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Abstract

Background: Liver cancer is one of the most common cancers and causes of cancer death worldwide. The
objective was to elucidate novel hub genes which were benefit for diagnosis, prognosis, and targeted therapy in
liver cancer via integrated analysis.

Methods: GSE84402, GSE101685, and GSE112791 were filtered from the Gene Expression Omnibus (GEO).
Differentially expressed genes (DEGs) were identified by using the GEO2R. The GO and KEGG pathway of DEGs were
analyzed in the DAVID. PPI and TF network of the DEGs were constructed by using the STRING, TRANSFAC, and
Harmonizome. The relationship between hub genes and prognoses in liver cancer was analyzed in UALCAN based
on The Cancer Genome Atlas (TCGA). The diagnostic value of hub genes was evaluated by ROC. The relationship
between hub genes and tumor-infiltrate lymphocytes was analyzed in TIMER. The protein levels of hub genes were
verified in HPA. The interaction between the hub genes and the drug were identified in DGIdb.

Results: In total, 108 upregulated and 60 downregulated DEGs were enriched in 148 GO terms and 20 KEGG
pathways. The mRNA levels and protein levels of CDK1, HMMR, PTTG1, and TTK were higher in liver cancer tissues
compared to normal tissues, which showed excellent diagnostic and prognostic value. CDK1, HMMR, PTTG1, and TTK
were positively correlated with tumor-infiltrate lymphocytes, which might involve tumor immune response. The
CDK1, HMMR, and TTK had close interaction with anticancer agents.

Conclusions: The CDK1, HMMR, PTTG1, and TTK were hub genes in liver cancer; hence, they might be potential
biomarkers for diagnosis, prognosis, and targeted therapy of liver cancer.
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Highlights of our study

(1) Three gene expression profiles (GSE84402,
GSE101685, and GSE112791) were combined, for
the first time, for integrated analysis in gene
expression omnibus (GEO).

(2) We revealed the interrelationship between the
CDK1, HMMR, PTTG1, TTK, and immune
infiltration.

(3) CDK1, HMMR, PTTG1, and TTK could be
identified as the novel biomarkers for prognosis and
diagnosis in liver cancer.

(4) We demonstrated the interaction between the
CDK1, HMMR, TTK, and new types of anticancer
agents and traditional chemotherapy drugs.

Introduction
In the most common malignant tumor, liver cancer is
one of the most common cancers and causes of cancer
death worldwide, especially in China [1]. Liver cancer
includes two histological types of malignant tumors:
hepatocellular carcinoma (HCC) and intrahepatic
cholangiocarcinoma (ICC) [2]. More than 840,000 new
cases of liver cancer occurred in addition to 781,000
deaths in 2018, which had become a severe public health
issue [3]. Liver cancer is mainly caused by the hepatitis
B virus (HBV) and the hepatitis C virus (HCV) [4].
Meanwhile, aflatoxin, algal hepatoxins, betel nut, alcohol,
and tobacco have been reported as potential risk factors
of liver cancer [5, 6].
A comprehensive understanding of the occurrence,

development, and metastasis of liver cancer will be
beneficial for early diagnosis and precise treatment of
patients. The immune checkpoint inhibitor (ICI) therapy
targeting cytotoxic T-lymphocyte-associated protein-4
(CTLA-4), anti-programmed cell death protein-1 (PD-1),
and programmed cell death-ligand 1 (PD-L1) were
potential activity against HCC and manageable safety
in clinical trial [7]. The molecular ablation of 3-
phosphoinositide-dependent protein kinase-1 function
can improve the susceptibility of HCC cells to be re-
sistant to radiotherapy, which is related to deactivated
PI3K/AKT/mTOR signaling way [8]. Recent meta-analysis
has revealed that circulating tumor DNA (ctDNA) can
serve as an assistant tool when combined with alpha-
fetoprotein (AFP) for HCC detection [9]. The latest se-
quence studies have revealed that the special non-coding
RNA, such as lncRNA NEAT1, lncRNA FLJ33360, lncRNA
FOXD3-AS1, and lncRNA LEF1-AS1 are associated with
liver cancer [10–13].
With the deepening understanding of epidemiology,

etiology, and molecular biology of liver cancer, the
regimens currently available were still unsatisfactory.
Early diagnosis and precise treatment of liver cancer is

still a huge challenge. Microarray technology has been
widely used to detect the expression of genes in animals
and humans, and it can also be helpful in exploring the
change of gene expression during tumor occurrence and
development. However, it is very difficult to acquire
convincing results with the only one gene microarray
analysis. In our study, three gene expression profiles
(GSE84402, GSE101685, and GSE112791) were com-
bined, for the first time, for integrated analysis in Gene
Expression Omnibus (GEO). The differentially expressed
genes (DEGs) were identified in liver cancer tissues com-
pared to normal liver tissues. A large number of bio-
markers have been identified in liver cancer; however,
most of the biomarkers are directly experimental and
not prospectively evaluated. In our research, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis of DEGs were ana-
lyzed in the Database for Annotation, Visualization, and
Integrated Discovery (DAVID). The protein-protein
interaction (PPI) network was built by using the STRI
NG database and cytoscape software to extract the hub
genes and significant module. The transcription factors
(TF) network was constructed by using the TRANSFAC,
Harmonizome database, and cytoscape software. The
prognostic roles of hub genes were verified in The Can-
cer Genome Atlas (TCGA) by using the UALCAN. The
diagnostic value of hub genes in distinguishing between
liver cancer tissues and normal liver tissues were ana-
lyzed by using the receiver operating characteristic
(ROC) curve. The correlations between the hub genes
and tumor-infiltrate lymphocytes were analyzed in the
Tumor IMmune Estimation Resource (TIMER). The
protein levels of hub genes were verified in the Human
Protein Atlas (HPA). The interactions between hub
genes and related therapeutic drugs were explored
through the drug-gene interaction database (DGIdb).
The hub genes might be targeted therapeutically or pri-
oritized for drug progress. Due to a single database and
few samples, the inconsistent results might appear. All
our results were obtained from the multi-database which
included sufficient samples to overcome the disadvan-
tages. Our objective is to provide further understanding
of the etiopathogenesis of liver cancer and identify the
novel diagnostic indicators, prognostic markers, and pre-
cise target drug points by integrated analysis.

