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Abstract

Increasing amounts of genetic data have led to the development of polygenic risk scores (PRSs) for a variety of
diseases. These scores, built from the summary statistics of genome-wide association studies (GWASs), are able to
stratify individuals based on their genetic risk of developing various common diseases and could potentially be
used to optimize the use of screening and preventative treatments and improve personalized care for patients.
Many challenges are yet to be overcome, including PRS validation, healthcare professional and patient education,
and healthcare systems integration. Ethical challenges are also present in how this information is used and the
current lack of diverse populations with PRSs available. In this review, we discuss the topics above and cover the
nature of PRSs, visualization schemes, and how PRSs can be improved. With these tools on the horizon for multiple
diseases, scientists, clinicians, health systems, regulatory bodies, and the public should discuss the uses, benefits,

and potential risks of PRSs.
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Introduction

Determination of risk has been central to disease assess-
ment and prevention for decades within the medical
field [63]. Currently, the focus on disease prevention and
mitigation has become a major focus of healthcare insti-
tutions in order to reduce the strain of human disease
on public health systems. By enhancing the capacity for
healthcare workers to intervene early with patients, guid-
ing them towards healthier lifestyles and better personal
choices, the hope is to prevent the worse effects of dis-
ease later in life and more effectively use healthcare re-
sources [63].

At the beginning of the twenty-first century, nearing
the completion of the Human Genome Project, there
was hope that acquiring the human genetic blueprint
would allow us to understand disease and determine
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those at risk quickly through genetic testing [11]. How-
ever, these ideas were far too optimistic. Instead of sim-
ple connections between a specific gene or set of genes
and their associated disease, we found a complex web of
interactions throughout the genetic code involving hun-
dreds to millions of single nucleotide polymorphisms
(SNPs) [52], especially among more common and com-
plex diseases. Such diseases have a polygenic underpin-
ning involving thousands of genetic variants that each
has only a small effect on the disease process. This real-
ity fundamentally limits the ability of single or multi-
candidate gene testing for use in risk-assessment and
diagnosis of common diseases [35].

The discovery of multi-gene diseases forced re-
searchers to backtrack on their original claims and hopes
for genetic testing, putting the idea of genetic diagnosis
and risk assessment [11] on the backburner. From this
effort arose a modern expansion in the field of quantita-
tive genetics and led to the advent of the genome-wide
association study (GWAS), with the first completed in
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2005 with only 24 cases and controls [24]. The first
large-scale GWAS occurred in 2007 with ~ 2000 cases
for 7 diseases and ~ 3000 shared controls [14]. Over
time, more and more GWASs were performed with ever
increasing numbers of subjects, some even over 1 mil-
lion subjects [32, 42]. These advances, among others,
have led to increased study power and the ability to cap-
ture more genetic variants associated with a given trait
such as diabetes [66], cardiovascular disease (CVD) [36],
anxiety [43], and even depression (see Fig. 1) [28].

In 2009, the International Schizophrenia Consortium
demonstrated, for the first time, the ability to use a
multi-gene profile to categorize and stratify individuals
based on their likelihood of developing schizophrenia
[31]. This was the first example of a polygenic risk score
(PRS) model being used and the researchers were able to
demonstrate the power of PRSs for disease stratification
(International Schizophrenia et al. 2009 [63]). The study
had large implications for the future of genetic testing,
public health, and clinical care. Chatterjee et al. later
published a seminal review on PRS development and
evaluation, emphasizing the need for absolute risk
estimates to be the focus of future PRS development
[7]. Researchers then continued this effort for more
diseases [39] and even began to integrate clinical risk
factors with PRSs to increase risk stratification accur-
acy [41], acknowledging the inherent and intricate
gene-environment interactions in complex human
disease. Most notable is the study published by Khera
et al. in 2018 which showcased the use of PRSs for
coronary artery disease (CAD), breast cancer, atrial
fibrillation, inflammatory bowel disease, and type II
diabetes [35].

The hopes for genetic testing being useful and inform-
ative in the clinic have been revitalized. Advances in PRS
development provide new and reliable possibilities for
determining an individual’s disease risk which, in prac-
tice, could encourage preventative screening or treat-
ment, furthering the possibility of avoiding the disease
altogether. In addition, a framework to build upon was
established and the integration of clinical/environmental
risks is continuing. In many ways, PRSs hold true to the
original promise of genetic testing for patients and the
public. This revelation opened the doors for numerous
consortia and bioinformatics groups to assess their re-
positories and to analyze their databases for any infor-
mation that they could glean, the more subjects the
better. This marked a milestone in the applications of
big data science in genetics and new efforts were put un-
derway to collect ever more genetic data from individ-
uals. Now, GWASs may not only be a preamble for
future research into the genes and molecular mecha-
nisms of disease, but a clinical tool for disease risk
assessment.
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The past years have shown an explosive growth of the
scientific application of PRSs which fall in five broad
classes: verification of genome-wide associations, estab-
lishing genetic correlation between traits, testing gene-
by-environment interaction, stratification by genetic risk
to establish causal effects that are independent of genetic
confounding, and the establishment of ‘genetic nurture.
To verify the predictive ability of SNPs identified by
GWAS meta-analyses for the trait-of-interest, which is
critical for their use in the clinic, PRSs are computed in
out-of-sample cohorts and regressed on the trait to esti-
mate the amount of variance explained by the PRS in
the target population [35, 46]. The use of an independ-
ent out-of-sample cohort is mandatory because when
the “target” sample is part of the “discovery” sample, the
prediction is going to be inflated [64]. PRS is also a
powerful tool to establish a shared genetic basis between
apparently unrelated traits, as shown for example by the
prediction of creativity by the PRS for schizophrenia and
bipolar disorder [56]. PRSs, in sharp contrast to isolated
candidate genes [16], further enable well-powered tests
of gene-by-environment interaction which surprisingly
falsified the hypothesized interaction between genetic
susceptibility for depression and childhood trauma [54].
Stratification on PRS scores uniquely enables causal in-
ference in observational studies that is corrected for gen-
etic confounding. For example, Choi et al. [8, 9],
combining a lifestyle survey on recreational physical ac-
tivity with electronic health records on incident episodes
of depression, showed that even individuals with high
genetic vulnerability for depression could avoid new de-
pressive episodes when they are sufficiently physically
active [8]. Finally, using a separate PRS based on the
transmitted and on the untransmitted alleles of the par-
ents, we can separate the genetic and environmental
components present in intergenerational transmission.
This was, for example, used to show that the rearing en-
vironment provided by the parents to their offspring
(genetic nurturing) played an important role in the
child’s educational attainment, but did not affect the
transmission of vulnerability for ADHD which was en-
tirely genetic [17].

