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Abstract 

The genetic basis of phenotypic variation across populations has not been well explained for most traits. Several fac-
tors may cause disparities, from variation in environments to divergent population genetic structure. We hypothesized 
that a population-level polygenic risk score (PRS) can explain phenotypic variation among geographic populations 
based solely on risk allele frequencies. We applied a population-specific PRS (psPRS) to 26 populations from the 1000 
Genomes to four phenotypes: lactase persistence (LP), melanoma, multiple sclerosis (MS) and height. Our models 
assumed additive genetic architecture among the polymorphisms in the psPRSs, as is convention. Linear psPRSs 
explained a significant proportion of trait variance ranging from 0.32 for height in men to 0.88 for melanoma. The best 
models for LP and height were linear, while those for melanoma and MS were nonlinear. As not all variants in a PRS 
may confer similar, or even any, risk among diverse populations, we also filtered out SNPs to assess whether variance 
explained was improved using psPRSs with fewer SNPs. Variance explained usually improved with fewer SNPs in the 
psPRS and was as high as 0.99 for height in men using only 548 of the initial 4208 SNPs. That reducing SNPs improves 
psPRSs performance may indicate that missing heritability is partially due to complex architecture that does not 
mandate additivity, undiscovered variants or spurious associations in the databases. We demonstrated that PRS-based 
analyses can be used across diverse populations and phenotypes for population prediction and that these compari-
sons can identify the universal risk variants.
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Introduction
The prevalence of many phenotypes differs across popu-
lations. The causes of population variability, though not 
always well understood, can be partially due to different 
frequencies of common causative alleles that are shared 
among populations and/or variation in environmental 
exposure across these same populations. However, it is 
also possible that population-specific alleles affect preva-
lence. One way to increase our understanding of a trait’s 
genetic architecture and population differences in disease 
prevalences is to determine if variants associated with 

risk in one or a few populations can be extrapolated to 
the phenotypic burden for other populations across the 
world. For example, some variants that are extremely 
common in some populations are very rare in others 
despite having large phenotypic effects [26]. It has been 
suggested that most heritability can be explained by vari-
ants associated with a specific phenotype that are not in 
the group of “core” variants thought to affect trait char-
acteristics [3]. These “core” variants may, however, not 
necessarily be those determined to be most statistically 
associated, although there may be overlap. Examining 
variants that do or do not transfer among populations 
may help elucidate the concept of “core” genes.

Models of genetic architecture often assume that the 
effects of a trait’s genetic components are additive, with-
out interaction, and highly similar across populations. 
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The assumption of additivity disregards potential com-
plexity, but can be implicitly tested by assessing how well 
a genetic model explains the genotype to phenotype rela-
tionship [17].

One additive model used to predict phenotypic status is 
the polygenic risk score (PRS), that has, in general, been 
used to elucidate an individual’s risk of a specific pheno-
type [27, 61]. A PRS for a disease is usually calculated as 
the sum of an individual’s risk associated alleles, some-
times weighted by the average effects of these alleles.

Commonly, calculated individual PRSs also assume 
that a trait’s genetic architecture is additive and that nei-
ther gene–gene nor gene-environment interactions are 
important factors. This method has seen some success, 
but often fails to predict an individual’s disease status, 
especially at intermediate values of the PRS [21], possibly 
because translating population-level data to individual 
status is problematic and risks falling into the ecologi-
cal fallacy. Many of the variants and their effect sizes 
are derived from a limited number of ancestral groups, 
as most research is done in European populations [58], 
potentially leading to a lack of PRS transferablity across 
populations [35]. Nonetheless, when a trait is multi-
genic or polygenic, a polygenic risk score is becoming an 
often used risk estimator. The role of the PRS to estimate 
prevalances among populations has not been explored as 
much as for individual risk, but it may point to key fac-
tors that are common. One study on height in admixed 
European/African populations found that the prediction 
ability of a polygenic risk score (PRS) for height was a 
function of the amount of European ancestry, support-
ing the idea that population-specific effect sizes and allele 
frequencies are important to its utility [2]. One recent 
example is PRS-CSx that uses GWAS summary statistics 
from multiple populations to improve the cross-ethnic 
transferability of PRSs [51]. Another study by Evans et al. 
used individual PRSs to estimate population-level disease 
prevalence [11], but the idea of using PRSs at a popula-
tion level remains novel. In addition, Boyle et al. [3] have 
suggested that for traits affected by many loci, such as 
height, even “a small shift in average allele frequencies 
could generate a large shift in average height, e.g., a 0.5% 
genome-wide increase in the frequency of ‘‘tall’’ alleles 
would generate a 15 cm shift in average height” [3].

A polygenic risk score additively (i.e., without any inter-
actions) incorporates some, or all, of the known risk asso-
ciated loci for a phenotype, often identified by GWAS. 
On an individual level, polygenic risk scores (PRS) have 
been used to predict phenotypic status. This has been 
done with varying success. For some individuals in some 
diseases, a PRS can be a better predictor than monogenic 
markers in simple genetic diseases at the extremes of the 
PRS value distribution [27]. For others, some common 

diseases are very difficult to model using a PRS, probably 
due to complex genetic architecture and nongenetic fac-
tors [61]. Some studies only see modest improvement in 
risk prediction over only clinical risk factors, indicating 
that more information is needed to understand genetic 
architecture of diseases to translate PRS usage into clini-
cal settings [49, 63], 65. PRSs can be calculated with or 
without estimated effects sizes. Weighted PRSs include 
the average effects of these alleles based on extant stud-
ies and sometimes the population allele frequency [6, 
28]. Weighted PRSs are sometimes used to confirm asso-
ciations in GWAS [67]. However, as effect sizes can vary 
among populations, this approach may present serious 
limitations [69].

PRSs have already been implemented for individual risk 
of many different phenotypes. For some diseases, a PRS 
can be used as an early indicator before other predic-
tors present, allowing for preventative intervention. For 
example, individual risk of coronary artery disease can be 
stratified using an effect size weighted PRS [50]. Jia et al. 
[24], using GWAS cancer hits with data from the UK 
Biobank, found that PRSs could predict an individual’s 
elevated risk of several types of cancer, including pros-
tate, breast, pancreas, colorectal, ovarian, lung, bladder, 
and kidney. However, Jia et al. [24] only included individ-
uals of European descent and a relatively short follow-up 
time [24]. PRSs have also been shown to work well in the 
stratification and subtyping of breast cancer [37].

