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Abstract

Background: Genetic disposition is considered critical for identifying subjects at high risk for disease development.
Investigating disease-causing and high and low expressed genes can support finding the root causes of
uncertainties in patient care. However, independent and timely high-throughput next-generation sequencing data
analysis is still a challenge for non-computational biologists and geneticists.

Results: In this manuscript, we present a findable, accessible, interactive, and reusable (FAIR) bioinformatics platform,
i.e., GVViZ (visualizing genes with disease-causing variants). GVViZ is a user-friendly, cross-platform, and database
application for RNA-seq-driven variable and complex gene-disease data annotation and expression analysis with a
dynamic heat map visualization. GVViZ has the potential to find patterns across millions of features and extract
actionable information, which can support the early detection of complex disorders and the development of new
therapies for personalized patient care. The execution of GVViZ is based on a set of simple instructions that users
without a computational background can follow to design and perform customized data analysis. It can assimilate
patients’ transcriptomics data with the public, proprietary, and our in-house developed gene-disease databases to
query, easily explore, and access information on gene annotation and classified disease phenotypes with greater
visibility and customization. To test its performance and understand the clinical and scientific impact of GVViZ, we
present GVViZ analysis for different chronic diseases and conditions, including Alzheimer’s disease, arthritis, asthma,
diabetes mellitus, heart failure, hypertension, obesity, osteoporosis, and multiple cancer disorders. The results are
visualized using GVViZ and can be exported as image (PNF/TIFF) and text (CSV) files that include gene names, Ensembl
(ENSG) IDs, quantified abundances, expressed transcript lengths, and annotated oncology and non-oncology diseases.
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Conclusions: We emphasize that automated and interactive visualization should be an indispensable component of
modern RNA-seq analysis, which is currently not the case. However, experts in clinics and researchers in life sciences
can use GVViZ to visualize and interpret the transcriptomics data, making it a powerful tool to study the dynamics of
gene expression and regulation. Furthermore, with successful deployment in clinical settings, GVViZ has the potential
to enable high-throughput correlations between patient diagnoses based on clinical and transcriptomics data.
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Introduction
Over the past few years, genomic sequencing technolo-
gies have improved the clinical diagnosis of genetic dis-
orders and continue to expand the potential of basic
sciences in developing insights into human genetic varia-
tions and their biological consequences. Gene expression
analysis is a widely adopted method to identify abnor-
malities in normal function and physiologic regulation
[1]. It supports expression profiling and transcriptomic
analyses to identify, measure, and compare genes and
transcripts in multiple conditions and in different tissues
and individuals. Several recently published studies have
shown that gene expression analysis is a proven method
for understanding and discovering novel and sensitive
biomarkers among several complex disorders. Two
major techniques that are currently being used for gene
expression analysis are microarrays and RNA sequencing
(RNA-seq) [2]. Microarrays are based on traditional
microarray platforms for transcriptional profiling that
quantify a set of predetermined whole transcriptome se-
quences [3], while RNA-seq identifies, characterizes, and
quantifies differentially modulated transcriptomes [4].
Due to recent advancements in next-generation sequen-
cing (NGS) technologies and the development of new bio-
informatics applications, RNA-seq has become the most
widely used method for gene expression analysis [5].
Several RNA-seq data pre-processing pipelines have been

developed and published and are freely available [4]. Most of
the pipelines follow a similar workflow, which starts with
quality checking the sequences, trimming barcodes, sorting
sequences, removing duplicates, aligning to reference genome
and transcriptome, and calculating different metrics. RNA by
expectation maximization (RSEM) is a widely applied and
proven algorithm for the quantification and identification of
differentially expressed genes (DEGs) that aligns sequences to
reference de novo transcriptome assemblies [6]. Its outcomes
include quantified gene and isoform abundances with tran-
scripts per million (TPM), fragments per kilobase million
(FPKM), reads per kilobase of transcript per million mapped
reads (RPKM), and mean expressed transcript lengths. These
values are mainly used in case-control studies and gene ex-
pression analysis, which requiring bioinformatics expertise to
understand the processed RNA-seq data complexities, and
computational methods and programming languages to inter-
pret, visualize, and report produced analytic results.