Whereas there is now ample demonstration of the
use of PRS to advance science, their clinical applica-
tions are still rare. Here, we focus on the clinical im-
plementation of PRSs and their utility both to the
larger healthcare system and to individual health out-
comes. We begin by briefly discussing how PRSs are
calculated and the science behind them. We then
evaluate their potential use in the clinic and the chal-
lenges inherent to their integration into healthcare at
large, especially in training healthcare professionals
and explaining the results to patients. Later, we dis-
cuss methods of visualization and communication of
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polygenic risk and the implications this information
has for patients and their families. Finally, we discuss
the ethical status of PRSs and the potential risks in
using the technology, especially on underrepresented
populations in genetic studies.

For clarity, we often discuss the use of PRSs as scores
which will be the main tool that healthcare providers
will use and discuss with patients. These scores are gen-
erated via algorithms which can contain tens to millions
of SNPs depending on the disease/phenotype of interest.
Throughout this review, we will focus on the scores
themselves but will at times discuss the algorithms (i.e.,
PRS algorithms) and how they function in particular ver-
sus the scores (i.e., PRSs) that will be used in the clinic.

Given recent guidelines published by Khan et al. [34],
we clarify that this work will focus almost exclusively on
genetic ancestry (often referred to simply as “ancestry”)
and not on race and ethnicity. While (genetic) ancestry,
race, and ethnicity are often linked, they are not equiva-
lent terms and we endeavor to be as specific as possible
regarding the terminology used within this work. We do,
however, discuss some of the ethical impacts regarding
PRS implementation and therefore discuss its potential
effects on racial and ethnic health disparities. Given that
these are sociological terms and we are referring to
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social issues, we then use the terms “race” and

“ethnicity” directly.

How PRSs are constructed
A PRS represents a calculated estimate of trait or dis-
ease liability according to an individual’s genetic profile
in the context of relevant GWAS summary statistics.
Specifically, a PRS is computed by summing the num-
ber of risk alleles (0, 1, or 2) that an individual pos-
sesses (target data), weighted by the risk allele effect
sizes as determined by a GWAS on the phenotype of
interest (discovery data). The effect size is expressed as
the log (OR) for binary traits or slope of the linear re-
gression between allele count and trait for continuous
traits. Questions then arise as to the number of risk al-
leles important for defining the most accurate PRS.
Studies have demonstrated that PRSs achieve greater
predictive power when they include a large number of
genetic variants, also known as SNPs, rather than limit-
ing a PRS to only those SNPs that attain genome-wide
significance in the associated GWAS [1, 31, 48].
Rigorous quality control measures must be imple-
mented on both the discovery and target data to achieve
validity and power in the PRS calculation. Particular care
must be taken during the quality control stages because
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small errors can become magnified during the aggrega-
tion of SNP effects in PRS computation. Researchers and
clinicians alike should familiarize themselves with and
become knowledgeable of standard quality control steps
(see this tutorial [9]) in PRS calculation as these analyses
can have severe outcomes on the accuracy of the PRS.
Various strategies have been developed to select the
genetic variants that are used in PRSs [10, 65]. When
calculating a PRS, it is important to consider factors that
contribute to violating the assumptions of normality.
That is, the PRS is the sum of independent variables
(i.e., SNPs) with identical distributions; thus, the PRS
should be approximately a normal distribution even
when the predictive power is low. A PRS with a non-
normal distribution likely results from inclusion of many
correlated SNPs (due to linkage disequilibrium) or deriv-
ation and application of the score from heterogeneous
populations (SNPs with markedly different allele fre-
quencies and genotype distributions). Therefore, evalu-
ation of PRS distributions may elucidate errors in PRS
calculation or issues that persist due to not properly ad-
dressed population stratification existing in the target
sample. When the PRS is normally distributed, Z-scores
can be calculated, helping to improve score interpret-
ation and increase the comparability across traits. A gen-
eral schematic of this process is represented in Fig. 2.

PRS in the health care system

The potential for PRSs in the clinic is far reaching for
multiple levels within the healthcare system. Specifically,
the potential clinical implications of PRSs can be subdi-
vided into two major areas: (1) public health and (2) in-
dividual and clinical decision-making.

PRS’s influence on public health

Within the domain of public health, prevention is one of
the largest initiatives to help maintain a healthy popula-
tion and to reduce the morbidity, mortality, and eco-
nomic costs of disease on society. Prevention is generally
broken down into three categories: primary, secondary,
and tertiary. Primary prevention involves disease reduc-
tion through the use of information, healthy behaviors,
and regular health maintenance to prevent a disease,
such as avoiding smoking for lung cancer. Secondary
prevention involves testing patients for early detection
(cholesterol screening, etc.), commonly referred to sim-
ply as screening. Screening is used routinely in the clinic,
from various procedures, such as mammograms for
breast cancer and colonoscopies for colon cancer, ques-
tionnaires, like those for clinical depression and anxiety,
to blood tests, such as cholesterol testing for CAD.
When applied properly, screening is used to discover a
disease early in its pathophysiology, enabling early inter-
vention with the goal of either curing the individual of
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the disease or preventing the disease from progressing.
By doing so, individuals who need more invasive, and
potentially harmful diagnostic tests, can be found while
the rest of the population is not put at risk. Finally, ter-
tiary prevention involves medications or procedures de-
signed to intervene and reduce adverse outcomes in
patients [38].

PRSs likely fit into this system as a hybrid of primary
and secondary prevention, functioning as an early sec-
ondary prevention that may be able to influence pri-
mary prevention strategies. While a DNA sample from
a patient would be required for evaluation, PRS analysis
on an individual would ideally occur long before an in-
dividual has any signs or symptoms of the disease in
question. Instead, a PRS for a number of diseases would
be generated early on, giving clinicians and other
healthcare workers a jump-start in initiating conversa-
tions regarding healthy habits, access to health pro-
grams, and other preventative measures (medications,
further testing, etc.) [63]. This may have a profound ef-
fect on the prevention of diseases, intervening even be-
fore exposure to a potentially harmful environmental
risk factor, and greatly reducing the likelihood of devel-
oping a condition later in life.

Moreover, PRS-based information could help to im-
prove healthcare resource optimization to reduce costs
and justify, if applicable, increased spending on certain
diseases with high genetic burden in larger populations,
such as a nation or state. This information could be used
in combination with socioeconomic and existing health-
care data to argue for increased public spending and
healthcare outreach efforts. Public health awareness
campaigns and increases in funding have been shown to
increase overall health outcomes in the past and could
be further justified with PRS information on a large
enough scale. Outcome changes could be monitored
using deidentified/anonymized data to observe the ef-
fects of enacted public policy changes on genetically at-
risk (sub)populations, representing an improvement in
overall well-being and health of communities. Even
greater would be the increased knowledge that such a
scenario would offer for increasing the accuracy of PRSs
for individuals given the increase in deidentified data
available for research barring subject informed consent
and internal review board approval.