Material and methods
Data extraction
In total, three gene expression profiles (GSE84402,
GSE101685, and GSE112791) were filtered from the
Gene Expression Omnibus (GEO https:// www.ncbi.nlm.
nih.gov/geo). As a free public genome, GEO database
was utilized for storing array data and sequence data.
The GSE84402 contained 14 liver cancer tissues and 14
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matched corresponding non-cancerous liver tissues [14].
The GSE101685 included 24 liver cancer tissues and 8
normal liver tissues. The GSE112791 covered 15 normal
liver tissues and 183 liver cancer tissues [15].

Data processing
The differentially expressed genes (DEGs) between liver
cancer tissues and normal liver tissues of GSE84402,
GSE101685, and GSE112791 were screened out by using
GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r), re-
spectively. The GEO2R is an interactive online tool
based on the R programming language and is used for
screening DEGs from the gene expression profiles
between liver cancer tissues and normal liver tissues.
The adjusted P value (adjust P) < 0.05 and |log2 fold
change| > 2 were used to identify DEGs. The DEGs that
were consistently expressed in three datasets were
screened out.

Analysis of functional and pathway enrichment
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID version 6.8 https://david.
ncifcrf.gov/tools.jsp) was used for analyzing the Gene
Ontology (GO) and the Kyoto Gene and Genome
Encyclopedia (KEGG) pathway of DEGs [16, 17]. P<0.05
was set as the cut-off criterion.

Analysis of PPI network and TF network
The STRING (version 11.0 https://string-db.org) was
utilized to analyze the functional interaction of DEGs
[18]. The score of confidence > 0.7 was considered as
significant value. The cytoscape (version 3.7.1) was used
to build Protein-Protein interaction (PPI) network. The
parameter settings were as follows: degree cutoff =2,
node score cutoff = 0.2, k-score = 2, maximum depth =
100 [19]. The degree of genes > 10 were considered as
hub genes. The significant module was screened by Mo-
lecular Complex Detection (MCODE). The curated tran-
scription factor (TF) targets of DEGs were obtained
from the TRANSFAC (http://gene-regulation.com/pub/
databases.html) [20, 21] and Harmonizome database
(https://maayanlab.cloud/Harmonizome/) [22]. The cytos-
cape software (version 3.7.1) was used to build TF
network. The Fisher’s exact test was used to perform the
enrichment analyses of DEGs. P<0.05 was set as the cut-
off criterion. The P values were adjusted for multiple
testing by the Bonferroni method.

Verification and survival analysis of hub genes
The expression levels and survival analysis of hub genes
were analyzed by using the UALCAN (http://ualcan.
path.uab.edu/) which is a tool for analysis data from The
Cancer Genome Atlas (TCGA) [23]. Based on tran-
scripts per million (TPM) of hub genes, the data of liver

cancer patients was divided into two groups. The high
group’s TPM was higher than the upper quartile. The
low/medium group’s TPM was lower than the upper
quartile. The Kaplan-Meier and log-rank test were uti-
lized for survival analysis. P<0.05 was set as the cut-off
criterion. UALCAN was used to screen hub genes with
potential prognostic value for subsequent analysis.

Verification of hub genes by ROC analysis
The expression levels of hub genes with potential prog-
nostic value were used for receiver operating characteris-
tic (ROC) analysis to evaluate their diagnostic value to
distinguish between liver cancer tissues and normal liver
tissues in internal set (GSE84402) and an independent
external set (GSE14520). The GSE14520 covered 21 nor-
mal liver tissues and 22 liver cancer tissues [24–30].
ROC analysis was performed in RStudio by pROC pack-
age [31]. The hub genes with area under curve (AUC) >
0.8 as well as P < 0.05 were set as the cut-off criterion.

Immune infiltrates analysis of hub genes
Tumor IMmune Estimation Resource (TIMER, https://
cistrome.shinyapps.io/timer/) was used to analyze the
immune infiltrates across different types of cancer [32].
TIMER can analyze the abundance of immune cells from
the gene expression in cancer samples. By applying the
deconvolution method, TIMER was used to analyze the
relationship between the infiltrating level of immune
cells and the potential prognostic hub gene in liver can-
cer. The correlation between the potential prognostic
hub genes and the gene markers for immune cell infil-
tration was performed through related modules. The re-
lationship between somatic copy number alterations
(SCNA) of the potential prognostic hub genes and infil-
trating immune cells were explored via related modules.
P < 0.05 was set as the cut-off criterion.

Immunohistochemical analysis of hub genes in HPA
The protein levels of the potential prognostic hub gene
in liver cancer tissues and normal liver tissues were ex-
tracted from the Human Protein Atlas (HPA, https://
www.ptroteinatlas.org/) which contained the data of im-
munohistochemistry expression for human tissues [33].
The levels of expression were divided into four groups:
high, medium, low, and not detected via the score
system, which included the proportion of stained cells
(> 75%, 25–75%, or < 25%) and the intensity of staining
(strong, moderate, weak, or negative).

Drug-gene interaction analysis of hub genes
The potential prognostic hub genes were supposed as
the promising drug targets for searching drugs through
the Drug-Gene Interaction database (DGIdb, version 4.
0.2-sha1 afd9f30b, https://dgidb.genome.wustl.edu/) [34].
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The DGIdb consists of the drug-gene interaction data
from the Drug Bank, ChEMBL, NCBI Entrez, Ensembl,
PharmGKB, PubChem, clinical trial, and literature in
PubMed, which can help researchers mine existing data
and generate assumptions about how genes may be tar-
geted therapeutically or prioritized for drug development
[35]. The cytoscape (version 3.7.1) was applied to per-
form the drug-gene interaction network.