Data visualization is considered essential for RNA-seq
interpretation, as it bridges the gap between algorithmic
approaches and the cognitive skills of users and investi-
gators. Over the past decade, different data visualization
tools have emerged. Some are available as commercial
packages (e.g., Tableau, Heatmap.me, Hotja, Crazy Egg,
Inspectlet), and others include academic open-source
code applications (e.g., BEAVR, NOJAH, Heatmap3,
Clustergrammer). However, based on our evaluation,
most of these tools are slow; sometimes unable to render
large RNA-seq datasets; downloadable, but difficult to
install and configure; available only with manual data
uploading and management; not freely available and re-
quire subscriptions (commercial only); and, lastly, not
user-friendly but require good knowledge of program-
ming languages and computational skill sets.
Independent and timely high-throughput NGS data

analysis is still a challenge for non-computational biolo-
gists and geneticists. In this study, we are focused on
supporting RNA-seq-driven gene expression data ana-
lysis, annotation with relevant diseases, and heat map
visualization without requiring a strong computational
background from the user. We present GVViZ (visualiz-
ing genes with disease-causing variants), a newly devel-
oped bioinformatics application for gene-disease data
visualization, annotation, and expression analysis with a
dynamic heat map visualization. GVViZ is a findable, ac-
cessible, interactive, and reusable (FAIR) platform, based
on a set of seven simple instructions that will allow users
without computational experience (e.g., bench scientists,
non-computational biologists, and geneticists) to analyze
data, visualize data, and export data to share results.

Material and methods
GVViZ is a robust bioinformatics, user-friendly, cross-
platform, desktop, and database application. Figure 1 ex-
plains the workflow and Fig. 2 demonstrates the graph-
ical user interface (GUI) of GVViZ, which includes (1)
database connection, (2) data selection, (3) gene selec-
tion, (4) querying database, (5) heat map customization,
(6) heat map visualization, and (7) exporting of results.
The database connection step establishes a link to the
SQL server using authenticated user credentials. Data
selection allows the user to select among gene types, ex-
pression values, and samples. Gene selection offers
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features to search and select genes and associated dis-
eases for the analysis. Querying database triggers annota-
tion and gene expression analysis based on selected
abundances and pruning conditions, samples, genes, and
diseases. Heat map visualization provides features to
customize and render heat maps, and exporting results
allows the user to save outcomes as image (PNG/TIFF)
or text (CSV) files.

GVViZ simplifies the process of gene expression data
analysis, visualization, and exploration of results by using
an SQL database, which is divided into two relations:
gene expression data and gene-disease annotation. The
results of the RNA-seq data processing pipeline (Fig. 3)
are automatically parsed and uploaded into gene expres-
sion data, which includes TPM, FPKM, expressed tran-
script lengths, and counts for each of the samples. TPM

Fig. 1 GVViZ workflow design. Overall tasks include the following: (1) database connection, (2) data selection, (3) gene selection, (4) querying
database, (5) heat map customization, (6) heat map visualization, and (7) exporting results

Fig. 2 GVViZ graphical user interface. Sequence of screenshots explaining the overall interactive interfaces
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values are proven to be more accurate measures of the
true abundance of RNA molecules from given genes,
and TPM counts are more consistent across libraries.
Therefore, they potentially allow a more stable statistical
analysis. The goal is to perform a gene expression study,
where the gene-level TPM estimates, representing the
overall transcriptional output of each gene, are com-
pared between conditions.
The gene-disease annotation relation is populated with