Individual and clinical decision making:

The ability to stratify on the population has great bene-
fits to society, but PRSs have an even greater potential
for individual patients. By having a PRS, a patient will
have a quantitative measure of their individual risk for
developing a given disease. In consultation with their
physician, a specific and personalized plan can be devel-
oped. Most patients will not require special care, but for
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Fig 2 General scheme and important considerations for PRS development. This figure begins with collection of study participants and ends with

the intermediate and high-risk groups, different or in-
creased screening may be necessary [31, 63]. For ex-
ample, in the USA, women ages 50-74 are
recommended to have a mammogram every 2 years if
they are at average risk [61]. But for those women who
are at increased risk, this mammogram interval may be
decreased to one every year or breast magnetic reson-
ance imaging (or MRI) may be warranted to reduce life-
time radiation exposure in high-risk women [48]. For
the most severe cases, radical double mastectomy and
total hysterectomy may be warranted [41, 48].

As a local physician, PRSs function as a tool to better
understand a patient than family history can offer alone
[63]. These scores provide a quantifiable and objective
measure of genetic risk compared to the subjective

nature and potential recall bias of family history [3, 59]
and self-reported lifestyle risk factors [53, 57]. Patients,
through no fault of their own, often do not know the
exact history of their parents or grandparents; vital in-
formation for assessing risks involving diabetes, cancer,
and CAD. PRSs offer another metric for measuring
inherited risk [26].

Given genome-wide SNP genotyping, assessing genetic
risk should only require a single DNA sample for assess-
ment. While whole genome sequencing may become
universally available in time, methods such as array-
based genotyping paired with SNP imputation can be
used to gather genome-wide information for individuals,
such as the Illumina Global Screening Array [4]. This
digitized genome-wide information can then be used to
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score a patient for any number of diseases with available
PRSs. Given that the genome does not change, this test
should only be required once. Even if PRSs change over
time by adding or removing SNPs from the scoring algo-
rithms as data increases or methodology evolves, individ-
uals with genome-wide data already recorded should be
able to take advantage of improvements in PRS accuracy
and predictive capacity without giving another sample.

PRS scores also showcase a great opportunity to
counsel high genetic-risk patients on lifestyle choices, as
noted in the literature [63]. One example would be a pa-
tient with a high diabetes PRS. With these results, a
physician can discuss with the patient their individual
risk, explaining the challenges those with diabetes face,
and recommend increasing exercise and a healthy diet.
In fact, it may become standard practice to begin
hemoglobin A1C monitoring early and to recommend
seeing a nutritionist. By counseling a patient prior to dis-
ease onset, discussing genetic risk, and starting patients
earlier on a healthly lifestyle, the disease can be pre-
vented or caught early enough to reduce disease severity.

One huge advantage of PRSs is that they are far less
sensitive to inaccuracies in the genotyping of individual
variants than standard clinical genetics procedures. In
clinical genetics, we often rely on a single genomic vari-
ant for determining a treatment course. Inaccuracies in
genotyping can lead to “[failures] to [make] a diagnosis,
or [make] a diagnosis in error” leading “to devastating
consequences for individuals and families” [2]. For ex-
ample, reporting absence of common risk variants for
breast cancer in single genes such as BRCA1, potentially
gives patients a false sense of security, because many
other variants may still put the patient at risk. A PRS for
breast cancer from a well-powered GWAS meta-analysis
could capture a far larger portion of the total genetic
risk compared to a single variant.

Simultaneously, individuals on the opposite end of the
spectrum will be identified who are at far lower genetic-
risk than the population average. Weighing the benefits
and risks of screening with such a population will come
with its own set of concerns. The decision to delay regu-
lar screening or to modify the screening timetable will
be a unique decision between patient and physician. As
has been discussed in the literature, the recommenda-
tion to withhold screening for low- versus high-risk pa-
tients will likely be harder to recommend [63], at least
until clinicians and health systems become comfortable
with the technology and there is a surplus of historical
data on the use of PRSs in the clinic upon which to for-
mulate guidelines.

Predictive PRSs also have the potential to identify
high-risk groups for medical interventions [7, 63]. One
such example is the use of statin therapy in individuals
with high cholesterol. Mega et al. found through risk-
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benefit analysis that those at in the highest-risk category
(top quintile) would benefit from therapy initiation.
Those who scored in the lower risk categories had less
benefit from the medication versus the higher-risk cat-
egories [50], leading to the risks (namely of developing
diabetes) outweighing the benefits of statin therapy [63].
As information accumulates from the use of electronic
medical records and consortia continue to increase in
size and diversity, conclusions about who should receive
a given therapy and when will become more common.
Big data analytics will give healthcare workers the ability
to modify their decision-making to reflect the unique
genetics of each patient, both increasing benefits and re-
ducing harms on large scales.

Such distinctions and adjustments are not uncommon.
Already, clinicians balance the risks and benefits for each
patient based on large studies and clinical trials. One
such example is the use of calcium channel blockers and
thiazide diuretics in African-American patients [6, 69].
These medications are generally preferred to the more
standard ACE inhibitors and beta blockers because
calcium channel blockers are noted to be more effective
and safer to use in this subpopulation [69]. It is not
unreasonable for PRSs to expand these discoveries and
to expand the efforts of personalized medicine in the
future. In fact, the information gathered from genetic
data, artificial intelligence, and the electronic medical
record combined as big data, is likely to radically change
the landscape of medicine on both macro and micro
scales.

The COVID-19 pandemic recently demonstrated how
important PRSs can also become under exceptional cir-
cumstances. Horowitz et al. showed that a high genetic
burden from seven common genetic variants that modu-
late COVID-19 susceptibility and severity was strongly
associated with increased risk of hospitalization and se-
vere disease among COVID-19 cases, especially among
individuals with few known risk factors. Using genetics
to identify individuals at highest risk of adverse out-
comes may therefore help prioritize individuals for
immunization by (mRNA) vaccines or for treatment with
monoclonal antibody treatments when they are still in
short supply [27].

PRS challenges and limitations

Degree of genetic influence

A fundamental limitation of PRSs is that they typically
explain only a small fraction of a trait or disease vari-
ance. Unlike monogenic causal gene defects as in the
Huntingtin gene or monolithic risk factors like APOE4
haplotype for Alzheimer’s disease, the discriminative
ability of PRSs for cancer or CVD is compromised by
the environmental factors that come into play, and the
imperfect measurement of the full genetic signal that
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would include structural variants and potentially gene—
gene interactions.

However, PRSs correlate with genetic liability, the
most prominent single contributor to phenotypic
variation. This relationship has allowed for PRSs to
be adopted for routine application in biomedical
research.