Results
Identification of DEGs in liver cancer
In total, 455, 425, and 291 DEGs were extracted from
the GSE84402, GSE101685, and GSE112791 datasets,
respectively. In total, 168 DEGs were consistently
expressed in the three datasets (Fig. 1), and they in-
cluded 60 upregulated DEGs and 108 downregulated
DEGs (Table 1).

GO analysis and KEGG pathway of DEGs in liver cancer
The GO and KEGG pathway of DEGs was performed by
using the DAVID 6.8. The DEGs were divided into

biological process groups, molecular function groups,
cellular components groups, and KEGG pathway groups.
The GO terms and KEGG pathways were ranked by
−log10(P value). Top 5 GO terms and KEGG pathways
were selected according to −log10(P value). Figure 2
shows the top 5 GO terms and KEGG pathways for
upregulated DEGs (Fig. 2a) and downregulated DEGs
(Fig. 2b).

PPI network and significant module analysis in liver
cancer
In total, 100 genes (score of confidence > 0.7) in 168
DEGs were filtered into the PPI network. The PPI
network included 100 nodes and 738 sides. It consisted
of 47 upregulated genes and 53 downregulated genes
(Fig. 3a). In total, 41 genes (degree > 10) were considered
as hub genes (Table 1, in bold). The characteristics of
hub genes are shown in Table 2, which consisted of de-
gree, betweenness centrality, closeness centrality, cluster-
ing coefficient, stress, and average shortest path length.
The significant module was chosen from the PPI

Fig. 1 Identification of differentially expression genes (DEGs) in three mRNA expression profiles
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network by analysis of MCODE (Fig. 3b). The TF net-
work comprised 9 DEGs and 3 TFs (Fig. 3c).

Verification and survival analysis of hub genes in liver cancer
The UALCAN online was used for analyzing the expres-
sion of significant hub genes in TCGA between liver
hepatocellular carcinoma samples and normal liver sam-
ples. The trend of expression of significant hub genes
was similar to the results generated by GEO datasets
(Fig. 4). Meanwhile, the association between the mRNA
expression of significant hub genes and clinical charac-
teristics of liver hepatocellular carcinoma patients was
analyzed via using the UALCAN, including the patient’s
cancer stages and TP53 mutation status. The mRNA
expression of CDK1, HMMR, PTTG1, and TTK were
associated with advanced stages of liver hepatocellular
carcinoma. Liver hepatocellular carcinoma patients who
were with advanced cancer stages inclined to have the
higher mRNA expression levels of CDK1, HMMR,
PTTG1, and TTK (Fig. 4a–d). The expression levels of
CDK1, HMMR, PTTG1, and TTK in stage 3 was higher
than those in stage 4, which were attributed to the lim-
ited number of stage 4 patients (only six patients in stage
4). The higher mRNA expression levels of CDK1 (P <
0.0001), HMMR (P < 0.0001), PTTG1 (P < 0.0001), and
TTK (P < 0.0001) were explored in liver hepatocellular
carcinoma patients with TP53 mutation (Fig. 4e–h).
The survival analysis of liver hepatocellular carcinoma

patients in TCGA were performed based on hub genes
by using the UALCAN. The results revealed that high
expression of CDK1 (P < 0.0001), HMMR (P < 0.0001),
PTTG1 (P < 0.0001), and TTK (P < 0.0001) were associ-
ated with shorter overall survival rates (Fig. 5a–d). In
summary, CDK1, HMMR, PTTG1, and TTK might be
potential biomarkers to evaluate the prognosis of liver
hepatocellular carcinoma patients.

Verification of hub genes by ROC analysis
To identify the diagnostic value of CDK1, HMMR,
PTTG1, and TTK distinguishing between liver cancer

tissues and normal liver tissues, ROC analysis was per-
formed by utilizing the data of the internal set
(GSE84402). As shown in Fig. 6a, the AUC was 0.95 (P
< 0.0001) for CDK1, 0.91 (P < 0.0001) for HMMR, 0.93
(P < 0.0001) for PTTG1, and 0.94 (P < 0.0001) for TTK.
In the independent external set (GSE14520), the AUC
was 0.98 (P < 0.0001) for CDK1, 0.97 (P < 0.0001) for
HMMR, 0.99 (P < 0.0001) for PTTG1, and 0.98 (P <
0.0001) for TTK (Fig. 6b). Thus, the four hub genes
might be potential diagnostic biomarker of liver cancer.

Immune infiltrates analysis of hub genes
The correlation between the mRNA expression of
CDK1, HMMR, PTTG1, TTK, and infiltrating immune
cells in liver cancer was analyzed by using the TIMER
database. CDK1 showed significant correlation with the
abundance of B cell (cor = 0.469, P = 2.97e−20), CD8+
T cell (cor = 0.316, P = 2.38e−9), CD4+ T cell (cor =
0.332, P = 2.72e−10), macrophage (cor = 0.449, P =
2.60e−18), neutrophil (cor = 0.344, P = 4.98e−11), and
dendritic cell (cor = 0.442, P = 1.17e−17) (Fig. 7a).
HMMR showed significant correlation with the abun-
dance of B cell (cor = 0.399, P = 1.47e−14), CD8+ T cell
(cor = 0.271, P = 3.69e−7), CD4+ T cell (cor = 0.267, P
= 4.91e−7), macrophage (cor = 0.351, P = 2.54e−11),
neutrophil (cor = 0.368, P = 1.75e−12), and dendritic cell
(cor = 0.406, P = 6.84e−15) (Fig. 7b). PTTG1 showed
significant correlation with the abundance of B cell (cor
= 0.429, P = 7.86e−17 ), CD8+ T cell (cor = 0.326, P =
6.25e−10), CD4+ T cell (cor = 0.182, P = 6.93e−4),
macrophage (cor = 0.348, P = 3.75e−11), neutrophil (cor
= 0.253, P = 1.87e−6), and dendritic cell (cor = 0.381, P
= 3.55e−13) (Fig. 7c). TTK showed significant correlation
with the abundance of B cell (cor = 0.464, P = 9.19e
−20), CD8+ T cell (cor = 0.313, P = 3.27e−9), CD4+ T
cell (cor = 0.308, P = 5.53e−9), macrophage (cor =0.422,
P = 3.48e−16), neutrophil (cor = 0.355, P = 1.16e−11),
and dendritic cell (cor = 0.424, P = 2.92e−16) (Fig. 7d).
These results provided strong evidence that CDK1,
HMMR, PTTG1, and TTK played crucial roles for