published literature-based annotated gene-disease data,
collected from different clinical and genomics databases
[7], and categorized among gene name/ID, Ensembl ID,
category (protein-coding or non-protein-coding, both
protein-coding and non-protein-coding, or all available
genes in processed RNA-seq samples), and relevant dis-
ease (Fig. 1). Our RNA-seq pipeline (Fig. 3) implements
FastQC for quality checking [8], Trimmomatic to re-
move adapters and low-quality sequences [9], SAMtools
to sort and index sequences [10], MarkDuplicates to re-
move duplicates [11], CollectInsertSizeMetrics to com-
pute the size distribution and read orientation of paired-
end libraries, and HISAT with Bowtie2 to align the se-
quences to the human reference genome (hg38) [12, 13].
RSEM is then applied for quantification and identifica-
tion of differentially expressed genes by aligning the
reads to reference de novo transcriptome assemblies [6].
As the final step, our RNA-seq pipeline utilizes an in-
house developed scientific software application to effi-
ciently extract and parse information from most of the

outcome files (e.g., QC metrics, genes, isoforms) and
transfer and load into a modeled relational database.
The results based on genes are automatically linked to
GVViZ for further annotation, expression analysis, and
heat map visualization. Our RNA-seq pipeline starts
with mainly the input of short read-based FASTQ files,
preferably produced by the Illumina sequencing technol-
ogy. We recommend the use of paired-end reads, but
our pipeline can also work at single-end reads. Users can
customize this pipeline based on their needs and can
start from any point they would, e.g., instead of starting
with FASTQ files, if they have already created SAM/
BAM files, they can start directly using HISAT with
Bowtie2, and RSEM.
Once GVViZ is successfully connected to the SQL

database server, it allows users to design the analysis, se-
lect single and multiple sample cohorts, and customize
visualization. GVViZ provides SQL-based features to
search and select genes and their associated diseases to
support gene-disease data annotation. Next, users can
select the appropriate gene category (coding, non-
coding, both, or all available in samples used for ana-
lysis) for the designated analysis. Users need to define
the criteria by choosing the right abundance type, setting
desired minimum and maximum values, and selecting
applicable analytic conditions. Users can select control
and diseased samples from the main cohort by picking
individual samples and define the range among one or
multiple cohorts. GVViZ provides features to customize
data visualization, which include titles (header, right y-
axis, left y-axis, and x-axis), color schemes (28 gradi-
ents), selection and positioning of values (right y-axis
and left y-axis), and rendering of heat maps. Finally,
users can visualize the results within the GVViZ data
visualization panel, as well as export in image (TIFF and
PNG) and text (CSV) formats (Fig. 2).
To advance our clinical genomics and precision medi-

cine study, we modeled and implemented an annotated
disease-gene-variants database that includes but is not
limited to data collected from several genomics data-
bases worldwide [7], including PAS [14, 15], ClinVar
[16], GeneCards [17], MalaCard [18], DISEASES [19],
HGMD [20], Disease Ontology [21], DiseaseEnhancer
[22], DisGeNET [23], eDGAR [24], GTR [25], OMIM
[26], miR2Disease [27], DNetDB [28], GTR, CNVD,
Ensembl, GenCode, Novoseek, Swiss-Prot, LncRNADi-
sease, Orphanet, and Catalogue Of Somatic Mutations
In Cancer (COSMIC) [29]. Our gene datasets consist of
59,293 total genes (19,989 are protein-coding and 39,304
are non-protein-coding) and over 200,000 gene-disease
combinations. We have integrated this high-volume and
diverse database with GVViZ to support variable and
complex gene-disease annotation, visualization, and ex-
pression analysis.