To translate PRSs into clinical tools, relative risks that
compare individuals across the PRS continuum with a
baseline group will eventually need to be transformed to
absolute risks for the disease. For example, scoring very
high on a PRS, say the 99th percentile, has almost no
meaning if that PRS captures only 1% of variance in dis-
ease risk. This is even more true if the prevalence of the
disease in the population is low. It is imperative that
PRSs are used only in cases were the heritability of a dis-
ease is significant and warrants its inclusion. Awareness
of this caveat will aid in the prevention of over-reliance
on PRSs and acknowledge the need for holistic risk ap-
proaches by healthcare professionals and the public.

Effects of ancestry

Given that allele frequencies and linkage disequilibrium
(LD) blocks vary from population to population, espe-
cially when these populations are of different ancestries,
the genetic profiles of different ancestry groups are sig-
nificantly different for the purposes of GWAS analysis.
In fact, differences in LD blocks can lead to reduced im-
putation accuracy and incorrect SNP calls for individ-
uals. Additionally, given that PRSs are built using
GWAS data, there is an inextricable connection between
the genetics and the environment of the GWAS subjects
and ultimately the final outcomes of the research [19].
This is especially poignant when sample sizes are small
and the environment of the GWAS subjects is fairly
similar, leading to reduced capacity to tease out con-
founding environmental factors within the study popula-
tion. In turn, these differences result to slightly different
effect sizes associated with a given SNP.

While these differences may be small in one instance,
given the number of SNPs and the additive nature of
current PRS algorithms, the scores generated will be dif-
ferent for those of different genetic ancestries. For this
reason, PRSs are essentially locked to the ancestry group
(i.e., European ancestry) from which they take their sum-
mary statistics and leads to reduced accuracy when ap-
plied to individuals of a different ancestry (i.e., Asian
ancestry) [19]. Therefore, it is important that an individ-
ual’s genetic ancestry be ascertained prior to calculating
their PRS. This is often established via principle compo-
nent analysis to determine the individual’s ancestry
followed by imputation based on their associated ances-
try group found in a publicly available human genome
reference panel such as the 1000 Genomes Project [13].
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These issues are increased even more when an individ-
ual possess a multi-ancestry background. In these cases,
the individual does not fall within either ancestry group
and therefore a true score generated for them is unlikely
to be a simple averaging of their two or more single-
ancestry PRSs. Currently, there is no optimized solution
for this segment of the population and more research is
needed to develop and test one. These limitations high-
light the need for more data from multiple different an-
cestry groups so that insights from the PRS field can
benefit people of all ancestries. Multiple efforts are un-
derway world-wide to address this imbalance which has
been discussed by Bentley et al. [5].

Validation

Currently, the greatest hurdle for PRS implementation
in the clinic is the relative lack of validation studies, with
very few PRS studies including prospective cohorts to
validate the models developed. There are notable excep-
tions [48] which serve as a model for others to follow,
but ultimately this is a systemic problem due to how
new PRSs are in the literature. As stated previously, the
first large-scale GWAS was only published in 2007 [14],
meaning that the knowledge and the underlying infra-
structure needed to implement and validate PRSs has
only recently been possible. Opportunities for validation
for the clinical use of PRSs are expanding through a
combination of increasing genome-wide patient data and
improved data integration via electronic medical records
that are, in turn, using increasingly standardized nota-
tion for clinical phenotypes.

Before using PRSs in the clinical setting, they need to
go through the same process as any risk factor detected
in epidemiological research. PRSs have a distinct advan-
tage over all other risk factors because they can be de-
tected early (i.e., it can signal the need for preventive
measures even before onset of clinical signs). In an ideal
scenario, PRSs alone should be able to identify the frac-
tion of the overall population that will give rise to the
majority of individuals burdened with a given disease.
Targeted intervention in these persons will have the
highest clinical yield and is the most rational way to
spend limited healthcare resources.

The need for validation is two-fold. PRS validation is
required to ensure that the patterns seen through the
model are accurate to the real world and can therefore
accurately predict an individual’s risk of developing a
disease [7, 63]. Models can be manipulated to favor cer-
tain statistical measures, such as negative and positive
predictive value or sensitivity and specificity, but these
metrics may be inaccurate if the study does not have a
high enough statistical power. In addition, validation of
these models is critical to their acceptance by accrediting
bodies, insurance companies, hospital systems, clinicians,
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and patients. The data supporting the accuracy and reli-
ability of these tests must be shown for approval from
said groups [63].

Evaluation of PRSs will likely come down to a thor-
ough assessment of the accuracy and reliability of the
PRS itself (see Fig. 3), followed by a determination of the
clinical efficacy of PRS-tailored prevention or treatment,
and finally with an appraisal of cost effectiveness. Asses-
sing the accuracy of PRSs will likely come down to the
results of prospective studies and from statistical metrics
that determine a high degree of sensitivity for screening,
and specificity for alterations of clinical plans for at-risk
individuals. Determining the likelihood of an individual
to develop a disease, such as breast cancer, emphasizes
the need for high sensitivity in order to detect more
high-risk patients for other more intensive/aggressive
screening methods. On the other hand, modifying treat-
ment regimens, such as altering cholesterol-lowering
medications, would likely require a higher degree of spe-
cificity so as to not risk exposing patients to adverse
side-effects without need [49].

Arguments have been raised about the development of
PRSs and how they are validated, especially regarding
how PRSs must either be used independently or to be
designed in such a way as to be independent of clinical
risk factors [33]. Nonetheless, PRS prediction models
proved valid in population-based cohort studies and in
electronic health record-based studies [20, 44, 45]. While
using only independent SNPs would be best in theory, it
is less attainable in practice and would minimize the
pleotropic nature of human genetics, likely leaving pre-
dictive SNPs unaccounted for or further minimize their
small effect through approximation as part of associated
clinical risk factors. Additionally, this argument assumes
that the associated clinical risk factor causes the disease,
which may be untrue. That being said, simply adding
PRSs to an already established clinical risk algorithm
would be unadvised. As stated in Janssens [33], in a
combined clinical risk factor and PRS algorithm, both
should be optimized for risk prediction [33]. Risk
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algorithms that combine both genetic and clinical risk
factors must be built de novo, validated, and tested prior
to use in a clinical setting.

Instead of developing multiple PRSs for the various
clinical risk factors associated with a disease (i.e., smok-
ing history and chemical exposure in lung cancer), it
would be better to build off of the genetic risk (some-
thing inherent and stable) and add clinical risk factors
(using weighted factors, etc.) in order to reduce double
counting of SNP effects. Ultimately, no model is perfect
and the inherent interplay between genetic and environ-
mental factors can never be fully removed, so it is better
in this case to embrace and adapt to this reality in the
development of a predictive model.