Table 1 DEGs in liver cancer samples compared with normal samples

DEGs Gene name

Upregulated CCNB1, CDKN3, CCNB2, ASPM, TOP2A, UBE2T, BIRC5, FAM83D, MDK, KIF4A, CDK1, FAM72A///FAM72D///FAM72B///FAM72C, TTK,
ANLN, CENPF, NCAPG, PBK, PTTG1, AURKA, RACGAP1, GPC3, NUF2, PRC1, GINS1, GMNN, RRM2, MELK, NEK2, CDC20, IQGAP3,
NDC80, DLGAP5, ECT2, HMMR, KIF20A, SULT1C2, RAD51AP1, IGF2BP3, CENPK, DTL, DUXAP10, HELLS, FLVCR1, TYMS, CAP2, MAD2L1,
UHRF1, KIAA0101, MCM6, PRR11, BUB1B, ACSL4, PEG10, CRNDE, ROBO1, SLC35F6///CENPA, CD24, CTHRC1, CKAP2, RBM24.

Downregulated CLEC4M, CLEC4G, OIT3, FCN3, CYP2A6, TTC36, FOSB, CYP1A2, APOF, FOS, FCN2, MT1G, GLS2, GBA3, LCAT, CLEC1B, KCNN2, CXCL14, GLYAT,
HGF, MARCO, CYP39A1, MT1X, GPM6A, HHIP, ANXA10, C8A, MT1M, TMEM27, GYS2, AKR1D1, HAMP, MT1F, PLAC8, CYP2B6, C7, KMO, MT1H,
NAT2, SLC22A1, CYP2A7, CNDP1, MT1HL1, C3P1, BCO2, CRHBP, MT1E, GSTZ1, KCND3, SORL1, HAO2, ADH1B, CYP4A11, EGR1, ESR1,
SLC25A47, CYP4A22///CYP4A11, GNMT, HGFAC, LINC01093, F9, SRPX, LINC00844, HEPN1///HEPACAM, SRD5A2, CYP2B7P///CYP2B6,
MFSD2A, FLJ22763, FOLH1, BBOX1, SDS, BCHE, C9, SLC10A1, TSLP, LYVE1, MME, PGLYRP2, DCN, CYP3A4, CYP8B1, KBTBD11, GHR, CTH,
CFHR4, AADAT, CXCL2, CYP26A1, C6, CETP, PDGFRA, FBP1, SERPINE1, RSPO3, PBLD, RDH16, SLCO1B3, IDO2, PZP, LPA, PCK1, AFM, ASPA,
CLRN3, CNTN3, HPGD, ACSM3, LOC101928916///NNMT.

A total of 60 upregulated DEGs and 108 downregulated DEGs were identified in the liver cancer tissues, compared with normal liver tissues. The hub genes were
shown in boldface
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Fig. 2 Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of DEGs. a GO and KEGG pathway analyses of
upregulated genes. b GO and KEGG pathway analyses of downregulated genes. The GO terms and KEGG pathways were ranked by −log10(P
value). Top 5 terms were selected according to −log10(P value). Gene counts: the number of enriched genes in each term. Gene ratio: the ratio of
the number of enriched genes in each term to the total number of DEGs. BP: Biological Process. MF: Molecular Function. CC:
Cellular Components
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infiltrating immune cells, including B cells, CD8+ T
cells, CD4+ T cells, macrophages, neutrophils, and den-
dritic cells.
The somatic copy number alterations (SCNA) in-

cluded deep deletion, arm-level deletion, diploid/normal,
arm-level gain, and high amplification. Furthermore, the
relationship between SCNA of the CDK1, HMMR,
PTTG1, and TTK and infiltrating immune cells in liver
cancer was explored via using TIMER. These results

showed that the copy number alterations (CNA) of
CDK1 had significant correlation with the infiltrating
levels of B cells and CD4+ T cells (Fig. 8a); the CNA of
HMMR had significant correlation with the infiltrating
levels of CD4+ T cells, macrophages, and neutrophils
(Fig. 8b); the CNA of PTTG1 had significant correlation
with the infiltrating levels of B cells, CD8+ T cells,
CD4+ T cells, macrophages, neutrophils and dendritic
cells (Fig. 8c); the CNA of TTK had significant

Fig. 3 Protein-protein interaction (PPI) network and transcription factor (TF) network of DEGs. a PPI network contained 100 nodes and 738 sides.
b Significant module was selected from PPI network. c TF network contained 12 nodes and 13 sides. Red nodes represented upregulated genes.
Blue nodes represented downregulated genes. Yellow node represented transcription factors. The line represented interaction relationship
between nodes
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Table 2 The topology properties of 41 hub genes (The genes are ranked by degree)