Fig. 3 RNA-seq data processing pipeline. We use FastQC for quality
checking, Trimmomatic to remove adapters and low-quality
sequences, SAMtools to sort and index sequences, MarkDuplicates
to remove duplicates, CollectInsertSizeMetrics to compute the size
distribution and read orientation of paired-end libraries, HISAT with
Bowtie2 to align the sequences to the human reference genome,
and RSEM to quantify and identify differentially expressed genes by
aligning reads to reference de novo transcriptome assemblies.
Furthermore, our RNA-seq pipeline utilizes an in-house developed
software application to automatically parse the outcome files of the
pipelines and upload the results into a modeled relational database,
which are then used by GVViZ for data annotation, analysis,
and visualization
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GVViZ is based on a product-line architecture, which
means each module performs its task independently and
its output is used as an input for the next module until
the analysis outcome is achieved. It is a multi-platform
software application programmed in JAVA, designed fol-
lowing the software engineering principles and the
“Butterfly” paradigm [30]. GVViZ has been well tested
and can be executed in Microsoft Windows, Linux,
Unix, and MacOS operating systems. Along with user
guidelines, further GVViZ database design and software
development details are available in supplementary
material 1.

Results
The performance of GVViZ has been tested and vali-
dated in-house with multiple experimental analyses.
Here, we report gene-disease annotation, expression
mapping, and heat map visualization of different chronic
diseases and conditions. We have integrated an anno-
tated gene-disease database with a lab-generated dataset
of randomly collected 31 RNA-seq samples. These pa-
tients were randomly selected for sequencing to explore
variability in expression between individuals. We classi-
fied our analysis with an expression cutoff of 100 TPM
for any gene in a single sample and mapped them to the
physiological conditions: Alzheimer’s disease, arthritis,
asthma, diabetes mellitus, obesity, osteoporosis, heart
failure, hypertension, and multiple cancer disorders
(Fig. 4). The annotation and expression analysis per-
formed by GVViZ produced results linking expression
genes to more than one chronic diseases, which included
34 genes linked to Alzheimer’s disease, 51 genes to arth-
ritis, 32 genes to asthma, 43 genes to diabetes mellitus, 2
genes to obesity, 9 genes to osteoporosis, 2 genes to
heart failure, and 20 genes to hypertension, and 184
genes were found to be associated to multiple cancer
disorders (Fig. 4). GVViZ-produced results (high-reso-
lution figures) are available in supplementary material 2.
We observed variability in the expression of Alzhei-

mer’s-related genes CTSB, COX4I1, MT-ND1, CALM3,
UBB, MT-CO2, PICALM, FPR2, MT-ND2, CST3, TNFR
SF1A, CALM1, CALM2, CTSD, GRN, MT-CO1, ITM2B,
and GAPDH between patients (Fig. 4A), having significant
expression among most of the samples analyzed. Similarly,
we found variable clusters of genes associated with
immune-mediated diseases like arthritis and asthma.
Arthritis genes included ANXA1, LTB, B2M, TNFRSF1B,
HLA-DRA, SLC11A1, S100A12, ITGB2, HLA-DRB1,
TNFRSF1A, HLA-C, SERPINA1, HLA-DB1, FCGR3A,
CXCR2, HLA-B, TMSB4X, and S100A9 (Fig. 4B) and with
significant expression. Asthma-related genes STAT6, IL16,
ADAM8, ALOX5, TPT1, CD44, PPBP, HLA-DRB1,
FCER1G, HLA-DQB1, ALOX5AP, and SELL had substan-
tial expression (Fig. 4C). Most widely occurring diseases

like diabetes mellitus (PIK3CD, IL16, MT-ND1, B2M,
HBA1, MT-ND2, SLC11A1, NAMPT, PSMB9, HLA-DRB1,
UCP2, HBA2, HLA-DPB1, HLA-A, ADIPOR1, HBB,
SOD2, HLA-B) (Fig. 4D) and hypertension (ALOX5, CTS3,
RPL5, HBG2, RHOA, HLA-A, HBB, and CYBA) (Fig. 4H)
showed variable degree of expression in some genes. We
only noticed CTS3 as a significantly regulated gene linked
to heart failure (Fig. 4G) and did not find any highly
expressed genes among obesity (Fig. 4E) and osteoporosis
(Fig. 4F) disorders.
While analyzing multiple cancer disorders (Fig. 4I), we