Multiple metrics exist for assessing PRS performance.
Area under the receiver operating characteris-
tic (AUROC) curves function well as a composite evalu-
ation of sensitivity and specificity [7, 25] but are less
known in the clinical sphere and therefore may require
further explanation. Fundamentally, an AUROC curve is
a plot of the sensitivity (or true positive rate) vs. 1-
specificity (or false positive rate). The curve denotes this
ratio at all possible cut-offs for positive and negative
cases and the area under this curve functions as a metric
of the PRS’s overall performance across this entire
spectrum. Absolute risk (AR), relative risk (RR), and
odds ratios (OR) also become vital in accurately quanti-
fying an individual’s risk versus the population to which
they are being compared. Other metrics such as negative
and positive predictive values (NPV and PPV, respect-
ively) will be useful measures in assessing the benefits of
these tools.

Assessing efficacy of PRSs in the clinic is also a chal-
lenge. One of the major factors to consider involves how
much of a disease’s risk is actually heritable. If the herit-
ability of type II diabetes is only 2%, then a PRS will not
be useful because the low level of heritability indicates
that there is less of a genetic basis for this disease. Statis-
tically speaking, this is determined as the proportion of
variance  explained by genetics versus other

-
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environmental factors. According to the hypothetical ex-
ample given above, if genetics, and in turn a PRS, only
really explains 2% of an individual’s overall risk for type
II diabetes, then a PRS would not be clinically effica-
cious. Even if an individual’s PRS is in the high-risk cat-
egory, the absolute risk increase is relatively mild
compared to other environmental factors. These scenar-
ios are common when comparing RR and AR for the im-
pact of a given lifestyle or behavior. For these reasons, a
proportion of variance and/or the degree of heritability
of a given disease should accompany the PRS for clinical
purposes.

PRSs beg the question of exactly how useful this
knowledge is for treating individuals and in preventing
disease overall. In other words, does this knowledge help
patients to take charge of their health and to mitigate
their risk, or not? We may find, as more and more PRSs
are developed, that not all are as effective at adding in-
formation to assessing an individual’s risk of disease. For
some diseases, the added benefit of genetic information
in risk prediction may add very little to the life-time risk
of developing the disease, clearly decreasing the efficacy
of the PRS. However, the measurement of efficacy re-
garding clinicians’ awareness of disease risk to better
manage, watch for, and intervene should also be consid-
ered. This type of information may actually make up for
a lack of lifestyle change in a patient and may help clini-
cians focus on the high-risk diseases in each individual
patient.

Education of clinicians

Clinician education will be a significant challenge as
PRSs are implemented into the healthcare system [63].
While knowledge of basic statistics and experimental de-
sign is fairly common, especially for younger physicians
[37], the specific intricacies regarding GWAS develop-
ment and PRSs are virtually unknown to clinicians at
present [47]. In many ways, this is due to such informa-
tion being outside of the scope of practice for most phy-
sicians and would rarely be needed. However, with the
increasing importance of information technology in
medicine, the ability to understand and later explain
genetic technologies and their nuances to patients will
become ever more important.

There are several ways to overcome this challenge. It
is common to integrate this type of new tool and infor-
mation into continuing medical education courses/re-
quirements (also known as CME credits). Through this
type of course-work, physicians would be able to work
closely with specialists who developed the technology to
become familiar with what PRSs are and how they can
assist in the clinic for the prevention and management
of disease. Importantly, physicians can be exposed to the
benefits and detriments of PRSs [7, 26] and to have their
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questions fielded by experts. CME courses, especially
those offered at conferences, also give experts in PRSs
the opportunity to workshop with the very physicians
they aim to help, to better understand the clinical needs,
and to enhance the curriculum to suit the requirements
of clinicians.

For medical students, discussions of genetic testing for
risk assessment could be phased into regular medical
school curricula, likely alongside discussions of relative
and absolute risk. The concepts described by PRSs
would also lead to important discussions surrounding
public health and the importance of regular care, screen-
ing, and lifestyle management. Furthermore, activities
around the integration of bioinformatics and other in-
formatics tools in the clinic to improve care would be
beneficial for physician education.

Another option is to hire genetic risk-assessment spe-
cialists who would work closely with physicians to train
them on how to interpret the data, implement the infor-
mation in practice, and coach them on how best to ex-
plain the results. These individuals could be integrated
into a hospital system or could be hired as outside con-
sultants. Regulations may make consultation for-hire
more difficult, but either way would fill the need for
training physicians and for serving as a source of infor-
mation or clarification when questions arise and as the
technology evolves.

Alternatively, these same risk-assessment specialists
could serve as a new department on their own. Clini-
cians could refer their patients who have a PRS per-
formed to see this group, similar to how genetic
counseling functions in the healthcare system [22]. Per-
haps, these risk-assessment specialists would integrate
with genetic counselors, working to communicate how
the technology works, how the risk score should be
interpreted, and how the data should be used for disease
prevention. Growing this field to meet the increasing de-
mand may serve as a beneficial resource for healthcare
systems, physicians, and patients alike.

Education of the public

A significant and perhaps more challenging topic sur-
rounding PRSs is how best to communicate the science
and, most importantly, the knowledge gained to patients.
The concept of risk in general is not difficult to under-
stand, but as mathematics like RR and ORs are intro-
duced the information is quickly lost on the average
patient. In general, understanding relative risk is much
more challenging than absolute risk. Therefore, it be-
comes imperative that guidelines for explaining this type
of information be developed to ensure that patients are
informed but not overwhelmed [23]. Too much informa-
tion, or too many unnecessary details, may cause pa-
tients to forego this type of screening, limiting the ability
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for PRSs to improve in the future and to identify pa-
tients at high risk of disease.

As other papers have stated, it is important to keep
PRSs in context [7, 63], discussing the benefits and risks
of genetic testing, and emphasizing their likelihood to
change as data increases and methods evolve [7, 63].
The idea that a test result might change because we
gather more data may be a foreign concept to patients
and potentially sew misguided doubts about their valid-
ity. Explaining this aspect of PRSs and having a greater
conversation about the possibility of changing values will
be important topics to discuss.

Limitations of PRSs should also be discussed. Patients
come from all walks of life and it is important that clini-
cians and health systems make a concerted effort to
meet patients where they are in their level of knowledge
and understanding. The phrase “correlation does not
equal causation” is used frequently in science, but one
must remember that medicine serves the entire public,
with a wide range of socioeconomic, educational, and
cultural backgrounds. While this truism may seem obvi-
ous to those who read this review, this is not the reality
of the clinic.