Genes Degree Betweenness
centrality

Closeness
centrality

Clustering
coefficient

Stress Average shortest
path length

CDC20 41 4.09E-02 9.36E-01 7.48E-01 446 1.07

CDK1 40 2.89E-02 9.17E-01 7.79E-01 398 1.09

TOP2A 40 3.73E-02 9.17E-01 7.67E-01 394 1.09

BUB1B 39 1.65E-02 8.98E-01 7.99E-01 320 1.11

CCNB2 39 1.06E-02 8.98E-01 8.19E-01 284 1.11

NCAPG 39 2.64E-02 8.98E-01 7.96E-01 354 1.11

ASPM 39 1.50E-02 8.98E-01 8.08E-01 302 1.11

AURKA 38 8.26E-03 8.80E-01 8.45E-01 232 1.14

MAD2L1 38 7.61E-03 8.80E-01 8.48E-01 224 1.14

CCNB1 38 7.61E-03 8.80E-01 8.48E-01 224 1.14

DLGAP5 37 9.50E-02 8.63E-01 8.45E-01 216 1.16

KIF20A 37 1.05E-02 8.63E-01 8.54E-01 211 1.16

PBK 37 5.79E-03 8.63E-01 8.74E-01 180 1.16

CENPF 37 1.16E-02 8.63E-01 8.44E-01 222 1.16

RRM2 37 5.51E-03 8.63E-01 8.75E-01 174 1.16

MELK 37 6.29E-03 8.63E-01 8.72E-01 178 1.16

NDC80 36 4.01E-03 8.46E-01 8.98E-01 134 1.18

PTTG1 35 3.72E-03 8.30E-01 9.08E-01 116 1.20

BIRC5 35 3.14E-03 8.30E-01 9.18E-01 102 1.20

TTK 35 2.84E-03 8.30E-01 9.23E-01 96 1.20

PRC1 35 2.20E-03 8.30E-01 9.29E-01 88 1.20

HMMR 35 4.80E-02 8.30E-01 9.81E-01 350 1.20

KIAA0101 35 5.88E-03 8.30E-01 8.81E-01 148 1.20

DTL 35 6.38E-03 8.30E-01 8.74E-01 158 1.20

NEK2 34 3.29E-03 8.15E-01 9.20E-01 96 1.23

NUF2 34 2.92E-03 8.15E-01 9.20E-01 94 1.23

CDKN3 34 3.07E-03 8.15E-01 9.23E-01 90 1.23

RACGAP1 33 9.43E-04 8.00E-01 9.62E-01 42 1.25

KIF4A 33 2.22E-03 8.00E-01 9.45E-01 62 1.25

RAD51AP1 32 7.50E-04 7.86E-01 9.68E-01 34 1.27

ECT2 31 2.28E-04 7.72E-01 9.87E-01 12 1.30

ANLN 31 2.20E-04 7.72E-01 9.87E-01 12 1.30

TYMS 30 1.19E-03 7.59E-01 9.52E-01 46 1.32

CKAP2 27 0.00 7.21E-01 1.00 0 1.39

MCM6 25 1.14E-02 6.88E-01 8.30E-01 130 1.45

UHRF1 19 1.07E-03 6.29E-01 9.36E-01 22 1.60

UBE2T 19 0.00 6.29E-01 1.00 0 1.60

CENPK 14 0.00 5.87E-01 1.00 0 1.70

GMNN 13 9.00E-05 5.79E-01 9.74E-01 4 1.73

FAM83D 12 0.00 5.71E-01 1.00 0 1.75

HELLS 11 2.63E-04 5.64E-01 9.09E-01 10 1.77
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Fig. 4 The mRNA expression levels of prognostic hub gene in liver hepatocellular carcinoma (LIHC) in subgroup analyses. The published online
data of gene mRNA expression level were analyzed by UALCAN platform. Subgroup analyses were performed based on patients’ LIHC stages (a–
d) and TP53 mutation status (e–h). T test was performed on the relevant results (*P<0.05, **P<0.01,***P<0.001)
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correlation with the infiltrating levels of B cells, macro-
phages, and neutrophils (Fig. 8d).
The correlation between CDK1, HMMR, PTTG1, and

TTK and gene markers for different subsets of immune
cells in liver cancer were analyzed through the TIMER-
related modules. As shown in Table 3, the expression
levels of CDK1, HMMR, PTTG1, and TTK were signifi-
cantly associated with most of the immune markers of
immune cells, except for natural killer cells.

Immunohistochemical analysis of hub genes in HPA
Based on the protein expression data from the HPA,
the protein expression levels of CDK1, HMMR, PTTG1,
and TTK in liver cancer tissues and normal liver tissues
were compared by utilizing the antibodiesCAB003799,
CAB002433, HPA008890, and CAB013229. The immu-
nohistochemistry results confirmed that the protein
expression levels of CDK1, HMMR, PTTG1, and TTK

were higher in liver cancer tissues than normal liver
tissues (Fig. 9).

Drug-gene interaction analysis of hub genes in DGIdb
DGIdb was utilized to analyze the drugs that potentially
interacted with the four hub genes (CDK1, HMMR,
PTTG1, and TTK). Through the DGIdb, 69 drugs inter-
acted with CDK1, HMMR, and TTK, which might help
develop new treatment target for liver cancer therapy
(Fig. 10).

Discussion
However, the past 30 years had been characterized by
a broadening of understanding of liver cancer’s patho-
genesis and an advance in diagnostic and therapeutic
strategies for managing liver cancer patients, the clin-
ical outcome remained poor [36]. Liver cancer had
become a serious global health issue due to the
current regimens having limited efficacy in liver
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Fig. 5 Overall survival analysis of prognostic hub genes in liver hepatocellular carcinoma (LIHC) was performed by using the UALCAN platform.
Survival analysis curve for CDK1 (a), HMMR (b), PTTG1 (c), and TTK (d) in patients with LIHC from The Cancer Genome Atlas (TCGA). Log-rank test
was performed on the relevant results
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cancer patients. Meanwhile, searching for specific mo-
lecular biomarkers for development and metastasis of
liver cancer had important significance in the diagno-
sis and therapy of liver cancer patients.
In this study, 60 upregulated genes and 108 down-

regulated genes were identified by bioinformatics
method in three expression profiles. The GO and
KEGG pathway analysis of DEGs in liver cancer re-
vealed that DEGs were enriched in the function and
pathway related to the occurrence and development
of liver cancer. Downregulated genes were enriched in
the pathway of retinol metabolism, which was associ-
ated with the development of liver cancer. The de-
crease of retinol storage in the liver was observed in
hepatocellular carcinoma patients [37]. A recent study
revealed that the apoptosis pathway (Bax/Caspase)
and cell cycle arrest pathway (P53/P21) could be acti-
vated after exposure to the alternating low-intensity
and intermediate-frequency electric field in hepatocel-
lular carcinoma spheroids [38]. The study of hepato-
cellular carcinoma cell lines was similar to our study
in that it had shown that hepatocellular carcinoma
cells displayed a downregulated metabolic pathway
and complement coagulation cascades [39]. Mean-
while, in our study, the role of P450 pathway in the

progression of liver cancer was crucial which was
similar to the previous studies [40–42]. Interestingly,
human T-lymphotropic virus type I (HTLV-1) infec-
tion had been identified to be the significant pathway
in our study. Previous studies pointed out that
HTLV-1 may be associated with the development of
the hepatitis C virus infection [43]. As was known to
all, the hepatitis C virus is linked to the development
of liver cancer. Emerging studies had found prion
disease to be pathological aggregation in malignant
tumors related to misfolded p53, a tumor-suppressor
protein. The prion-like behavior of oncogenic P53
mutants appeared to be a direct correlation to
tumorigenesis [44]. Interestingly, in our study, the
downregulated genes were enriched in the pathway of
prion disease. The role of prion disease pathway is
worthy of further investigation.
In this study, 3 significant TFs were screened from the

