory components at many scales

Fig. 2 The wavelet of the signal extracted from Fig. 1
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P1 ¼ 55:5956928123500
P2 ¼ 111:191385624700
P3 ¼ 187:000875157807
P4 ¼ 342:961117205042
P5 ¼ 576:789548058258
P6 ¼ 1153:57909611652
P7 ¼ 2307:15819223303
P8 ¼ 4614:31638446607
P9 ¼ 8462:69356236189
P10 ¼ 14232:4973599616

ð2Þ

Given the above periodicities recovered from SARS-
CoV-2, we next construct Table 1, which shows the ra-
tios between these peaks. We observe the following
EXACT relations between peak periods:

P2 ¼ 2P1

P10 ¼ 128P2
P10 ¼ 256P1

P8 ¼ 2P7
P8 ¼ 4P6

P8 ¼ 8P5
P7 ¼ 2P6

P7 ¼ 4P5

P6 ¼ 2P5

ð3Þ

And the following almost exact relationships based on
the criterion:

j P−nearest integer j =nearest integer < 0:25%

Fig. 3 The time-averaged power spectrum of the wavelet transform extracted from Fig. 2. The dashed line represents the 95% confidence level.
The dots show the periods of the oscillatory components of the driving force that are significant above the 95% level

Table 1 Ratios between the peaks in (2)

Tsonis et al. Human Genomics           (2021) 15:26 Page 5 of 10



P9 ¼ 152P1

P9 ¼ 76P2
P10 ¼ 76P3

P8 ¼ 83P1

ð4Þ

Keeping only those relationships, we remain with
Table 2, which could be thought as portraying the de-
gree of structure or complexity in the SARS-CoV-2 se-
quence. We observe in the exact relationships multiples
of a power of 2 and in the almost exact relationships
multiples of 19 (152=2×76=8×19) and 83. Clearly, a so-
phisticated and rather convoluted structure, with numer-
ous processes embedded in the sequence, is present.
Keep in mind that the factors 19 and 83 (odd numbers)
will appear in the rest of the sequences studied here. We
define the number of entries above the diagonal in Table
2 as the degree complexity, C. In this case, C=13.
In the Supplementary material, Figures S1, S2, S3 are

similar to Figs. 1, 2, and 3, and Tables ST1 and ST2 are
similar to Tables 1 and 2 but for SARS-CoV-1. Figures
S4, S5, and S6 are similar to Figs. 1, 2, and 3, and Tables
ST3 and ST4 are similar to Tables 1 and 2 but for
MERS.
According to Figure S3, the peak periods for SARS-

CoV-1 are as follows:

P1 ¼ 50:9814750936898
P2 ¼ 111:191385624700
P3 ¼ 528:918347647618
P4 ¼ 748:003500631229
P5 ¼ 2115:67339059047
P6 ¼ 3558:12433999040
P7 ¼ 8462:69356236189
P8 ¼ 13051:2576239846

and according to Tables ST1 and ST2, we now have five
exact periodicities

P5 ¼ 4P3

P6 ¼ 32P2
P7 ¼ 4P5

P7 ¼ 16P3

P8 ¼ 256P1

ð5Þ

and three almost exact

P5 ¼ 19P2

P7 ¼ 166P1

P7 ¼ 76P2

ð6Þ

Again here, we observe in the exact relationships, mul-
tiples of a power of 2, and in the almost exact between
P7 and P1, P7 and P2, and between P5 and P2. Note again
the multiples of 19 and 83. Note also that from the al-
most exact relationships, it follows that P7/P5=4, which
is one of the exact relationships. Here, the degree of
complexity is C=8.
According to Figure S6, the peak periods for MERS

are as follows:

P1 ¼ 101:962950187380
P2 ¼ 132:229586911904
P3 ¼ 242:510131659000
P4 ¼ 628:993462278030
P5 ¼ 1779:06216999520
P6 ¼ 2515:97384911212
P7 ¼ 4614:31638446607
P8 ¼ 8462:69356236189
P9 ¼ 13051:2576239846

and according to Tables ST3 and ST4, we now have
three exact periodicities

Table 2 Same as Table 1 but keeping only the exact and almost exact relationships, see relationships (3) and (4)
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P9 ¼ 128P1

P8 ¼ 64P2

P6 ¼ 4P4

ð7Þ

and three almost exact relationships

P8 ¼ 83P1

P7 ¼ 19P3

P6 ¼ 19P2

ð8Þ

P9, P8, and P6 are multiples (again in a power of 2) of
P1, P2, P4 (ordered in a bottom-top “symmetric” way),
P6, P7, and P8 are multiples of P2, P3, and P1 but not of
2, but again of 19 and 83 (it is interesting to note that
the odd multiples of 19 and 83 appear in all three se-
quences). Here, the degree of complexity is C=6.
By comparing Tables 2, ST2, and ST4 (and their asso-

ciated C), one may argue that there is more embedded
complexity and intricate patterning in SARS-CoV-2 than
SARS-CoV-1 and MERS.

Other important relationships
Keeping in mind that all three sequences belong to the
same coronavirus family, there are similarities and inter-
relationships between the sequences. For example, it is
easy to observe that:

P7 MERSð Þ is the same as P8 SARS−CoV−2ð Þ
P8 MERSð Þ is the same as P9 SARS−CoV−2ð Þ
P8 MERSð Þ is the same as P7 SARS−CoV−1ð Þ
P9 MERSð Þ is the same as P8 SARS−CoV−1ð Þ

P2 SARS−CoV−2ð Þ is the same as P2 SARS−CoV−1ð Þ
P9 SARS−CoV−2ð Þ is the same as P7 SARS−CoV−1ð Þ

ð9Þ
In general, SFA reveals a consistent picture between

these sequences with very intricate structure with details
at many scales, indicating very elaborate and sophisti-
cated embedded processes, with complexity increasing
from MERS to SARS-CoV-1 to SARS-CoV-2.

Extension of the analysis to the influenza viruses of
H1N1-1918, H1N1-2009, H2N2-1957, and H3N2-1968
In an effort to provide further support for the efficiency
and consistency of SFA in the analysis of nucleotide se-
quences, we consider four other viral sequences from a
different viral family, that of the influenza viruses or the
Orthomyxoviridae family [17].
In the Supplementary material, Figures S7, S8, and S9

and Tables ST5 and ST6 correspond to H1N1-1918 and
are similar to Figs. 1, 2, and 3 and Tables 1 and 2. Fig-
ures S10, S11, and S12 and Table ST7 and ST8 corres-
pond to H1N1-2009 and are again similar to Figs. 2 and
3 and Table 2. Figures S13, S14, and S15 and Tables
ST9 and ST10 correspond to H2N2-1957 and are similar
to Figs. 2 and 3 and Table 2. The same goes for Figures

S16, S17, and S18 and Tables ST11 and ST12, which
correspond to H3N2-1968. From these figures and ta-
bles, it follows that:

a) Peak SFA periodicities for H1N1-1918

P1 ¼ 60:6275329147499
P2 ¼ 157:248365569507
P3 ¼ 288:394774029129
P4 ¼ 576:789548058258
P5 ¼ 970:040526635999
P6 ¼ 1631:40720299807
P7 ¼ 2515:97384911212
P8 ¼ 5031:94769822424

Exact relationships

P4 ¼ 2P3

P5 ¼ 16P1
P7 ¼ 16P2

P8 ¼ 32P2

P8 ¼ 2P7

ð10Þ

Almost exact relationships

P8 ¼ 83P1 ð11Þ

Complexity measure, C=6

b) Peak SFA periodicities for H1N1-2009

P1 ¼ 55:5956928123500
P2 ¼ 157:248365569507
P3 ¼ 288:394774029129
P4 ¼ 576:789548058258
P5 ¼ 1057:83669529524
P6 ¼ 2515:97384911212
P7 ¼ 5984:02800504983