Genetics as a risk factor for disease is complicated by
environmental factors that can play an even larger role.
PRSs have been shown to explain only a portion of the
total risk of developing a disease, with environmental/
lifestyle risk factors making up a much larger proportion
[63]. These details are important in helping patients to
understand that one’s PRS acts more as a genetic base-
line risk while their overall lifetime risk is a combination
of genetics and environment. Therefore, it is possible for
a patient to overcome a high genetic risk through a
healthy lifestyle. Risk scores that integrate both clinical
risk factors and a PRS for a given disease will greatly in-
crease the accuracy of lifetime-risk prediction and the
intuitiveness of disease risk management. However, it
will take time for these tools to be developed and vali-
dated for widespread use. For this reason, emphasizing
lifestyle choices that can be changed to decrease risk and
prevent disease should be the focus when discussing
PRSs with patients.

Healthcare system structures

As more information technologies enter the medical
field, new systems must be developed to properly man-
age and utilize these new tools. This is no different for
PRSs, which pose many of the same challenges as stand-
ard genetic testing today [15]. The healthcare system
must adapt to these changes and develop a system for
determining how best to not only integrate PRS into the
clinic (as was previously addressed), but also how to im-
plement the technology on a large scale and how to face
the fluid nature of PRS-based disease risk assessment.
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Assuming the clinical use challenges are settled,
healthcare systems still face a major challenge in terms
of scaling PRS implementation in the clinic. One major
issue that must be tackled before large-scale implemen-
tation is cost. More specifically, who bears the cost of
the genetic testing required for the process in the begin-
ning. Although genetic testing is becoming more com-
mon place in healthcare, running a patient’s genetics for
a PRS has not been discussed to date. At the start, PRS
assessment will likely fall on individual patients to pay
for the test, meaning that the use will be relatively low.
Further adoption of this into private insurance and gov-
ernment programs to fund the testing will largely be
dependent on considerations such as cost analysis and
genomic privacy.

As reimbursement becomes common place, scaling
will cause business pressures to increase. While the level
of processing power to develop a PRS is not needed to
assess an individual patient, computational resources,
bioinformaticians, computer programmers, and skilled
technicians will still be needed to support the evaluation
and troubleshooting of PRSs for patients. In addition, as
the number of patients utilizing the service increases,
the computational and data storage needs will also in-
crease. This would be a significant cost for each hospital
system, especially if they are smaller and have little ex-
perience with genetic testing or bioinformatics. Health-
care systems may opt for the use of third parties or
other, larger hospital systems to perform this type of
analysis, reducing their required initial investment. Such
a move may spark the development of new areas for
medical information startups increase the utilization of
cloud-based storage and processing resources in
healthcare.

In addition to scaling, updates and advances to PRSs
pose another major problem for hospital systems. As
more and more data are collected and methods for ana-
lysis are refined, the accuracy and reliability of these
scores will improve. Such advances may cause patients
to shift from high-risk to intermediate-risk classifica-
tions, potentially changing invasive screening and/or
treatment recommendations. In addition, if a new up-
date comes out, should all previous patients be rerun
against the new algorithm, or only during their annual
check-up? Would a hospital system or clinician be held
liable for not doing so in a timely manner? The current
systems are not designed with such changes in mind and
it would be understandable for patients to be confused
by and/or upset with changes in standards of care.

Approval and adoption of updated versions become
major issues with PRSs. Which body approves a new
update? Should the government, such as the U.S.
Department of Health and Human Services, or
should various medical specialties, like the American
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College of Cardiology, make such recommendations?
How often should these recommendations be up-
dated and who will evaluate the literature? Ultim-
ately, as in the case of most other screening
recommendations, the burden of evaluation and rec-
ommendation will likely fall under the purview of
each country’s specialist society. However, the adop-
tion of these changes may be difficult without a
standardized system or program for evaluating the
PRS of each patient. This is especially true since not
all PRSs will use the same SNPs, nor will all geno-
typing platforms be the same between healthcare
systems. Challenges like this will make the roll out
of new versions and the adoption of new standards a
complex and chaotic endeavor.

Improving the PRS field

Increasing PRS quality

Efforts are already underway to expand biobanking of
cellular and genetic materials for use in research. A by-
product of these efforts will be an increase in sample
sizes for GWASs that are in turn used in the generation
of PRSs. With increased sample sizes, disease-associated
SNPs are easier to detect and are more likely to reach
significance for incorporation in PRSs over time as the
field progresses.

Direct measurement, rather than imputation, of SNPs
will further improve the predictive capacity of PRSs.
While imputation serves as a reliable source of informa-
tion for genome wide SNP determination, there is still
some noise due to using an indirect measurement tech-
nique. Direct measurement via more comprehensive
array-based genotyping or through next-generation se-
quencing (NGS) technologies would further increase
PRS accuracy and utility, expanding PRS adoption within
healthcare systems.

Additional efforts are being made to increase the
diversity of populations with available PRSs. Improved
diversity is greatly beneficial to ancestry groups that
have been overlooked throughout this process due to
a lack of sufficient GWAS data available to re-
searchers for the last decade. As of January 2019, 78%
of all GWAS data is on individuals of European an-
cestry [60], severely limiting the potential use and im-
pact of this tool given that non-European populations
are growing around the world. Increasing the diversity
of GWAS data available for research and development
will help to increase the efficacy of PRSs worldwide.
This, in turn, may improve currently existing PRSs
through a greater understanding of genetic disease
architecture [60], by reducing overfitting, and isolating
SNPs that are directly causative rather than simply
correlated with the disease of interest in a specific an-
cestry group.
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Enhancing PRS predictive capacity

In practice, at least in the coming years, PRSs will be
added as an additional variable to prediction models that
use the current set of established risk factors for a par-
ticular disease. Models that combine a PRS with estab-
lished risk factors, including PRS-risk factor interactions,
should provide a more precise estimate of the relative
risk for the disease in question (cancer, diabetes, CAD,
etc.). Given known levels of PRSs and the established
risk factors for an individual, the absolute risk over a
specified time interval can be computed with this model.
Comparing the projected risk to the observed new inci-
dence of disease in a prospective cohort study should
then be used to validate the model. Once a good model
incorporating a PRS is defined that reliably evaluates ab-
solute risks—that is, the probability that an asymptom-
atic individual will develop the disease over a certain
time interval—it can be used to assign individuals to
specific risk categories with differing interventions in an
optimized fashion. This means maximizing benefit and
minimizing harm associated with unnecessary diagnostic
procedures and side-effects of preventative medications
and treatments. Already, studies are being published
showing that combining standard risk assessment tools
with PRSs can improve overall risk prediction [41], even
in multiple ancestries [68].