There is some variability in the conceptualization of 
PRSs and some confusion in the language used to define 
them. In addition, there have been numerous mod-
els and statistical constructs used to generate PRSs. For 
example, three general conceptualizations have been 
described [62]. The first general approach described 
uses only statistically significant GWAS SNPs, i.e., those 
where p < 5 ×  10–8. This was deemed restricted-to-signif-
icant polygenic scores (rsPSs). In other studies, the PRS 
refers to scores that also incorporate non-significant 
SNPs with p-values ≥ 5 ×  10–8. These were referred to as 
global extended polygenic scores (gePSs). A final score 
was proposed, process-specific polygenic scores (pPSs) 
that built the metric using variants grouped according 
to common biological processes or pathways [63]. With 
respect to different statistical constructs for use in indi-
viduals, there have been several previous PRS building 
methods. P-Value thresholding  (pT) uses a p-value signif-
icance threshold for SNP selection [23]. LDpred2 derives 
polygenic scores based on summary statistics and a cor-
relation matrix between genetic variants, i.e., those that 
are in LD [45]. A LASSO/Elastic Net method, lassosum, 
estimates variable selection based on a linear regression 
from GWAS summary statistics [34]. However, at present 
there is still not a single PRS construction method that 
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has shown universal utility, although reporting standards 
have now been proposed that may move the field to more 
common standards [66].

For traits with high heritability and risk alleles common 
among populations, we hypothesize that a PRS weighted 
by risk allele frequencies, as a population average meas-
urement, will associate with relative disease prevalence 
among populations as has been indicated previously 
[9]. While this is certainly true for Mendelian traits, we 
are proposing to ascertain the extent to which it is true 
for increasingly complex diseases. In theory, we should 
be able to predict relative ranking of disease prevalence 
among populations for simple traits, for which our 
understanding is relatively comprehensive with respect 
to the number and effect of risk loci. This will, presum-
ably, allow us to predict population prevalence based on 
the correlation between prevalence and risk allele fre-
quency using a risk score and assuming locus additivity. 
We hypothesize that risk allele frequencies as compiled 
into a PRS are proportional to population prevalence 
and the change in prevalence based on specific variants 
is proportional to their importance in disease presenta-
tion, i.e., effect size, among populations. In this paper, we 
assessed the ability of PRSs, in traits of varying presumed 
genetic complexity, to explain population differences in 
prevalence and to evaluate whether the components in a 
PRS act additively in their contribution to disease preva-
lence. We also examined whether SNPs have universal 
effects by adjusting the number in each PRS.

Materials and methods
Phenotypes
As proof of principle, we explored four phenotypes of dif-
fering presumed genetic complexity: lactase persistence, 
melanoma, multiple sclerosis, and height. While these 
traits are not exhaustive of the entire spectrum of genetic 
architecture, they appear to differ from each other in 
terms of genetic complexity and, should be broadly repre-
sentative. As lactase persistence is monogenic, albeit with 
allelic heterogeneity, it is a genetically simple trait. Mela-
noma is dependent on both environment and a small 
number of known loci and is therefore likely oligogenic. 
Multiple sclerosis is a presumably moderately complex 
polygenic trait, with hundreds of associated alleles and 
several environmental factors. Height is a highly complex 
and heritable phenotype with thousands of associating 
alleles, making it essentially omnigenic.

Lactase persistence
Lactase persistence into adulthood is a monogenic auto-
somal dominant trait caused by one or more of several 
mutations affecting the expression of lactase (LCT), the 
gene responsible for the encoding of lactase. Lactase 

persistence is reasonably well understood genetically 
in some, but not all, populations. Lactase is the enzyme 
that our bodies produce to help breakdown lactose, the 
sugar found in milk. The production of lactase usually 
decreases after weaning, in some cases leading to an 
intolerance of lactose. Lactase persistence shows strong 
evidence of selection, although why and when is a mat-
ter of debate [15, 44, 53, 54]. It is, however, believed to be 
associated with the advent of dairy farming. Individuals 
who are lactose intolerant can often consume a moderate 
amount of dairy, especially if processed into foods such 
as cheese and yogurt.

In Europe, two alleles upstream of the LCT 
gene, − 13,910*T (rs4988235) and − 22,018*G (rs182549), 
have been identified as conferring lactase persistence. 
These two SNPs are in strong LD in Europeans (r2 = 1.0 
in all European populations from 1000 Genomes, except 
TSI where r2 = 0.95). In populations outside of Europe, 
other alleles have been associated with lactase persis-
tence, where it exists [25, 31, 47, 60]. A total of 11 SNPs 
have been associated with lactase persistence (Additional 
file  15: Table  S1). The prevalence of lactase persistence 
varies among populations around the world. For example, 
92% of people in Great Britain (GBR) are lactase persis-
tent, whereas, in Vietnam (KHV), the prevalence is only 
2% (Table 1). We tested the expected relative frequency 
of lactase persistence based on a PRS, including all of the 
variants known to date, to see if we could predict rela-
tive prevalences, especially in populations that appear to 
carry the less penetrant alleles.

Melanoma
A moderately complex oligogenic disease with 39 asso-
ciated GWAS SNPs (Additional file  15: Table  S2), 
melanoma is a skin cancer that is both heritable and 
dependent, to an extent, on environmental factors, 
especially ultraviolet (UV) exposure. Although consid-
ered rare, melanoma is responsible for most skin can-
cer deaths and the incidence is increasing, due partially 
to improved diagnosis [5]. Most cases of melanoma are 
caused by somatic mutations from exposure to UV light, 
although the above noted germline variants have been 
identified as conferring risk. Visualization with Locus-
Zoom plot showed that SNPs associated with melanoma 
are distributed across the genome (Additional file 1: Fig-
ure S1) [46].

There is significant variation in melanoma prevalence 
globally, with the lowest rate in Vietnam and highest in 
Finland (FIN) (Table 1). As melanin is protective, mela-
noma is higher in prevalence in populations of lighter 
skin color. However, non-European populations have 
a higher risk of mortality, possibly because melanoma 
is harder to detect in darker skin, and detection and 
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treatment are late in the course of the disease [10]. There 
is some indication, also, that skin color modifies the 
genetic architecture of melanoma [20].

The heritability of melanoma ranges from 19 to 58% 
[33, 39], 55. However, while known melanoma predis-
posing genes range in penetrance and frequency, known 
genes only explain ~ 50% of the heritability in families, 
indicating missing heritability and uncertain genetic 
architecture [48].

Multiple sclerosis
Multiple sclerosis (MS) is an autoimmune neurologic 
disorder affecting the central nervous system. It is a 
relatively complex phenotype, dependent on both envi-
ronmental exposures and genetics. Environmental fac-
tors include past Epstein-Barr virus infection, vitamin D 
insufficiency [42, 43], and cigarette smoking. MS also has 
a "latitude-gradient effect," i.e., the prevalence of MS is 
greater at higher latitudes, but there are some exceptions 
within Italy and Scandinavia [57]. World-wide prevalence 
of MS is shown in Table 1, except that we were unable to 

find representative, recent data on the European Ameri-
can (CEU) and African American (ASW) populations, 
as current prevalence data derive from military data in 
mostly males.

