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Abstract

Introduction: Skeletal dysplasia is a common, clinically and genetically heterogeneous disorder in the human
population. An increasing number of different genes are being identified causing this disorder. We used whole
exome sequencing (WES) for detection of skeletal dysplasia causing mutation in a fetus affected to severe lethal
skeletal dysplasia.

Patient: Fetus was assessed by ultrasonography in second trimester of pregnancy. He suffers from severe rhizomelic
dysplasia and also pathologic shortening of ribs. WES was applied to finding of causal mutation. Furthermore,
bioinformatics analysis was performed to predict mutation impact.

Results: Whole exome sequencing (WES) identified a homozygous frameshift mutation in the TMEM263 gene in a
fetus with severe lethal skeletal dysplasia. Mutations of this gene have been previously identified in dwarf chickens, but
this is the first report of involvement of this gene in human skeletal dysplasia. This gene plays a key role in the growth
hormone signaling pathway.

Conclusion: TMEM263 can be considered as a new gene responsible for skeletal dysplasia. Given the complications
observed in the affected fetus, the mutation of this gene appears to produce much more intense complications than
that found in chickens and is likely to play a more important role in bone development in human.
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Introduction
Skeletal dysplasia is a common and heterogeneous devel-
opmental disorder, with more than 450 different disor-
ders, associated with impaired longitudinal growth and
bone mineralization. The disorder affects one in every
5000 live births, approximately [1].
Various environmental, teratogenic, and genetic fac-

tors are involved in causing this complication. Genetic

factors play an important role in causing bone dysplasia
and so far mutations in 226 different genes have been
reported in patients with skeletal dysplasia [1].
Although the genetic cause of an increasing number of

skeletal dysplasia syndromes is being discovered, the gen-
etic etiology of many of these disorders remains unknown.
It is important to identify the genetic causes of skeletal

dysplasia in genetic counseling, prenatal diagnosis, and
prognosis of the patient.
The TMEM263 gene has recently been identified as

one of the causes of autosomal recessive dwarfism in
Cornell K-strain white leghorns [2]. Mutation of this
gene results in short stature and weight loss despite
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normal levels of growth hormone and insulin-like factor
1 [3].
Interestingly, although no association has been ob-

served with skeletal dysplasia so far, some GWAS stud-
ies have shown a significant association between
TMEM263 genetic variants and bone mineral density
(BMD) and bone fracture risk in humans [4].
In addition, bioinformatics studies of transcriptome

data have shown concurrent expression of this gene and
osteoblast functional modules (OFMs) [5].
In the present study, we identified for the first time

the TMEM263 mutation in a fetus suffering bone skel-
etal dysplasia using WES technology and investigating
autologous gene recognized in dwarf chicken.

Patient and methods
Clinical brief
A consanguineous couple with a fetus with fatal skeletal
dysplasia was referred for genetic counseling before ter-
mination of pregnancy. In the initial study, couples had
a previous pregnancy with the same problem (Fig. 1).
The couple underwent genetic counseling and ultra-

sound examination of the fetus. Amniocentesis was per-
formed to culture of amniotic fluid cells.
The sample was a male aborted fetus. Fetal age at

diagnosis was 15 week and 1 day based on first trimester
indices, 16 weeks based on biparietal diameter )BPD(,
and 16 weeks and 1 day based on abdominal circumfer-
ence )AC( and the fetal weight was 85 g.
The fetal femur length was 6.5 mm (lower than 2.5th

percentile of the normal population).

On ultrasonography examination, humerus length was
2 mm (lower than 5th percentile of the normal popula-
tion) and tibial bone length was 1 mm (lower than 2th
percentile of the normal population). Pathological short-
ening of ribs and other long bones was evident.
Furthermore, bilateral clubfoot and clubhand was

apparent.
There was no evidence of cleft palate and lip. Gastric

bubble, kidneys, and bladder appeared normal.
In color Doppler study, normal cord with two arteries

and one vein was observed.
No abnormalities were observed in CNS examination

and lateral ventricle diameter was within normal range.
Nuchal fold was in pathological range (5.7 mm) and

nasal bone length was lower than 2.5th percentile of the
normal population.
Doppler examination of fetal heart showed quadruple

and triceps view and no pathologic findings.
Finally, according to these evidences, diagnosis of se-

vere lethal micromelia was confirmed. Termination of
pregnancy was performed under the supervision of a
gynecologist.
In family history, similar findings were apparent in

previous pregnancy. In addition, previous fetus shows
several angulations suspected to fracture has been de-
tected and interestingly, omphalocele has been detected
in former fetus but not in later one.

Whole exome sequencing and segregation analysis
After taking informed consent from parents, the WES
assay was performed according to standard protocol. In
brief, genomic DNA samples were extracted from

Fig. 1 Family pedigree. Filled red symbols indicate members affected with skeletal dysplasia and half-filled shows heterozygote for the mutation
and the proband is indicated with the arrow
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cultured amniotic cells using DNA extraction kit (SIM-
BIOLAB, IRAN).
The whole exome captured using the Agilent SureSe-

lect Target Enrichment Kit preparation guide. The li-
braries were sequenced with Illumina HiSeq 2000/2500
sequencer.
Reads were Mapped hg19 human reference genome

assembly and cleaned to using BWA and Samtools, re-
spectively [6, 7]. Duplicated reads were removed by
using Samtools dedup function. Variant filtering was
performed toward the SNPs and indels using VarScan
v2.3.9, can generally run from 3 to 25 budgets [8]. Func-
tional annotation for detected variants was performed
using Wannovar [9].
Known skeletal dysplasia causing genes were extracted.