With enhanced capacity to predict the lifetime risk of
developing a given disease, more in-depth assessments
can be made regarding changes to clinical guidelines
surrounding screenings. While suggestions have been
made that PRSs could be used to reduce non-invasive
interventions for those of lower risk [63], we firmly be-
lieve this should only be discussed after PRSs have been
fully vetted and sufficient data is available to make such
decisions. No model is perfect and there will be individ-
uals with a low PRS for breast cancer, for example, who
will still develop the disease, even while mediating all
other risks. For this reason, and without double-blinded
case-control studies with prospective cohorts, we rec-
ommend that PRSs be used exclusively to enhance
screening efforts for those at high- and intermediate-
risk levels.

Other advances in genomics and sequencing technol-
ogy will further improve the predictive capacity of PRSs.
With the inclusion of other features of genetic architec-
ture (i.e, methylation status, copy number variants
(CNVs), structural variants, and sex chromosomes), ac-
curacy, and the level of explained phenotypic variance,
will increase. Already, data has shown that the combin-
ation of methylation scores with PRSs improves the pre-
dictive capacity of various traits, such as BMI and
smoking status, indicating the potential for genetic risk
modulation via changes in the epigenome (Odintsova
et al.. Predicting complex traits and exposures from
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polygenic scores and blood and buccal DNA methylation
profiles, forthcoming). No doubt other genetic factors
such as gene silencing and genomic imprinting can also
alter the estimation of individual genetic risk. Additional
genetic data will help to explain an even greater propor-
tion of the heritability of a given disease. In this regard,
a PRS using all SNPs (and potentially all forms of genetic
variation) may be used to predict disease risk via an in-
finitesimal model, acknowledging the complex nature of
genetic influence on disease.

Methods for visualization of polygenic risk

Visualizing the most important result of PRS analyses
(the score itself) can aid in transferring this information
to both physicians and patients. This also allows for a
way to condense the information into a form that is
readily interpretable to anyone. There are multiple ways
to present PRS information and we will discuss a few ex-
amples below. The difficulty ultimately lies in how to
balance accuracy, nuance, and clinical applicability.
Overwhelming a physician or patient with excessive stat-
istical jargon will lead to PRS results being underutilized
if not entirely ignored. Surely, some physicians will jump
to utilizing this new technology, but many others will ig-
nore it if too complex and difficult to approach.

At its most condensed, the presentation to the phys-
ician and/or patient could simply be a number ranging
from one to ten, a percentage score, a color, or some
combination of these (see Fig. 4b). This method, how-
ever, is far from ideal as it expresses relative risk which
is less well understood than absolute risk. Translation to
absolute risk, however, would depend on the prevalence/
incidence of the disease as well as age, sex, and other
risk characteristics of the individual. At best, a lot of in-
formation and nuance is lost when all data is condensed
into a single point. Even worse, if this score, or color, is
derived from an underlying normal distribution, the in-
formation presented could even be misleading, giving
patients a false sense of security about a low risk or a fa-
talistic view given a high risk due to a lack of contextual
information.

To mitigate this slightly, a normal distribution to rep-
resent the population can be used (see Fig. 4a for some
examples). Note the underlying score (e.g., ranging from
0 to 10) can still be the same, but by including this nor-
mal distribution, and making that the main focus of the
figure, provides more information and a nuanced under-
standing. By indicating where the patient falls on this
distribution by a line, both patient and physician are able
to get a clearer picture of how the patient scored com-
pared to the rest of the population, or even better, com-
pared to a sub-sample of the population which is more
comparable to the patient given certain metrics such as
age and sex.
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While better than a single score, a presentation of the
normal distribution may still be flawed. When presented
together with other metrics, such as in a diagnostic re-
port, the nuance in relationships and effect sizes is lost.
By presenting the PRS score similar to other values such
as blood pressure or cholesterol levels, the impression is
given that these values are all independent, and of the
same effect size. To combat this, a multidimensional plot
can be created similar to risk charts that are already
commonplace in CVD risk assessment [55]. These plots
not only present the information of multiple tests in a
single figure, which can reduce the amount of explan-
ation required, but they also inherently include the effect
sizes of each phenotype included. The biggest advantage
of these plots is that they can include many different
phenotypes. Diagnoses or medical advice is rarely, if
ever, based on a single measurement, and PRSs should
serve as an additional source of information, not a re-
placement to any one value.

Using data from the UK BioBank [62], we created a
binary CVD score. A score of 1 represented any diag-
nosed incidence indicating CVD, according to ICD-10
diagnosis. And summary statistics from the CARD
IoGRAM meta-analysis [58] to compute a PRS for CVD,
including sex, age, blood-pressure, and smoking status
in addition to the PRS allowed us to generate a new risk
chart for PRS (Fig. 4d). From this figure, it is clear that
adding the PRS to this chart can be very beneficial. An
additional advantage of this layout is that the chart is di-
vided in modifiable phenotypes (blood-pressure and
smoking status), and unmodifiable phenotypes (PRS, sex,
and age). Therefore, a physician or patient does not need
to be presented with the full chart, as the majority does
not apply, and will never apply, to the current patient.
Only a four-square extract of this plot can be presented.
For example, a 60-year-old male patient, who is a
current smoker, has high-blood pressure, and who’s PRS
falls in the 60th percentile would only be presented a
small extract of the chart (Fig. 4c). This not only limits
the amount of information presented but would also aid
the physician in giving medical advice, e.g., it is clear
from this plot that if the patient stops smoking and can
lower their blood pressure, their risk of CVD will
decrease.

Ethics of clinical implementation

PRSs have a major potential to revolutionize disease
risk-assessment in medicine, but there are multiple eth-
ical considerations to discuss, which are not always in-
tuitive. For instance, it appears to make sense to restrict
the use of PRSs to diseases for which effective preven-
tion or early detection strategies are available. However,
when such strategies do not exist, Alzheimer’s disease
being a current example, the identification of individuals
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at high risk can still optimize the design of clinical trials
to test prevention strategies and/or help in long-term
care planning.

Most ethical concerns derive from the potential mis-
labeling of persons at high risk as low risk and vice
versa. It is therefore crucial to recognize the limitations
of a PRS. Firstly, risk stratification based on a PRS alone
ignores many other risk factors, including rare mono-
genic mutations and clinical and environmental factors.
Secondly, PRSs are based off of GWAS data from
many individuals in a selected population in hopes of
representing individuals from the full population. The

population you choose to base your PRS off of will
narrow the scope of the PRS in question. This is
most apparent in that the vast majority of PRSs in
the literature are based off of data from individuals
with European ancestry (Fig. 5). Other ancestry
groups are largely left out of the discussion and the
algorithms have not been rigorously tested against
these populations.