372 SNPs have been identified by GWAS as associat-
ing with MS (Additional file 15: Table S3). Visualization 
with LocusZoom showed that the SNPs are widely dis-
tributed across the genome (Additional file 2: Figure S2) 
[46]. Estimates of both prevalence and heritability vary 
among studies. MS is more common in women (70–75% 
of cases) [52] and people of European descent [38]. Stud-
ies vary on the heritability of MS; one done in Australia, 
multiple European countries, and US states shows mod-
erate heritability (~ 20%) [22], although a Swedish study 
shows a much higher heritability of 64% (36–76%) [68].

Height
As a truly polygenetic trait, human height is both 
complex and highly heritable [29, 30]. In addition to 
the 4388 variants currently found to associate with 
this phenotype by GWAS, height is also dependent 

Table 1 Relative trait distribution among populations

Super 
population

Population Lactase persistence Melanoma Multiple sclerosis Male height (cm) Female height (cm)

AFR ACB – 4.2 ×  10–5 [12] 1.36 ×  10–4 [8, 64] 175.9 [7] 165.3 [7]

ASW 0.25 [1] 2.9 ×  10–5 [18] – 175.5 [13] 162.6 [13]

ESN 0.13 [59] 5.7 ×  10–6 [12] 3.71 ×  10–5 [8, 64] 165.9 [7] 156.3 [7]

GWD 0.43 0 [12] 3.35 ×  10–5 [8, 64] 165.4 [7] 160.9 [7]

LWK 0.61 [59] 1.4 ×  10–5 [12] 3.30 ×  10–5 [8, 64] 169.6 [7] 158.2 [7]

MSL 0.52 5.6 ×  10–6 [12] 2.89 ×  10–5 [8, 64] 164.4 [7] 156.6 [7]

YRI 0.13 [59] 5.7 ×  10–6 [12] 3.71 ×  10–5 [8, 64] 165.9 [7] 156.3 [7]

AMR CLM 0.2 [59] 1.08 ×  10–4 [12] 5.53 ×  10–5 [8, 64] 169.5 [7] 156.95 [7]

MXL 0.52 [59] 6.9 ×  10–5 [12] 1.08 ×  10–4 [8, 64] 169.0 [7] 156.9 [7]

Px10L 0.06 [1] 8.3 ×  10–5 [12] 6.98 ×  10–5 [8, 64] 165.2 [7] 152.9 [7]

PUR – 1.11 ×  10–4 [12] 1.9 ×  10–4 [8, 64] 172.1 [7] 159.2 [7]

EAS CDX 0.15 [59] 1.5 ×  10–5 [12] 7.30 ×  10–5 [8, 64] 171.8 [7] 159.7 [7]

CHB 0.15 [59] 1.5 ×  10–5 [12] 7.30 ×  10–5 [8, 64] 171.8 [7] 159.7 [7]

CHS 0.15 [59] 1.5 ×  10–5 [12] 7.30 ×  10–5 [8, 64] 171.8 [7] 159.7 [7]

JPT 0.27 [59] 5.0 ×  10–5 [12] 3.62 ×  10–4 [8, 64] 170.8 [7] 158.3 [7]

KHV 0.02 [59] 4.3 ×  10–6 [12] 4.41 ×  10–5 [8, 64] 164.5 [7] 153.6 [7]

EUR CEU 0.87 1.3 ×  10–3 [18] – 177.4 [13] 163.3 [13]

FIN 0.81[59] 1.04 ×  10–3 [12] 1.49 ×  10–3 [8, 64] 179.6 [7] 165.9 [7]

GBR 0.92 [59] 9.39 ×  10–4 [12] 1.61 ×  10–3 [8, 64] 177.5 [7] 164.4 [7]

IBS 0.71 [59] 3.92 ×  10–4 [12] 9.41 ×  10–4 [8, 64] 176.6 [7] 163.4 [7]

TSI 0.28 [59] 7.12 ×  10–4 [12] 1.19 ×  10–3 [8, 64] 177.8 [7] 164.6 [7]

SAS BEB 0.175 6.5 ×  10–6 [12] 1.42 ×  10–4 [8, 64] 163.8 [7] 150.8 [7]

GIH 0.39 [59] 5.4 ×  10–6 [12] 1.54 ×  10–4 [8, 64] 165.0 [7] 152.6 [7]

ITU 0.39 [59] 5.4 ×  10–6 [12] 1.54 ×  10–4 [8, 64] 165.0 [7] 152.6 [7]

PJL 0.42 [59] 4.6 ×  10–6 [12] 1.46 ×  10–04 [8, 64] 167.0 [7] 153.8 [7]

STU 0.27 [59] 1.4 ×  10–5 [12] 3.35 ×  10–05 [8, 64] 165.7 [7] 154.6 [7]
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on environmental factors, including diet (Additional 
file  15: Table  S4) [70]. Visualization LocusZoom 
showed the SNPs are widely distributed across the 
genome (Additional file  3: Figure S3) [46]. There are 
also differences in average height between men and 
women and between global populations. The average 
height for men ranges from 163.8 cm in Bangladesh to 
179.6 cm in Finland. For women, average height ranges 
from 150.8 to 165.9, also in Bangladesh and Finland, 
respectively (Table 1). Height is less heritable in women 
than men (0.68 to 0.84 vs. 0.87 to 0.93, respectively) 
[56]. Male and female population average heights are 
highly, but not completely, correlated (r2 = 0.84), poten-
tially leading to some differences in the genetic models 
between sexes.

Allele and prevalence data collection
Associated alleles for each phenotype were identified 
by a literature search and accessing the alleles that have 
been identified by GWAS from the GWAS Catalog at 
p < 1 ×  10−5. We chose to use this as the threshold for 
significance in our initial analyses, but report difference 
by p-value threshold as well. Prevalence data for each 
phenotype in each population came, similarly, from lit-
erature searches and from databases devoted to specific 
traits (cancer, height). For lactase persistence, we found 
the associated SNPs, through literature search for lac-
tose intolerance, and it was necessary to subtract the 
proportion of lactose intolerance in a population from 1. 
For melanoma, we accessed the associated SNPs in the 
GWAS Catalog under the trait melanoma (GWAS Cata-
log identifier: EFO_0000756). Multiple sclerosis SNPs 
were obtained from the GWAS Catalog under the trait 
multiple sclerosis (EFO_0003885). The GWAS Catalog 
trait body height (EFO_0004339) was used for the height 
SNPs. An attempt was made to keep the sources as simi-
lar as possible for each population (Table 1).

1000 Genomes
To assess the role of PRSs in predicting population phe-
notype distributions, we chose to use only the popula-
tions included in The International Genome Sample 
Resource (IGSR) from the 1000 Genomes Project (Addi-
tional file  15: Table  S5) as our study populations. Each 
ancestral population in the IGSR belongs to a larger 
super-population defined as: East Asian (EAS), South 
Asian (SAS), European (EUR), African (AFR) and Ad 
Mixed American (AMR). The frequencies of known 
risk alleles defined in the GWAS Catalog and literature 
were extracted from the 1000 Genomes data using the 
Ensembl REST API.