found highly variable expression among genes implicated
in cancer: EEF1A1, GNAS, NPM1, PIM1, and RHOA are
known oncogenes; H3F3A, PTPRC, SMARCB1, and B2M
are possible oncogenes; and CASP8, JAK1, and PRKA
R1A are known tumor suppressor genes [31]. While
some genes found are known cancer census genes
(RAF1, BCL6, STAT3, CCND3, EWSR1, HSP90AB1,
LASP1, HSP90AA1, STAT5B, PICALM, NACA, CSF3R,
FUS, H3F3B, CALR, MALAT1, LEF1, CXCR4, BIRC3,
TPM3, CD79A, HNRNPA2B1, AKT2, SYK, and NUMA1)
[32], evidence of aberrated expression of these genes
could be a pre-clinical indication for further assessment.
A further analysis of age, gender, and clinical history can
give a clear idea of why some genes are expressed in
nearly all the patients and some are not expressing in
any patient. Also, we see many patients expressing most
of these disease genes and a few not expressing any at
all. Given their old age and no previous diagnosis, these
patients should be studied to detect the signs of early-
onset diseases.

Discussion
The quest to understand what causes chronic, acute, and
infectious diseases has been a central focus of human-
kind since the beginning of scientific discovery [33, 34].
Our evolving understanding of the complex nature of
diseases has led us to realize that to effectively diagnose
and treat patients with these conditions, it is essential to
utilize a precision medicine approach [35, 36]. By identi-
fying the novel risk factors and disease biomarkers, pre-
cision medicine translates scientific discovery into
clinically actionable personal healthcare [37–46]. A
major barrier to the implementation of precision medi-
cine is the data analysis requirement. Precision medicine
requires progressive healthcare IT environments that
can efficiently and rapidly integrate data from disparate
groups with non-aligned formats to provide decision-
making information to healthcare providers without
massive amounts of computing time [47]. Despite
current progress, there is still no stand-alone platform
available to efficiently integrate clinical, multi-omics, en-
vironmental, and epidemiological data acquisition [48].
Robust platforms are required in clinical settings to
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effectively manage, process, integrate, and analyze big
data with variable structures [49, 50].
On-demand access and analysis of integrated and indi-

vidual patient clinical and transcriptomics data can lead
to the identification of diagnostic signatures for early
dissemination of oncology and non-oncology disorders
[51, 52]. It can support better aligning of known disease
biomarkers with established treatments necessary for
real-time personalized care. However, one of the existing
challenges includes timely high-throughput genomics
and transcriptomics data interpretation and visualization

to support health practitioners in the provision of per-
sonalized care [53]. It requires integration and under-
standing of data with various types, structures, velocity,
and magnitude [54]. Visualization of complex and high-
volume data in health-related settings will support cog-
nitive work and highly impact time-restricted decision-
making [55]. Guidelines for the development of such ap-
plied and practical data visualization include but not
limited to the implementation of an interactive and
friendly user interface [30], efficient mapping of data ele-
ments to visual objects [55], use of easy to understand

Fig. 4 GVViZ gene-disease annotations, expression analyses, and heat map visualizations of different chronic diseases and conditions. Genes
identified for A Alzheimer’s disease, B arthritis, C asthma, D diabetes mellitus, E obesity, F osteoporosis, G heart failure, H hypertension, and I
multiple cancer disorders
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and self-explanatory data visualization techniques,
exporting and sharing of produced results, flexible de-
sign available with open-source code, and most import-
antly based on a reproducible approach. The
development of academic data visualization ap-
proaches will also contribute to improve the collabor-
ation between computational and bench scientists and
clinicians to practice precision medicine with impact-
ful scientific discovery and accessible approach at the
point of care [56].
In this manuscript, we presented GVViZ, an integrated