TF regulatory network, including MAX, MYC, and
SREBF1, which played important roles in the formation
and development of tumors [45, 46]. In total, 41 hub
genes were extracted out from the DEGs by analyzing
the PPI network. The mRNA expression of 4 hub
genes, includingCDK1, HMMR, PTTG1, and TTK, were
significantly associated with the survival probability of

A

B

Fig. 6 Receiver operating characteristic (ROC) curves analysis was implemented to evaluate the diagnostic value of four hub genes to distinguish
between liver cancer tissues and liver normal tissues. a ROC curves to evaluate the diagnostic efficiency of the CDK1, HMMR, PTTG1, and TTK in
internal set (GSE84402) to distinguish between liver cancer tissues and liver normal tissues. b ROC curves to evaluate the diagnostic efficiency of
the CDK1, HMMR, PTTG1, and TTK in external set (GSE14520) to distinguish between liver cancer tissues and liver normal tissues
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liver cancer patients in TCGA. Moreover, the above 4
hub genes were validated by performing ROC analysis
in the external set GSE14520. As a result, these four
hub genes showed the excellent diagnostic value for
liver cancer, which were consistent with the results of
the internal set GSE84402. These results suggested that
CDK1, HMMR, PTTG1, and TTK could be the diagnos-
tic biomarkers in liver cancer to distinguish between
cancer tissues and normal tissues.
The cyclin-dependent kinase 1 (CDK1), known as cell

division control protein 2, is required for the transition
from the G2 phase into mitosis [47]. The CDK1-cyclinB
complex allowed CDK1 to phosphorylate more than one

hundred proteins, which promoted nuclear envelope
breakdown, chromatin condensation, and spindle assem-
bly [48]. Recent researches had revealed that the expres-
sion of CDK1 was high in different types of carcinomas,
such as thyroid cancer, pancreatic ductal adenocarcin-
oma, colorectal cancer, and ovarian cancer and so on
[49–52]. The mouse knockout experiments had indi-
cated that CDK1 was essential for mammalian cell pro-
liferation; only CDK1 could initiate the onset of mitosis
[53]. Prior research revealed that CDK1 activity was dys-
regulated by direct genetic alteration in tumorigenesis.
Meanwhile, the derangement of P53 pathway or of DNA
damage checkpoints indirectly could result in the

Fig. 7 Correlation between four hub gene expression and infiltration levels of immune cells in liver hepatocellular carcinoma (LIHC). a CDK1
expression was significantly positively correlated with tumor purity and infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells in LIHC. b HMMR expression was significantly positively correlated with tumor purity and infiltrating levels of B
cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in LIHC. c PTTG1 expression was significantly positively correlated
with tumor purity and infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in LIHC. d TTK
expression was significantly positively correlated with tumor purity and infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells in LIHC
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Fig. 8 (See legend on next page.)
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deregulation of CDK1 [54, 55]. As the previous study
identified, CDK1 was overexpressed in hepatocellular
carcinoma and was related to the development of tumor
through the CDK1/PDK1/β-Catenin pathway, which
could predict worse survival outcomes [56, 57].
In our study, the mRNA expression levels and protein

levels of CDK1 were higher in liver cancer samples than
normal liver samples; meanwhile, the mRNA expression
levels of CDK1 were associated with advanced cancer
stages and TP53 mutation. Liver hepatocellular carcin-
oma patients with high expression levels of CDK1 were
associated with lower overall survival rates. These results
indicated that CDK1 was a prognostic biomarker in liver
cancer. CDK1 SCNA was closely relevant to immune cell
infiltration level, and further analysis revealed that
CDK1 expression was positively correlated with the infil-
tration levels of B cells, CD8+ T cells, CD4+ T cells,
macrophages, neutrophils, and dendritic cells. The
correlation between CDK1 expression and immune cell
gene markers revealed that CDK1 regulates liver cancer
tumor immunity through multiple immune cell popula-
tions. Our results suggested that high expression levels
of CDK1 could increase immune activation and cytotox-
icity of the immune system in liver cancer by increasing
the infiltration of immune cells. We inferred that CDK1
might be involved in the occurrence and development of
liver cancer by regulating the P53 pathway and immune
system. Due to the lack of evidence on the immunologic
mechanism of CDK1, the immunologic mechanism of
CDK1 is worthy of further testing.
The hyaluronan-mediated motility receptor (HMMR)

is identified as a hyaluronan receptor purified from the
supernatants of murine cells [58]. The prior study had
shown that the HMMR was crucial for the spindle to
align correctly; even the few mice without HMMR were
able to survive or many suffered from deformed and
underdeveloped brains [59–61]. In our study, the bio-
logical process results had shown that the HMMR was
enriched in transition of mitotic cell cycle. Extensive re-
search had identified that the HMMR was overexpressed
in non-small cell lung cancer, stomach cancer, bladder
cancer, etc. [62–64]. The expression levels of the HMMR
might be a specific prognostic marker in terms of
progressions-free survival in papillary muscle-invasive
bladder cancer [65]. The HMMR, which was as the

downstream gene upregulated by testis-specific protein
Y-encoded demonstrated that it could be involved in the
initiation and development of hepatocellular carcinoma
via the activation of HA-HMMR signaling cascade [66].
Our results had shown that the expression of HMMR