Polygenic risk scores
Under the assumption that the genetic architecture of a 
phenotype is additive, we used a PRS to account for the 
genetic risk in each of our study populations, based on 
the frequency of the disease-causing alleles to estimate 
the relative presence of the phenotype in that popula-
tion. As previously mentioned, in individuals this is done 
by simply summing the number of risk alleles that an 
individual possesses, usually GWAS hits, for the specific 
phenotype. Another approach is to weight each allele in 
the score by the effect size and/or the allele frequency. 
However, for a population-specific PRS (psPRS), effect 
sizes may not be transferable [35, 36, 58], and as long as 
the direction of effect is the same, the role that any vari-
ant plays in prevalence should be proportional to the 
frequency of the risk allele in that population. We have 
structured psPRSs without effect size weighting, as there 
is often little to no information on effect sizes/OR of the 
risk alleles in different populations. Therefore, we calcu-
lated our psPRSs only by the population allele frequen-
cies. In addition, many of the associating SNPs do not 
have reported effect sizes in the data sources available. 
Our expression for the psPRSs is simply the sum of the 
frequencies for the risk alleles in each population. For a 
population in the 1000 Genomes database, psPRS is the 
PRS for that population and pi is the allele frequency of 
 SNPi:

We then performed a linear regression between the 
sum of the risk allele frequencies in a population and the 
prevalence of the phenotype to establish the relationship 
between the population-specific psPRS and the popula-
tion prevalence of that phenotype (Additional file  15: 
Table S6).

Maximization of the coefficient of determination 
sensitivity analysis
We performed a sensitivity analysis, filtering SNPs based 
on maximizing the coefficient of determination (r2), or 
the square of the coefficient of correlation (r). This analy-
sis used a process of elimination of SNPs that reduced the 
predictiveness of each psPRS. This was done by assessing 
the effect of removing SNPs from the psPRS and ordering 
each SNP by the r2 value calculated for the linear regres-
sion between the population psPRS without that SNP 
and the population prevalence. The SNPs that resulted 
in the model where the r2 was the largest were retained, 
while the SNPs that reduced the predictability were dis-
carded. We then recalculated the r2 values for the model 

psPRS =

i∑

k=1

pk
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with only the remaining SNPs (Additional file 15: Tables 
S1–S4, S7 and Additional files 9–13: Figures S9-S13). We 
repeated this process until the r2 value reached a maxi-
mum and only the most predictive SNPs remained. The 
code for our algorithm is in the supplement methods 
(Additional file 14).

This method empirically prioritizes the SNPs that 
best predict trait prevalence. Under the assumption of 
additivity, the model with the largest r2 was expected to 
include all truly associating SNPs with universal effects 
(Table 2). Our approach tested this implicitly.

Results
Lactase persistence
We identified 11 SNPs associated with lactase persis-
tence in the literature (Additional file 15: Table S1). We 
used these SNPs to build our LP PRS for each population, 
using allele frequencies from the 1000 Genomes Project. 
We found a strong relationship between the PRS and the 
population prevalence of lactase persistence with a r2 
value of 0.65 (Fig. 1A, p-value: 1.84 ×  10−06).

The relationship was especially strong among Euro-
pean populations, but less so for South Asian and Amer-
indian populations. However, in East Asian and African 

Table 2 Sensitivity analysis

Phenotype GWAS SNPs 1000 
Genomes 
SNPs

Reduced SNPs

Lactase persistence 11 NA 4

Melanoma 39 37 16

Multiple sclerosis 372 368 131

Height male 4388 4209 547

Height female 4388 4209 188

ASW

ESN

GWD

LWK

MSL

YRI

CLM

MXL

PEL

CDX
CHB
CHS

JPT

KHV

CEU

FIN

GBR

IBS

TSI

BEB

GIHITU
PJL

STU

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5

GRS

La
ct

as
e 

P
er

si
st

an
ce

 P
re

va
le

nc
e

A

ASW

ESN

GWD

LWK

MSL

YRI

CLM

MXL

PEL

CDX
CHBCHS

JPT

KHV

CEU
FIN

GBR

IBS

TSI

BEB

GIH
ITU PJL

STU

0.0

0.3

0.6

0.9

0.0 0.2 0.4 0.6

GRS

La
ct

as
e 

P
er

si
st

an
ce

 P
re

va
le

nc
e

B

superpopulation AFR AMR EAS EUR SAS

Fig. 1 Correlation between lactase persistence and psGRS. The data points are colored according to the super populations: AFR (orange), AMR 
(black), EAS (green), EUR (blue) and SAS (purple). The scale of the x-axis is not the same for both plots due to differing psPRS ranges. A Full model 
 (r2 = 0.65; p-value: 1.84 ×  10−06). B After maximization  (r2 = 0.67, p-value: 9.13 ×  10−07). 1000 Genome populations are as follows: CHB—Han Chinese 
in Beijing, China; JPT- Japanese in Tokyo, Japan; CHS -Southern Han Chinese; CDX—Chinese Dai in Xishuangbanna, China; KHV—Kinh in Ho Chi Minh 
City, Vietnam; CEU—Utah Residents (CEPH) with Northern and Western European Ancestry; TSI—Toscani in Italy; FIN—Finnish in Finland; GBR—
British in England and Scotland; IBS—Iberian Population in Spain; YRI—Yoruba in Ibadan, Nigeria; LWK—Luhya in Webuye, Kenya; GWD—Gambian 
in Western Divisions in the Gambia; MSL—Mende in Sierra Leone; ESN—Esan in Nigeria; ASW—Americans of African Ancestry in SW USA; ACB—
African Caribbean in Barbados; MXL—Mexican Ancestry from Los Angeles USA; PUR—Puerto Ricans from Puerto Rico; CLM—Colombians from 
Medellin, Colombia; PEL—Peruvians from Lima, Peru; GIH—Gujarati Indian from Houston, Texas; PJL—Punjabi from Lahore, Pakistan; BEB—Bengali 
from Bangladesh; STU -Sri Lankan Tamil from the UK; ITU—Indian Telugu from the UK
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populations, the PRS failed to account for much, if any, of 
the relationship between the known lactase persistence 
alleles and the population prevalence (Additional file  4: 
Figure S4A). The sensitivity analysis (Additional file  9: 
Figure S9, Additional file 15: Table S1) based on r2 maxi-
mization showed that keeping only four specific SNPs 
(Additional file 15: Table S8) maximized the predictabil-
ity (r2 = 0.67, p-value: 9.13 ×  10−07) and, although the r2 
did not increase by much (0.65–0.67), the slope of the lin-
ear regression changed from 0.45 to 0.92 (Fig.  1B). The 
position of the populations that had high European allele 
content changed quite a bit, as one of the alleles that were 
filtered out of the PRS was one of two alleles originally 
identified in Europeans. This is not a surprise, because 
the European alleles are in strong LD (in the European 
populations), and, of the alleles tested, these are the only 
ones in LD in Europe.