Filtering of variants was done using multiple steps based
on homozygosity status, allelic frequencies in different
population databases, mutation impact on gene function,
and mutation effect based on various prediction databases.
In next step, other preferred variants based on above

algorithm were studied based on PubMed literature.
Sequence analysis was performed using the Sanger se-

quencing method to confirmation of TMEM263 candidate
gene variant. Primers sequences are listed in Table 1.
Polyphen, LIF, SIFT, MUTATION TASTER, PRO-

VEAN softwares were used to predict the identified vari-
ant effects. The domain information of TMEM263 gene
was obtained from pfam and interpro databases.

Results
In the WES study, 123011 variant with an average depth
of 50× and minimum depth of 8× was detected. 6254
SNPs and indels variants belong to known skeletal dys-
plasia causing genes were extracted, all of which were ei-
ther intronic or common population polymorphisms
greater than 2%.
In the second step, variant filtering was performed

based on previously mentioned criteria.
Interestingly, a new variant was observed in the

TMEM263 gene. This mutation is located in exon 4
of the gene, resulting in the deletion of 188-189th nu-
cleotides, resulting in a shift of the reading frame
from amino acid lysine number 63 onwards resulting
in the creation of a premature stop codon in the 68th
residue.
This variant was not reported in the 1000G, ExAC,

gnomAD, and also Iranome. Furthermore, this mutation
was not observed in our local database, which contained

400 WES data from the eastern part of Iran. So, this
variant is a family specific mutation which may lead to
this phenotype.
Polyphen, LIF, SIFT, MUTATION TASTER, PRO-

VEAN softwares detect the identified mutation as either
deleterious or possibly damaging or pathogenic.
Examination of the protein sequence from the mutation

revealed the elimination of the majority of the second
trans-membrane domain of protein which by eliminating
that the function of this protein is virtually lost.
In addition, this mutation may also result to non-

sense mediated mRNA decay (NMD), which would
completely silence TMEM263 protein expression. Se-
quence analysis showed heterozygous status in both
parents (Fig. 2).

Discussion
In this study, using WES, we have identified TMEM263
mutation as a new severe lethal skeletal dysplasia causa-
tive mutation. This gene is located on chromosome
12q23.3 and contains 4 exons, which only exons 3 and 4
are encoding, producing a protein of 116 amino acids in
length.
Few studies have been performed on TMEM263 gene

and the physiological role of this gene remains largely
unknown. However, the study of Wu et al. has shown
that TMEM263 protein is highly conserved among all
vertebrates [2]. This protection is particularly apparent
in the two trans-membrane domains (units 38 to 61
equivalent to the first domain and 80 to 102 units to the
second domain). In human TMEM263 protein, the two
domains comprise the first domain 40-60 and the sec-
ond domain subunit 98-78.
TMEM263 is expressed in a wide range of tissues at

different stages of development and has the highest ex-
pression level in tibia. Interestingly, the expression of
this gene in tibia in the samples of individuals 6 to 12
years is higher than in adults.
A nonsense mutation detected in the Trp59 residue in

the dwarf Cornell K-strain white leghorns results in the
deletion of the second domain of the protein, resulting
in the protein completely losing its function. Interest-
ingly, our mutation occurred in Lysine 63, leading to the
early termination of the protein [2].
TMEM263 directly interacts with GH1 and BMP2, both

of which are essential for the normal growth and develop-
ment of long bones [2]. In addition, based on the data ob-
tained from GeneMANIA, the protein TMEM263 also

Table 1 Primer sequence of TMEM263 mutation confirmation

Primer name Sequence (5′ to 3′) Tm Amplification product length

TMEM263F GAAAGATCACCCACAGCAG 52.63 237 bp

TMEM263R TTTACAACAGCAGACCCAAC 45.00
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coexpressed with FAM3C and RBPJ proteins. These genes
have known effects on osteogenesis and bone density in
humans [10–12].
Recent GWAS studies also show a significant associ-

ation of TMEM263 variants with bone mineral density
in humans [4, 13].
On the other hand, co-immunopercipitation studies

on the Slick protein, a sodium-activated potassium chan-
nel, indicate physical binding of this protein to
TMEM263 [14]. Because dysfunction of the Slick gene
leads to infantile epileptic encephalopathy type 57,
TMEM263 gene dysfunction may also be involved in
genetic disorders of the nervous system and epilepsy
syndromes [15]. However, the lack of neurological ef-
fects in the animal model of this mutation suggests that
this gene may not play a critical role in the central ner-
vous system.
Another important point is that the consequences of

this mutation in the human fetus appear to be much
more severe than the complications of the chicken, sug-
gesting a higher physiological importance of this gene in
humans than in the chicken.

Conclusion
In this study, we identified TMEM262 as a novel gene
involving in skeletal dysplasia. This finding can be used
to screening of patients with skeletal dysplasia.
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