was higher in hepatocellular carcinoma tissues than nor-
mal liver tissues on mRNA levels and protein levels, and
high expression of HMMR in liver hepatocellular carcin-
oma patients was an adverse prognostic factor. The gen-
etic alteration of HMMR in liver cancer such as arm-
level gain and high amplification could be found in our
results, and further analysis indicated that high expres-
sion of HMMR could predict the elevated infiltration
levels of B cells, CD8+ T cells, CD4+ T cells, macro-
phages, neutrophils, and dendritic cells. We inferred that
HMMR could affect the activation and polarization of
macrophages, especially for the M2 subtype. M2 macro-
phages were regarded as “renegade” immune cells which
contributed to poor prognosis in liver hepatocellular car-
cinoma and promote cancer invasiveness [67]. In our
study, HMMR was found to be positively correlated
with M2 gene markers (CD163, VSIG4, and MS4A4A).
These results suggested that HMMR might induce
macrophage-related immune response by activating M2
subsets. The mechanism of HMMR in liver cancer is
worthy of further testing.
The pituitary tumor transforming gene-1 (PTTG1) is a

ubiquitously expressed regulator of sister-chromatid sep-
aration, and it also acts as the transcription factor [68].
In different types of cancer, including gastrointestinal tu-
mors, urological tumors, and gynecologic tumors, the
upregulation of PTTG1 was related to unfavorable
tumor phenotype and adverse prognosis [69–73]. The
prior study had shown that the expression of the PTTG1
in HepG2 and SMMC-7721 cells were higher than L02
cells. SiRNA knockdown of PTTG1 induced the trans-
formation in expression of P21 and P53 in HepG2 and
SMMC-7721 cells [74]. Interestingly, in our study, the
PTTG1 was not enriched in the pathway of P53. The
mechanism of PTTG1 in liver cancer is worthy of an in-
depth study.
Fujii et al. [75] reported that the PTTG1 was obviously

overexpressed in hepatocellular carcinoma, which was
consistent with our results that the mRNA expression
levels and protein levels of PTTG1 were higher in liver

(See figure on previous page.)
Fig. 8 The association of somatic copy number alterations (SCNA) of four hub genes with immune cell infiltration in liver hepatocellular
carcinoma (LIHC). a SCNA of CDK1with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in
LIHC. b SCNA of HMMR with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in LIHC. c SCNA
of PTTG1 with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in LIHC. d SCNA of TTK with
infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in LIHC. SCNA of hub genes were divided
into five levels, including deep deletion, arm-level deletion, normal, arm-level gain, and high amplification
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Table 3 Correlation analysis between CDK1, HMMR, PTTG1, and TTK and related immune markers in immune cells, as evaluated
using TIMER
Description Gene