Within super populations, the relationships varied con-
siderably. In the African subpopulations, the trend of the 
linear regression was slightly negative before maximiza-
tion but slightly positive after (Additional file  4: Figure 
S4B). The admixed African American population (ASW) 
has the highest PRS, but relatively low prevalence of LP 
(25%). This is due to the presence of the European alleles 
in the ASW population that are not present in West 
Africa. In the East Asian populations (EAS), the trend is 
also negative, but after the maximization of r2, there were 
no SNPs retained that existed in the EAS populations. In 
the European populations (EUR), the trend was positive 
and stayed positive after maximization, as expected given 
the relative frequency of the European derived LP alleles, 
ranging from 0.09 in the TSI to 0.73 in the CEU. In the 
South Asian populations (SAS), the trend was again posi-
tive and stayed so after maximization.

Melanoma
Thirty seven of the 39 GWAS SNPs were also in the 
1000 Genomes Project (Additional file  15: Table  S2). 
The relationship of the melanoma psPRS with these 37 
associating SNPs to the population prevalence appears 
to be nonlinear (Fig.  2A). We applied three different 
types of regression: linear, polynomial and exponential. 
The one that explained the relationship the best was the 
second-order polynomial regression (r2 = 0.78, p-value: 
2.19 ×  10−07); the exponential model was next best 
(r2 = 0.66, p-value 2.7 ×  10−06) and the linear the worst 
(r2 = 0.59; p-value: 1.71 ×  10−05), although all were sig-
nificant. The overall relationship of the psPRSs and the 
population prevalences reflects the fact that the highest 
prevalence and psPRSs are in European populations. 
East Asian populations had the lowest PRSs and prev-
alence. South Asian populations clustered with some 
Amerindian populations with low to medium PRSs. 

African populations had medium PRSs, but low mela-
noma prevalence.

With the 16 SNPs that remained after the maximiza-
tion analysis (Additional file  15: Table  S9, Additional 
file 10: Figure S10), the relationship between the mela-
noma population PRS and the population prevalence 
appeared to remain nonlinear, similar to the original 
model, but with an improved explanation of variance 
and significance (linear regression: r2 = 0.88, p-value: 
2.81 ×  10−11) (Fig.  2B). We also explored both polyno-
mial (r2 = 0.94, p-value: 7.36 ×  10−13) and exponential 
relationships (r2 = 0.77, p-value: 3.39 ×  10−08). These 
models all performed better than the full psPRS model.

When we separated populations according to their 
super populations, we observed that, apart from the 
Asian populations, the correlations were positive, but of 
varying strength (Additional file  5: Figure S5A). How-
ever, none of the relationships were significant, perhaps 
due to the relatively small sample size. These results 
indicate that the significant correlation is driven by the 
relationship among the continental populations that 
are not identical to each other. After maximization, the 
positive and negative trends were as described above, 
with the Asian populations staying negative and the 
EUR, AFR, and AMR remaining positive (Additional 
file  5: Figure S5B). The correlations did not improve 
substantially within super populations and remained 
non-significant using the reduced number of SNPs.

Multiple sclerosis
For the full psPRS-prevalence multiple sclerosis model, 
we used 368 SNPs associated with MS that were in both 
the GWAS Catalog and the 1000 Genomes Project (Addi-
tional file 15: Table S3). The resulting relationship appears 
to be nonlinear (Fig.  3A). We explored three different 
models for the regression: linear, polynomial and expo-
nential. As with melanoma, the model that explained the 
largest proportion of the variance was the second order 
polynomial (r2 = 0.80, p-value: 3.94 ×  10−08). The worst 
was the linear model (r2 = 0.47, p-value: 2.12 ×  10−04), 
while the exponential model was intermediate (r2 = 0.64, 
p-value: 2.59 ×  10−06).

After the r2 maximization sensitivity analysis (Addi-
tional file  15: Table  S10, Additional file  11: Figure S11), 
the filtered PRS model included 131 SNPs and appears 
to be best modeled linearly (Fig.  3B, r2 = 0.98, p-value: 
9.9 ×  10−11). The linearity remains, even when the Euro-
pean populations are removed. Within the super popu-
lations, the prevalences and psPRSs become more highly 
correlated and the relationships, apart from the South 
Asian populations, are significant (Additional file 6: Fig-
ure S6A).
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The super populations clustered, with the European 
populations having the highest prevalence and psPRSs. 
The African populations had the lowest PRSs and prev-
alences, with the east and south Asian mixed with the 
admixed Amerindian with medium prevalences and 
PRSs. When the super populations were examined 
individually, the linear correlations were all positive, 
with strengths ranging from EAS (r2 = 0.0459) to AFR 
(r2 = 0.4336). However, again, none of these relationships 
were significant (Additional file 6: Figure S6B).

Height
Because height has quite different ranges for men 
(~ 164  cm to ~ 180  cm) and women (~ 151  cm to 
~ 166  cm) (Table  1), we examined the relationship 
between population average height and population PRS 
in each sex separately. The full psPRS average height 
model included 4208 SNPs from the GWAS Catalog and 
the 1000 Genomes Project for both men and women 
(Additional file 15: Table S4). The relationships for both 
male and female between the population PRSs and 
the population average height (cm) appear to be linear 
(Fig.  4A and B). However, the regressions for men and 

women are different, with noticeable differences in the 
slopes of the regression lines, the correlations, and the 
significance of the relationships (male: r2 = 0.32, p-value: 
2.55 ×  10−03; female: r2 = 0.11, p-value: 0.0992).

The populations generally clustered by super popula-
tions, with European populations being both the tallest 
and having the largest psPRSs for both men and women. 
The south Asian and Amerindian were the shortest 
groups, but with medium PRSs. African and east Asian 
populations had medium to tall height, but the lowest 
PRSs.

Within the African super population, the relationship 
between average height and population PRSs was posi-
tive in both males and females. Both South Asian and 
Amerindian populations had positive relationships as 
well. However, surprisingly, the European and east Asian 
populations had negative relationships (Additional file 7: 
Figures S7A and Additional file 8: Figure S8A).