Therefore, advances in the PRS field have benefited
those of specific ancestries, namely those of European
descent, with little benefit for other ancestry groups that
often suffer higher rates of common diseases [47].
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Reasons for this discrepancy include the availability of
data in the countries where PRS research is taking place,
namely Western nations [60], as well as deeper cultural
divisions in medicine (i.e., the distrust of minority pa-
tients in the US medical system) [21]. There is a great
need for further research and data collection from vari-
ous ancestries so that the knowledge gained can be
shared equitably among all patients. While there are
benefits to implementing current PRSs, without such an
effort, racial and ethnic health disparities will only widen
and further exacerbate the problems faced by patients. It
is the moral and ethical imperative of researchers in the
PRS field to be aware of this issue and to seek reasonable
solutions so that the benefits of this technology are ap-
plied universally to all ancestry groups.

Depending on how PRS information is used, it is
possible that certain patients may have screening
procedures delayed because they fall in a low-risk
category. Inevitably, a patient who is determined to
be low risk via a PRS will ultimately develop the
disease. Will physicians and patients accept this
reality? Currently, the system appears to operate only
to increase screening as risk factors accumulate for a
given patient and those that are low risk stay on the
standard schedule for procedures like colonoscopies
and mammograms [18, 41, 63]. As risk assessment
becomes more quantitatively rigorous, insurance com-
panies may choose to not cover certain screening
procedures until a sufficient risk score is obtained for
a patient. This is a potentially unacceptable use of
PRSs that should be addressed and such changes risk
promoting claims of physician and hospital negligence
due to denied screening/therapies.

Additionally, reporting PRS information to patients
may cause psychological harm to patients and patient
apathy [51]. Presented with their genetic risk of a given
disease, especially if it is high, some patients may be-
come depressed and fatalistic, choosing to stop all at-
tempts at mitigating risk or rushing to extreme disease
mitigation procedures because it is their “genetic des-
tiny” to develop a disease [63]. This use of PRSs is anti-
thetical to the technology’s intention and may
exasperate the likelihood of developing the disease in
question. While multiple studies have pointed out that
the risk is low [12], others have shown more alarming
results [64] and we stress the importance of (clinical)
guidance in reporting results back to patients. Import-
antly, a PRS score on its own may be a great disservice
to patients, further suggesting the importance of phys-
ician and public education. As discussed previously, con-
text is highly important, and the impacts of
environmental factors often play a large role in the de-
velopment of common diseases [29, 30].

Future directions of PRSs
PRSs, like other bioinformatics technologies, will im-
prove over time as more data is collected and more
analytical methods are developed. The number of dis-
eases with associated PRSs is also set to expand via
this same endeavor. Already, the National Institutes
of Health’s National Human Genome Research Insti-
tute has developed a webpage to explain PRSs, how
they function, and how they are interpreted.

As the field is still emerging, there is notable het-
erogeneity in the application and reporting of risk
scores, which hinders the translation of PRSs into
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clinical care. To address this, robust Polygenic Risk
Score Reporting Standards (PRS-RS) and a publicly
accessible Polygenic Score Catalog have been devel-
oped that addresses current research environments
with advanced methodological developments to in-
form clinically meaningful reporting on the develop-
ment and validation of PRSs in the literature, with an
emphasis on reproducibility and transparency
throughout the development process [40, 67].

The coming decades will likely see the further expan-
sion of genetic and phenotypic data collection to im-
prove and expand PRSs for multiple ancestry
populations and the diseases within those populations.
Potentially, ancestry agnostic PRSs will be developed
given a sufficient number of subjects from diverse ances-
try cohorts. This set of universal PRSs may perform bet-
ter than ancestry-specific scores because they more
closely approach the true genetic risk and reduce the
amount of biases, such as overfitting.

Regardless, with increasing data availability for PRS
generation, the performance of each algorithm will im-
prove, more diseases will be covered, and more diverse
populations will have access to the knowledge PRSs can
give. Increased performance will prove to be invaluable
in clinical care, especially primary care where many bur-
densome diseases can be prevented. Since only one
blood sample is needed to genotype an individual, gen-
etic risk analysis may be offered to patients at a young
age (ie., early 20s) and enable them to make better
health choices for themselves and their loved ones. This
bioinformatics-driven change to clinical care may greatly
reduce common disease incidence in populations
worldwide.

Conclusion

With our increased understanding of the human gen-
ome, the influence of gene-gene and gene-environment
interactions, and increasing amount of phenotypic and
genetic information available, advances in our under-
standing of disease and disease risk have continued to
expand. Over the last decade, PRSs generated from
GWAS summary statistics have been shown to effect-
ively stratify individuals by their life-time genetic risk of
developing a given disease. The potential of this new
tool is clear and have been noticed by large research
bodies such as the NIH in recent years, indicating a sig-
nificant shift in the use of genetic data in research and
medicine.

There are significant benefits that come from PRSs, es-
pecially regarding more informed and personalized care.
Armed with disease risk information, healthcare profes-
sionals can give better advice and recommendations to
patients who are at high risk and improve our ability to
discover patients who would benefit most from
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screening and early intervention. From a patient per-
spective, PRSs offer a single test which can yield a sur-
plus of useful information about potential health risks,
empowering them to make healthier lifestyle changes.
Some patients may instead take a fatalistic view of PRS
information and use it to justify an unhealthy lifestyle,
indicating the importance of education and proper com-
munication to prevent this misconception. Disease sur-
veillance would also be improved in the public health
domain and could be used to optimize limited funding.

However, PRSs are not without their challenges and
risks. Validation will be a major challenge and will re-
quire more resources, data, and careful study to ensure
the clinical efficacy of PRSs. As a new tool, there are sig-
nificant barriers to implementation and to understand-
ing how this information should be interpreted.
Educating healthcare professionals will be a significant
hurdle and reimbursement for testing will likely be slow
and require the acceptance of multiple regulatory agen-
cies. While these issues will take time to overcome, they
will be as the field grows and advances. Ethical chal-
lenges will not be so easily surmounted. The addition of
more diverse ancestry populations should be included in
discussions about PRS implementation and use. Further-
more, adjusting screening timelines and intervention op-
tions should be discussed for the entire disease risk
spectrum, but modifications to recommendations for
low-risk individuals should only be conducted after thor-
ough evaluation of PRS reliability and accuracy. Such
thoughtful changes will help to maintain trust in screen-
ing recommendations and ensure that any changes for
low-risk individuals maximize benefit while minimizing
harm.

PRSs will continue to improve as genetic and pheno-
typic data increase in size, accuracy, and variety. Efforts
to contextualize and explain the nature of PRSs and
their uses should become a mainstay of clinical educa-
tion. Furthermore, regulatory bodies that influence clin-
ical recommendations should prepare for the inevitable
introduction of PRSs in normal clinical care, adjusting
treatment thresholds and categories around the informa-
tion this new and exciting tool provide. It is important
that clinicians, scientists, regulators, health systems, and
patients come together to discuss the benefits and po-
tential risks of PRSs and when and where they should be
used.
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