marker
CDK1 HMMR PTTG1 TTK

Cor P Cor P Cor P Cor P

CD8+ T cell CD8A 0.198 *** 0.139 ** 0.164 ** 0.188 ***

CD8B 0.184 *** 0.096 0.064 0.226 *** 0.165 **

T cell (general) CD3D 0.274 *** 0.154 ** 0.333 *** 0.266 ***

CD3E 0.202 *** 0.120 * 0.175 *** 0.195 ***

CD2 0.216 *** 0.121 * 0.204 *** 0.204 ***

B cell CD19 0.273 *** 0.204 *** 0.247 *** 0.273 ***

CD79A 0.158 ** 0.065 0.212 0.116 * 0.177 ***

Monocyte CD86 0.284 *** 0.266 *** 0.250 *** 0.283 ***

CD115 0.131 * 0.138 ** 0.102 * 0.119 *

TAM CCL2 0.039 0.459 0.023 0.656 − 0.023 0.665 0.021 0.682

CD68 0.230 *** 0.186 *** 0.149 * 0.204 ***

IL10 0.219 *** 0.223 *** 0.156 * 0.235 ***

M1 macrophage NOS2 − 0.020 0.695 0.080 0.123 − 0.140 ** − 0.005 0.926

IRF5 0.394 *** 0.407 *** 0.291 *** 0.373 ***

COX2 0.101 0.053 0.071 0.171 − 0.025 0.637 0.094 0.070

M2 Macrophage CD163 0.067 0.197 0.153 ** − 0.022 0.676 0.073 0.160

VSIG4 0.080 0.123 0.138 ** 0.024 0.647 0.059 0.255

MS4A4A 0.089 0.086 0.142 ** 0.027 0.601 0.079 0.128

Neutrophils CD66b 0.123 * 0.096 0.066 0.094 0.071 0.107 *

CD11b 0.257 *** 0.333 *** 0.237 *** 0.280 ***

CCR7 0.089 0.086 0.045 0.385 − 0.030 0.569 0.070 0.181

Natural killer cell KIR3DL1 0.010 0.843 0.068 0.189 − 0.053 0.308 0.009 0.869

KIR2DL1 − 0.035 0.500 − 0.023 0.656 − 0.068 0.190 − 0.044 0.393

KIR2DS4 0.075 0.148 0.076 0.142 0.029 0.581 0.044 0.400

Dendritic cell CD11C 0.331 *** 0.310 *** 0.246 *** 0.326 ***

CD1C 0.121 * 0.066 0.204 0.041 0.434 0.104 *

NRP1 0.231 *** 0.195 *** 0.005 0.916 0.180 ***

PDL1 CD274 0.209 *** 0.334 *** 0.062 0.230 0.062 0.230

Th l STAT4 0.262 *** 0.179 *** 0.215 *** 0.246 ***

STAT1 0.372 *** 0.372 *** 0.248 *** 0.398 ***

TBX21 0.081 0.119 0.050 0.341 0.018 0.736 0.084 0.107

CD4 0.222 *** 0.232 *** 0.123 * 0.228 ***

IFNG 0.266 *** 0.219 *** 0.285 *** 0.275 ***

Th 2 GATA3 0.203 *** 0.135 ** 0.133 * 0.185 ***

STAT6 0.114 * 0.192 *** − 0.108 * 0.115 *

CXCR4 0.315 *** 0.224 *** 0.204 *** 0.292 ***

CCR4 0.206 *** 0.220 *** − 0.023 0.663 0.213 ***

Treg FOXP3 0.163 ** 0.271 *** 0.023 0.655 0.205 ***

CCR8 0.392 *** 0.418 *** 0.209 *** 0.403 ***

STAT5B 0.247 *** 0.355 *** − 0.022 0.676 0.278 ***

TGFB1 0.278 *** 0.174 *** 0.207 *** 0.253 ***

T cell exhaustion PD-1 0.330 *** 0.196 *** 0.333 *** 0.308 ***

CTLA4 0.357 *** 0.244 *** 0.384 *** 0.348 ***

LAG3 0.294 *** 0.205 *** 0.348 *** 0.318 ***

TIM-3 0.296 *** 0.281 *** 0.272 *** 0.289 ***

GZMB 0.092 0.078 0.048 0.355 0.123 * 0.065 0.212

*P < 0.05; **P < 0.01; ***P < 0.0001
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Fig. 9 (See legend on next page.)
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cancer tissues than normal liver tissues. The high ex-
pression of PTTG1 was an adverse factor in survival
rates of liver hepatocellular carcinoma patients. PTTG1
SCNA was closely relevant to immune cell infiltration
level, including arm-level gain and high amplification.
PTTG1 expression was positively associated with im-
mune cells. The prior research identified that PTTG1
was upregulated in T cell proliferation [76], and this was
consistent with our results. We hypothesized that
PTTG1 was closely related to the immune response, and
the mechanism of PTTG1 in liver cancer is needed to be
further explored.
The threonine tyrosine kinase (TTK) gene is located

on chromosome 6q13-q21 and encodes a serine/threo-
nine and tyrosine protein kinase. The TTK is an import-
ant component of the spindle of assembly checkpoint
that ensures the fidelity of chromosome segregation
[77]. The previous study had shown that elevated of
TTK could cause centrosome enlargement and chromo-
somal instability, leading to tumorigenesis [78]. The
TTK could be hardly detected in normal tissues, via
Northern blot, except the testis and placenta [79].

However, high expression levels of TTK could be de-
tected in different types of cancer, including glioblast-
oma, esophageal cancer, and breast cancer [80–82]. The
prostate cancer patients with high expression levels of
TTK had a shorter time to relapse [83]. The prior re-
search suggested the TTK could regulate the TGF-β sig-
naling pathway [84]. The new research had speculated
that TTK could regulate the proliferation and apoptosis
of cancer cells via Akt-mTOR signaling pathway [85].
Liu et al [86] reported that TTK was overexpressed in
77.63% (118/152) hepatocellular carcinoma specimens.
In our study, the TTK was overexpressed in liver hepa-

tocellular carcinoma tissues on mRNA and protein
levels; liver hepatocellular carcinoma patients with high
expression levels of TTK had lower survival rates. The
TTK SCNA was focused on deep deletion. TTK expres-
sion was positively correlated with the infiltration levels
of B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells. A prior study indicated
that TTK mutations presented the strongest association
with elevated PD-L1 expression [87]. Interestingly, in
our study, the TTK did not present a strong association

(See figure on previous page.)
Fig. 9 Immunohistochemistry (IHC) of four hub genes based on the Human Protein Atlas (HPA). a Protein levels of CDK1 in normal liver tissue
and liver hepatocellular carcinoma tissue. b Protein levels of HMMR in normal liver tissue and liver hepatocellular carcinoma tissue. c Protein
levels of PTTG1 in normal liver tissue and liver hepatocellular carcinoma tissue. d Protein levels of TTK in normal liver tissue and liver
hepatocellular carcinoma tissue
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with the PD-L1. Nonetheless, understanding the exact
role of TTK in PD-L1 regulation is required to further
test.
The fostamatinib was the spleen tyrosine kinase (SYK)

inhibitor, and it was able to inhibit both parental and
sorafenib-resistant (SR) HCC cell lines in vitro and
xenograft models [88]. In our study, the fostamatinib
interacted with the CDK1 and TTK, suggesting that
CDK1 and TTK might be potential drug targets for fos-
tamatinib in anti-HCC therapy. The new study suggested
that the inhibition of cyclin E1 by the cyclin-dependent
kinase inhibitors dinaciclib and alvocidib (flavopiridol)
could suppress HCC cell growth by inducing apoptosis
and enhance the killing function of regorafenib and
sorafenib in vitro and vivo [89]. In our results, the
dinaciclib and alvocidib interacted with the CDK1. The
rucaparib (AG014699), which was the inhibitor of the
poly (ADP-ribose) polymerase-1 (PARP-1), might induce
the apoptosis of HepG2 cells through the mitochondrial
pathway and induced the migration of HepG2 cells by
upregulating the PTEN and increasing the TIMP-3/
MMP-3 ratio [90]. The traditional chemotherapeutic
drugs (epirubicin, cyclophosphmide, and fluorouracil)
played the important roles in treatment of liver cancer
[91]. In our study, the HMMR had relationship with the
epirubicin, cyclophosphmide, and fluorouracil. The
pharmacological mechanisms between the hub genes
and drugs are needed to be further explored.
The main restriction of our study was only at the level

of bioinformatics analysis. So it was in urgent need of
cytological experiments, animal experiments, and drug
trials, etc., to identify these hub genes in liver cancer.

Conclusions
To conclude, 168 DEGs was identified in liver cancer by
integrated analysis in our study, which contained 41 hub
genes. Four of these hub genes, including CDK1,
HMMR, PTTG1, and TTK, were filtered out as potential
biomarkers for diagnosis and prognosis of liver cancer.
The expressions of CDK1, HMMR, PTTG1, and TTK
were closely related to the immune cell infiltration and
signaling pathway activation. Meanwhile, the CDK1,
HMMR, and TTK had close interaction with new types
of anticancer agents and traditional chemotherapy drugs.
Therefore, laboratory and clinical research are needed to
identify our results associated with pathogenesis of liver
cancer, which can offer the last and accurate information
for the prevention and therapy of liver cancer.
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