The sensitivity analysis reduced the number of SNPs 
for the male model to 548 and for the female model to 
188 (Fig.  4C, D, Additional file  12: Figure S12, Addi-
tional file 13: Figure S13, Additional file 15: Tables S4, S7, 
S11–S12). The reduced male and female linear models 
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Fig. 2 Correlation between melanoma and psGRS with regression lines for linear (red), polynomial (blue) and exponential (green) relationships. The 
data points are colored according to the super populations: AFR (orange), AMR (black), EAS (green), EUR (blue) and SAS (purple). The scale of the 
x-axis is not the same for both plots due to differing psPRS ranges. A Full model with three regressions: polynomial (r2 = 0.78, p-value: 2.19 ×  10−07), 
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changed substantially (male: slope from 0.06 to 3.92; 
female: slope from 0.03 to 3.86) due the narrower range 
of the independent variable. The correlation strength-
ened for both male and female (male: r2 = 0.99; female: 
0.98), and in males the relationship became more signifi-
cant and became significant in females (male and female: 
p-value: < 2 ×  10−16).

After the maximization filtering, the positions of the 
populations shifted significantly. The South Asians had 
lower PRSs to match their lower average height. Europe-
ans still had the highest psPRSs and the African and east 
Asian populations were mixed (Fig.  4C, D). Within the 
super populations, the relationships all became positive 
for both men and women (Additional files 7 and 8: Fig-
ures S7B and Additional file 5: Figure S8B).

Effect of p‑value thresholds for SNP selections
As we used only a moderately stringent threshold for 
the SNPs from the GWAS Catalog, we wished to know if 
the maximization analysis selected SNPs that were more 
likely to be statistically significant, i.e., with p-values of 
genome-wide significance. We found, using the Fisher’s 
exact test, that there was no significant enrichment of 

GWAS SNPs with a p-value less than 5 ×  10−8, except for 
height in women (Table 3).

Association between allele frequency and SNP pruning
To assess whether the pruning method preferentially 
selects SNPs with a different allele frequency than the 
full model, we compared the average frequency for each 
allele across all of the 1000 Genomes sub populations. 
We then compared the mean frequency of the full SNP 
set for each phenotype to that of the pruned sets. For LP 
and melanoma, the differences between the full set fre-
quency means and those of the pruned set were not sig-
nificant. However, for MS and height the differences in 
means between the full and pruned sets were statistically 
significant with the pruned alleles being on average more 
common (MS allele frequency mean: full = 0.2718688, 
pruned = 0.3284336, p-value = 1.72 ×  10−6; height 
allele frequency mean: full = 0.2321003, filtered 
male = 0.3567876, p-value < 2.2 ×  10−16, filtered 
female = 0.3705134, p-value < 2.2 ×  10−16). We also com-
pared the means of the male and female pruned sets 
and found that there was not a statistically significant 
difference.
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Fig. 3 Correlation between multiple sclerosis and psGRS with linear (red), polynomial (blue) and exponential (green) regressions lines. The data 
points are colored according to the super populations: AFR (orange), AMR (black), EAS (green), EUR (blue) and SAS (purple). The scale of the x-axis 
is not the same for both plots due to differing psPRS ranges. A Full model with three regression types: polynomial (r2 = 0.80, p-value: 3.94 ×  10–08), 
linear, (r2 = 0.47, p-value: 2.12 ×  10–04) and exponential (r2 = 0.64, p-value: 2.59 ×  10–06). B Linear regression after maximization (r2 = 0.98, p-value: 
9.9 ×  10–11). Populations as defined in Fig. 1
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Physical location of psPRS SNPs
It is possible that LD between SNPs extracted from the 
GWAS Catalog for inclusion in the psPRS could affect 
results with SNPs in LD having disproportionate influ-
ence. However, as we are using 26 distinct populations 
there is unlikely to be a common pattern of LD. To 

visualize the possible impact of LD, we plotted the full 
SNP sets using LocusZoom [46]. The pre-pruned SNP 
plots for melanoma, MS, and height were broadly dis-
tributed across the genome. The average physical dis-
tance between SNPs on each chromosome in psPRS is 
usually high. In the reduced models, the average distance 
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between SNPs, goes up, as is expected in most cases 
(melanoma: full = 28,578,964 bp, pruned = 26,122,334 bp; 
MS: full = 6,815,595  bp, pruned = 15,131,023  bp; height: 
full: 661,350  bp, male pruned: 4,675,948  bp, female 
pruned: 11,859,376 bp).

SNPs that were very close, and most likely in LD, were 
also determined. For height, approximately 27% of the 
SNPs (1,128) were within 30.8 KB of each in the full data-
set and in the reduced datasets 9.6% to 15.0% (82 in males 
and 18 in female) were within this distance. For mela-
noma, 5 of 37 SNPs were within 30.8 kb of each other, as 
were 93 of 268 for multiple sclerosis in the full data sets. 
The pruned SNPs for these two traits that were within 
this distance were 0 of 16 and 18 of 131, respectively. In 
all cases, the pruning reduced the proportion of nearby 
SNPs, probably preferentially removing SNPs in LD.

Discussion
Overall, our psPRS method estimated population preva-
lence quite well. This indicates that the population PRS 
is a reasonably good predictor of disease presence in a 
population. For lactase persistence, we found that the 
psPRSs and the prevalence were strongly correlated, even 
before SNP filtering. For melanoma and MS, we also 
found strong, albeit nonlinear, correlations. However, 
for height, the correlations, while linear, were weaker. As 
expected, the complexity of the phenotype did affect the 
ability of the full PRS model to predict the population 
prevalence, sometimes being far from what would have 
been expected and being nonlinear, i.e., melanoma and 
MS. Also, the pruned models improved the explained 
variance over the complete psPRSs, sometimes substan-
tially, and the relationships achieved, or approached, 
linearity when the complete models did not. Although 
this can be viewed as “cherry picking,” the pruning does 
reveal that not all detected SNPs have similar effects 
across populations and that some may reflect effects 
that are universal as opposed to population specific. Our 
results show that the European populations often skew 
the overall full model and that, except for height, fit the 
PRS predictions best. This is not surprising as most of 

the SNPs were discovered in populations of European 
descent (Table 4) [58]. We also repeatedly observed that 
there were not as many significant correlations within the 
super populations, but there were between super popula-
tions, which may reflect the paucity of data within them. 
The 1000 Genomes superpopulations may not be repre-
sentative of the best groupings of the subpopulations. For 
example, African populations are very diverse and, while 
the 1000 Genomes data are based on ethnic groups, the 
phenotypic prevalence data are based on country data. 
Geographical location and ethnicity are therefore often 
not equivalent. This could cause issues with the psPRS 
method, due to mis-assignment of phenotypes. However, 
the psPRSs still explain most of the global patterns of 
variation. Generally, the model of LP followed what was 
expected, as it is a monogenic disease. The global rela-
tionship appears to be driven mostly by the “European” 
alleles. For LP in the African populations, the disparity 
between the observed prevalence in some populations 
and our psPRS model shows that our ability to predict 
prevalence is likely impacted by unidentified associating 
alleles or other mechanisms by which lactose is digested, 
perhaps acquired gut microbiome activity [16]. This is 
supported by the negative and weak relationship in the 
full data set, although likely impacted by the admixed 
ASW population, where the European alleles exist but do 
not seem to confer lactase persistence to the extent that 
the psPRS would predict. Another possible reason for 
the psPRS not predicting prevalence in Africa well is that 
there may be context-dependent effects. For example, it 
has been found that the 13,915*G DNA polymorphism, 

Table 3 P-value enrichment analysis

1 P ≤ 5 ×  10–8

2  1 ×  10–5 > P > 5 ×  10–8

Phenotype Melanoma Multiple Sclerosis Male Height Female Height

Threshold Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered

GWAS  significant1 27 12 199 71 3552 478 3552 188

GWAS not  significant2 10 4 169 60 656 69 656 0

p-value 1 1 0.07644 6.73E−14

Table 4 Percentage of SNPs discovered in European populations

Trait European Non‑European Total % European

LP 2 9 11 18.18

Height 3422 786 4208 81.32

MS 366 2 368 99.46

Melanoma 37 0 37 100
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associated with lactase persistence in Africa, interacts 
with Oct-1 [40].