Exact relationships

P4 ¼ 2P3

P6 ¼ 16P2
ð12Þ

Almost exact relationships (note 38=2×19)

P5 ¼ 19P1

P7 ¼ 38P2
ð13Þ

Complexity measure, C=4

c) Peak SFA periodicities for H2N2-1957
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P1 ¼ 72:0986935072823
P2 ¼ 203:925900374759
P3 ¼ 288:394774029129
P4 ¼ 576:789548058258
P5 ¼ 889:531084997600
P6 ¼ 2515:97384911212
P7 ¼ 5984:02800504983

Exact relationships

P3 ¼ 4P1
P4 ¼ 8P1

P4 ¼ 2P3

ð14Þ

Almost exact relationships

P7 ¼ 83P1 ð15Þ
Complexity measure, C=4

d) Peak SFA periodicities for H3N2-1968

P1 ¼ 72:0986935072823
P2 ¼ 187:000875157807
P3 ¼ 628:993462278030
P4 ¼ 889:531084997600
P5 ¼ 2515:97384911212
P6 ¼ 5487:37787528068

Exact relationships

P5 ¼ 4P3 ð16Þ
Almost exact periodicities

P6 ¼ 76P1 note 76 ¼ 2� 38 ¼ 4� 19ð Þ ð17Þ
Complexity measure, C=2

Inter-relationships
As in the case of the coronaviruses, the influenza virus
sequence analysis also revealed plenty of inter-
relationships as expected, since the four viruses belong
to the same family.

P2 H1N1−1918ð Þ ¼ P2 H1N1−2009ð Þ
P3 H1N1−1918ð Þ ¼ P3 H1N1−2009ð Þ ¼ P3 H2N2−1957ð Þ
P4 H1N1−1918ð Þ ¼ P4 H1N1−2009ð Þ ¼ P4 H2N2−1957ð Þ

P7 H1N1−1918ð Þ ¼ P6 H1N1−2009ð Þ ¼ P6 H2N2−1957ð Þ ¼ P5 H3N2−1968ð Þ
P1 H2N2−1957ð Þ ¼ P1 H3N2−1968ð Þ
P7 H1N1−2009ð Þ ¼ P7 H2N2−1957ð Þ

ð18Þ
Interestingly, we found that many relationships exist

between the two viral families investigated here. If we
compare the results in this section to the previous sec-
tion, we can infer that:

P1 SARS−CoV−2ð Þ ¼ P1 H1N1−2009ð Þ
P5 SARS−CoV−2ð Þ ¼ P4 H1N1−1918ð Þ ¼ P4 H1N1−2009ð Þ ¼ P4 H2N2−1957ð Þ

P3 SARS−CoV−2ð Þ ¼ P2 H3N2−1968ð Þ
P6 MERSð Þ ¼ P7 H1N1−1918ð Þ ¼ P6 H1N1−2009ð Þ ¼ P6 H2N2−1957ð Þ ¼ P5 H3N2−1968ð Þ

P4 MERSð Þ ¼ P3 H3N2−1968ð Þ

ð19Þ

More on this is discussed next.

Discussion
If we consider the peak SFA periodicities from a se-
quence as nodes of a community, and their relationships
as links between the nodes, then, a visualization of the
results for the SARS-CoV-2 community would look like
the top left panel of Fig. 4. Since there are 10 peak peri-
odicities, we have 10 nodes. Then, from Eqs. 3 and 4, we
have 13 (recall that C=13) links between them (showing
in blue). The rest of the panels correspond to the rest of
the sequences in both families. The red lines give the
links between the communities within a family (from Eq.
9 for the coronavirus family and from Eq. 18 for the in-
fluenza family). The black lines are the links between the
two families (Eq. 19). This picture is a perfect example
of complex networks, which are often characterized by a
community structure, where in each community the
nodes are connected in a certain way (meaning the com-
munity obeys its own dynamics), but where there exist
also some connections (or interactions) between the
communities (see for example [18, 19]). We note two in-
teresting observations: (1) the influenza virus family is
much more connected (more red links) than the corona-
virus family, possibly indicating that the influenza strains
are less mutated than the coronavirus strains, and (2)
SARS-CoV-1 has no direct links to the influenza family.
This result supports our claims that SFA has the po-