computational platform to support population and per-
sonalized transcriptome analysis with a user-friendly,
physician-oriented interface, and essential processes re-
quired for RNA-seq-driven gene expression modeling,
analysis, integration, management, and visualization.
GVViZ is particularly appropriate for demanding clinical
settings to facilitate physician’s decision-making. As it
offers integrating and using large amounts of tran-
scriptomics generated, and gene-disease annotation data
are collected to support the personalized care of individ-
uals with several complex disorders. GVViZ has the po-
tential to bring gene-disease data annotation and
analytics to the bedside to facilitate genetic susceptibility
for achieving truly personalized treatments for earlier,
more effective disease intervention. We emphasize that
automated graphical visualization should be an indis-
pensable component of modern RNA-seq analysis,
which is currently not the case [57–59]. However, re-
searchers can use our interactive RNA-seq visualization
tool to visualize the transcriptomics data making it a
powerful tool to study the dynamics of gene expression
and regulation. Integration of this tool into clinical set-
tings can help generate a patient’s profile for precision
medicine implementation. We used real RNA-seq data
to show that our tool can help readily and robustly
visualize patterns and problems that may give insight
into a patient’s genomic profile, unravel genetic predis-
position, and uncover genetic basis of multiple disorders.
The current release of the GVViZ does not support

unsupervised gene expression and differential analysis.
This is one of the very important aspects that we are
looking forward to address in the future. Furthermore,
we are planning to account for the potentially varying
average transcript length across samples when perform-
ing differential gene expression analysis by scaling the
TPM matrix (summing the estimated transcript TPMs
within genes and multiplying with the total library size
in millions). This will transform the underlying abun-
dance measures to incorporate the information provided
by the sequencing depth which may considerably im-
prove the false discovery rate.

Conclusion
Here, we introduced GVViZ, a new user-friendly appli-
cation for RNA-seq-driven gene-disease data annotation,
and expression analysis with a dynamic heat map
visualization. With successful deployment in clinical set-
tings, GVViZ will enable high-throughput correlations
between patient diagnoses based on clinical and tran-
scriptomics data. It will also assess genotype-phenotype
associations among multiple complex diseases to find
novel highly expressed genes. By mapping known and
novel protein-coding and non-coding genes to their re-
spective diseases, GVViZ can efficiently support the in-
terpretation of genetic variants using the American
College of Medical Genetics and Genomics (ACMG)
guidelines and evaluation of variants in known genes.

Availability and requirements
The software executable (JAR file) is open source and
freely available. To execute GVViZ ver.1.0.0, the only re-
quirement is the installation of Java Runtime Environ-
ment and MySQL. Once Java and MySQL have been
installed, the following two tables need to be created in
the MySQL server.
Operating system: Cross-platform (Microsoft Win-

dows, MAC, Unix, Linux)
Programming languages: Java and MySQL
Requirements: The researcher is responsible for

MySQL installation and database schema.
License: Freely distributed for global users. Any re-

strictions to use by non-academics: Copyrights are to
the authors.
Download link: GVViZ executable (JAR file) is freely

available and can be downloaded through GitHub
(https://github.com/drzeeshanahmed/GVViZ-Public).
GVViZ source code and all related material are already

uploaded to GitHub and freely available to the commu-
nity (https://github.com/drzeeshanahmed/GVViZ_
SourceCode).
GVViZ online tutorial (video) is available through the

following link: https://www.youtube.com/watch?v=
x0RroYpk8Nw&ab_channel=Zeeshan.

Abbreviations
ACMG: American College of Medical Genetics and Genomics;
COSMIC: Catalogue of Somatic Mutations in Cancer; DEGs: Differentially
expressed genes; FAIR: Findable, accessible, interactive, and reusable;
FPKM: Fragments per kilobase million; GUI: Graphical user interface;
NGS: Next-generation sequencing; RPKM: Reads per kilobase of transcript per
million mapped reads; RSEM: RNA by expectation maximization; RNA-
seq: RNA sequencing; TPM: Transcripts per million; GVViZ: Visualizing genes
with disease-causing variants
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Additional file 1: Supplementary material 1. GVViZ: User guide,
database modelling, source code and software configuration.

Additional file 2: Supplementary material 2. GVViZ produced results
and high-resolution figures, and quality report by RNA-seq pipeline.
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