Given the known impact of environmental exposure on 
the development of melanoma [10], the observed nonlin-
earity of the relationship between the population PRSs 
and the prevalence of the disease was not unexpected. It 
appears that part of the nonlinearity is due to the Euro-
pean population cluster, as there is a greater amount of 
information in European populations, and this may to 
some extent, be skewing the phenotype-genotype rela-
tionship. That the nonlinearity continued after the fil-
tering implies that the actual relationship between the 
psPRSs and the prevalence may be non-additive and that 
we are missing key factors, either genetic interactions, 
environmental interactions, or both. Because we did not 
consider environmental factors in this study, we were not 
able to differentiate between the two. It has, however, 
been shown that at least one SNP pair at the TERF1 and 
the AFAP1L2 loci does interact to affect risk of mela-
noma [4].

While the relationship observed with the full MS psPRS 
model was nonlinear, after filtering the SNPs, the result-
ing model was strongly linear. This might indicate that 
there is some genetic interaction in MS, especially given 
that the  r2 improves as we drop SNPs from the psPRS 
model. Indeed, a DDX39B variant interacts with allelic 
variants in IL7R exon 6 to increase MS risk [14]. Inter-
action with environmental factors has also been shown. 
Specifically, latitude, EBV infection, smoking, and adoles-
cent obesity interact with risk alleles at the HLA locus to 
increase risk of MS [41].

While the relationship of the full model psPRSs to 
population average height shows a relatively weak, 
though significant, positive correlation, the result of 
the maximization shows a very strongly correlated rela-
tionship. Although height is highly heritable, this was 
not expected, given the foreknowledge of the impact 
of environment on height, especially in women [56]. It 
may be that some of the variants left in the final model 
are correlated with environmental parameters due to 
past selection. Also, there may be epistasis in the genetic 
architecture of height. For example, genetic interaction 
was found between loci 6p21 and 2q21 to account some 
of the variation in height [32].

We infer from our results that the maximizing  r2 sen-
sitivity analysis is filtering out the SNPs that are not dis-
tributed as the population prevalence distribution of 
the phenotype in some, but maybe not all, populations. 
This is, in effect, similar to a previous method Evolution-
ary Triangulation [19], where we filtered SNPs based 
specifically on their Fst distribution relative to disease 
prevalence. Our results showing that pruning the SNPs 
in the model improves performance may be revealing 

heterogenous effect sizes that may present due to con-
text dependent effects, such as epistasis or gene X envi-
ronment interactions, spurious associations, or other 
population-specific effects. This may explain why a fil-
tered model is superior in some cases to a model with all 
associating SNPs included. This approach is, in essence, 
removing noisy data. psPRSs provide some explanation 
of population differences but are less effective when all 
SNPs are included. This indicates that PRSs have value 
but must be refined to improve prediction. Although the 
underlying basis for improving prediction with a reduced 
number of SNPs and the nonlinear relationships between 
psPRSs and prevalence for some of the traits are unclear, 
we present above what we think are reasonable hypoth-
eses worthy of further exploration. These findings may 
provide a novel means to explore the true genetic archi-
tecture of complex traits.

Our investigation as to whether GWAS significance 
was a useful threshold for inclusion indicated that 
p-value was not good at predicting which SNPs would 
end up in our pruned SNP set. As shown by our inves-
tigation of whether our model enriched for SNPs with a 
smaller p-value in the GWAS Catalog, we can conclude 
that GWAS p-value is not always the best indicator of 
the value of a SNP in the PRS model. This does justify, 
to some extent, our use of SNPs that were not genome-
wide significant at 5 ×  10–08 and indicates that some care 
should be used in determining the importance of SNPs 
in models based solely on significance of p-values, such 
as the pT method. Our results cast uncertainty on how 
effective this method is in capturing relevant SNPs. Plot-
ting the genomic positions of the SNPs for each pheno-
type showed that LD is unlikely to be an issue as the SNPs 
were distributed relatively evenly across the genome [46]. 
In addition, at least for LP, the pruning removed one SNP 
of the only pair in LD in Europeans.

For our analyses, we note that, of the SNPs we used to 
generate the psPRSs, the vast majority were discovered in 
populations of European descent, the exception being the 
SNPs for LP, where only two of the 11 SNPs were Euro-
pean determined. All SNPs associated with melanoma 
were discovered in European populations. For MS, two 
SNPs were discovered in non-European populations; 
367 were from European descent populations. Out of 
4208 SNPs associated with height, 3422 were discovered 
in European populations (Table  4). However, the psPRS 
is not always the largest in European populations. For 
example, lactase persistence in Tuscans is relatively low 
(28%) and the psPRS is correspondingly low. Nonethe-
less, the relationships within the European superpopula-
tion tend to be among the best predicted based on the 
psPRS, probably because the data from those popula-
tions are the most complete. In fact, it is often true that, 
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where the population prevalence is high in Europe, so is 
the psPRS and vice versa. It will be important to broaden 
the number and diversity of discovery populations so as 
to decrease this bias.

Understanding the relationship between allele fre-
quency and disease prevalence will lead to further 
understanding of genetic influence, environmental pres-
sure, and gene–environment interactions. The effects 
of genetic variation on public health present challenges 
for the exploration and management of these pheno-
types worldwide, as most traits are primarily considered 
in the context of European descent. This blind spot, due 
partially to a lack of diversity in biomedical research, is 
not only detrimental to those populations that are under-
studied, but to the understanding of the underlying 
genetic basis, or genetic architecture, of the trait itself, 
thereby, possibly affecting understanding in all popula-
tions. Nonetheless, some of our results indicate that even 
SNPs discovered primarily in Europeans are useful, when 
included in a psPRS, for predicting trait variation, e.g., 
height.