tential and efficiency to delineate the complex mathem-
atical structure of genetic sequences and that it could
become a useful tool in such analyses. We need to stress
here that, given the mathematics behind SFA, while we
can make direct comparisons of the complexity measure
“C” within a certain family (where more or less the num-
ber of bases is the same), we cannot compare complex-
ities based on “C” between different families. This is due
to the differences in nucleotide length between viral
families. The coronavirus family sequence length is ap-
proximately 30,450 bases, whereas the influenza family
sequence length is approximately 13,500 bases. As such,
SFA may “see” longer oscillations in the coronavirus
family than in the influenza family. Thus, there will be
more entries above the diagonal (in tables such as Table
2), and therefore, higher complexity in the coronavirus
family.
Finally, it is interesting to note that the complexity

measure “C” in the case of the coronavirus family relates
to mortality and severity of symptoms as well as to the
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rate of transmission. As “C” increases, the transmission
rate to humans increases, but mortality rate decreases. It
is reported that symptoms of the SARS-CoV-2 are
milder than SARS-CoV-1 and MERS; however, the viral
transmission rate (from human-to-human) is greater
than the other family members. The mortality rate of
SARS-CoV-2 is lower (3.4%) than that of SARS-CoV-1
(9.6%) and MERS (35%) [20]. This relationship is not as
clear, however, in the case of the influenza virus fam-
ily. Unfortunately, in this case, the outbreaks span
over a century, and the actual numbers are skewed by
several factors such as deaths by secondary infection
(due to the unavailability of antibiotics), hygiene, lack
of experience and lack of proper healthcare, especially
in the early outbreaks, and other problems. For ex-
ample, H1N1-1918 (C=6) infected 30% of the planet’s
population and H1N1-2009 (C=4) infected 10% of the
population. This is consistent with “increasing C ➔

higher infection rate”, but it is not consistent with
“increasing C➔ less mortality rate”. H1N1-1918 killed
about 8% of the infected, whereas H1N1-2009 killed
only 0.0025% of the infected [21–28]. But how can
we compare the conditions in 1918 and 2009? To
complicate comparisons further, there is hardly any
reliable data of infection rates for H2N2 and H3N3.
In any case, the complexity measure “C” may hold a
promise and could become a useful tool in the pre-
diction of transmission and mortality rates in future
new viral strains.

Conclusions
In this exploratory work, a relatively recent mathemat-
ical method (SFA) is applied to probe the structure of
the nucleotide sequences of two related viral families:
those of coronaviruses and those of influenza viruses.
The coronaviruses are SARS-CoV-2, SARS-CoV-1, and
MERS. The influenza viruses include H1N1-1918,
H1N1-2009, H2N2-1957, and H3N2-1968. The analysis
indicates that the nucleotide sequences exhibit an elab-
orate and convoluted structure akin to complex net-
works. We define a measure of complexity and show
that each nucleotide sequence exhibits a certain degree
of complexity within itself, while at the same time there
exists complex inter-relationships between the se-
quences within a family and between the two families.
From these relationships, we find evidence, especially for
the coronavirus family, that increasing complexity in a
sequence is associated with higher transmission rate but
with lower mortality. As such, the complexity measure
defined here may hold a promise and could become a
useful tool in the prediction of transmission and mortal-
ity rates in future new viral strains.
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