A future extension of our method might be to use SNPs 
from the GWAS catalog to define loci of interest and 
then calculate the psPRS using all of the SNPs within that 
region so as to minimize the effects of population-spe-
cific LD with functional variants and then use our prun-
ing method to further refine signals. This may identify 
SNPs that act only in specific contexts, such as variable 
genetic backgrounds (i.e., epistasis). Additionally, it may 
be beneficial to include SNPs that are less statistically sig-
nificant than the ones that we did, especially considering 
our finding that the GWAS p-value did not differentiate 
pruned from unpruned SNPs well.

A comparison of the average allele frequency of the 
unpruned versus pruned sets of SNPs for each trait 
indicates that we are selecting more common SNPs 
through r2 maximization pruning at least for the more 
polygenic traits. That the more complex diseases show 
a significant difference in unpruned versus prunedal-
lele frequency means is not unexpected because the SNP 
pool with less common variants may on average decrease 
statistical power to detect predictive alleles. Also, SNPs 
that are more common are most likely to be more broadly 
distributed.

Our results help to identify the populations in which 
we are missing the most information regarding genetic 
foundations of trait variation. This is underlined by some 
of our results where the population PRSs do not match 
the population prevalences, i.e., where the prevalence 
is high or medium and the psPRS is low, as in the cases 
of height and LP in African populations. That using a 
reduced number of SNPs improves the psPRS likely indi-
cates a certain portion of missing heritability is due to 

more complex architecture, i.e., genetic interaction, pos-
sibly differing by population and that there are still undis-
covered variants. However, our method helps to define 
the areas of the genetic landscape where our knowledge 
of genetic architecture is relatively complete and univer-
sal, and where it is not.
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Additional file 1: Figure S1. LocusZoom chromosomal location plot of 
the full melanoma SNP set.

Additional file 2: Figure S2. LocusZoom chromosomal location plot of 
the full multiple sclerosis SNP set.

Additional file 3:  Figure S3. LocusZoom chromosomal location plot of 
the full height SNP set.

Additional file 4: Figure S4. Lactase persistence separated by super 
population. The data points are colored according to the super popula-
tions: AFR (orange), AMR (black), EAS (green), EUR (blue) and SAS (purple). 
A) Full model by super population: AFR  (r2 = 0.0021, p-value: 0.9314), AMR 
 (r2 = 0.2608, p-value: 0.659), EAS  (r2 = 0.077, p-value: 0.6514), EUR  (r2 = 
0.9734, p-value: 0.00185) and SAS  (r2 = 0.3847, p-value: 0.2643).  B) Super 
populations after maximization: AFR  (r2 = 0.0177, p-value: 0.8017), AMR  (r2 
= 0.2284, p-value: 0.683), EAS (no data), EUR  (r2 = 0.9747, p-value: 0.00172) 
and SAS  (r2 = 0.3914, p-value: 0.0580).

Additional file 5: Figure S5. Melanoma separated by super population. 
The data points are colored according to the super populations: AFR 
(orange), AMR (black), EAS (green), EUR (blue) and SAS (purple). A) Full 
model by super population: AFR  (r2 = 0.1178, p-value: 0.5718), AMR  (r2 
= 0.6664, p-value: 0.1837), EAS  (r2 = 0.4958, p-value: 0.1844), EUR  (r2 = 
0.0421, p-value: 0.7949) and SAS  (r2 = 0.5914, p-value: 0.1285). B) Super 
populations after maximization: AFR  (r2 = 0.1767, p-value: 0.481), AMR  (r2 
= 0.7766, p-value: 0.1187), EAS  (r2 = 0.2399, p-value: 0.4022), EUR  (r2 = 
0.6268, p-value: 0.2083) and SAS  (r2 = 0.4324, p-value: 0.2278).

Additional file 6: Figure S6. Multiple sclerosis separated by super popu-
lation. The data points are colored according to the super populations: 
AFR (orange), AMR (black), EAS (green), EUR (blue) and SAS (purple). A) 
Full model super populations: AFR  (r2 = 0.4336, p-value: 0.155), AMR  (r2 
= 0.1958, p-value: 0.5575), EAS  (r2 = 0.0459, p-value: 0.7293), EUR  (r2 = 
0.3676, p-value: 0.3937) and SAS  (r2 = 0.3775, p-value: 0.270). B) Super 
populations after maximization: AFR  (r2 = 0.7781, p-value: 0.02003), AMR 
 (r2 = 0.9821, p-value: 0.008995), EAS  (r2 = 0.8775, p-value: 0.0189), EUR  (r2 
= 0.9988, p-value: 0.000617) and SAS  (r2 = 0.2356, p-value: 0.407) .

Additional file 7: Figure S7. Male height separated by super popula-
tion. The data points are colored according to the super populations: AFR 
(orange), AMR (black), EAS (green), EUR (blue) and SAS (purple). A) Super 
populations with full model: AFR  (r2 = 0.7835, p-value: 0.00806), AMR  (r2 = 
0.8628, p-value: 0.0522), EAS  (r2 = 0.1003, p-value: 0.9254), EUR  (r2 = 0.578, 
p-value: 0.551) and SAS:  r2 = 0.1162, p-value: 0.2812. B) super populations 
after performing maximization: AFR  (r2 = 0.5534, p-value: 6.549 x 10-7), 
AMR  (r2 = 0.8556, p-value: 0.001876), EAS  (r2 = 0.0163, p-value: 2.052 x 
10-5), EUR  (r2 = 0.9158, p-value: 0.01064) and SAS  (r2 = 0.0475, p-value: 
0.002888).

Additional file 8: Figure S8. Female height separated by super popula-
tion. The data points are colored according to the super populations: AFR 
(orange), AMR (black), EAS (green), EUR (blue) and SAS (purple). A) Super 
populations with full model: AFR  (r2 = 0.5534, p-value: 0.05523), AMR  (r2 
= 0.8556, p-value: 0.07501), EAS  (r2 = 0.0163, p-value: 0.8379), EUR  (r2 = 
0.2222, p-value: 0.4229) and SAS  (r2 = 0.0475, p-value: 0.7246). B) Super 
populations after maximization: AFR  (r2 = 0.9533, p-value: 0.0001627), 
AMR  (r2 = 0.9917, p-value: 0.004174), EAS  (r2 = 0.963, p-value: 0.003058), 
EUR  (r2 = 0.754, p-value: 0.05619) and SAS  (r2 = 0.9761, p-value: 0.001584).
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Additional file 9: Figure S9. Lactase persistence maximization analysis 
 r2 values.

Additional file 10: Figure S10. Melanoma maximization analysis  r2 
values.

Additional file 11: Figure S11. Multiple sclerosis maximization analysis 
 r2 values.

Additional file 12: Figure S12. Male height maximization analysis  r2 
values.

Additional file 13: Figure S13. Female height maximization analysis  r2 
values.

Additional file 14: Script used for SNP pruning method.

Additional file 15: Table S1. Lactase persistence full data set. SNP rs 
number and minor allele are included, as well as the r2 values from the 
sensitivity analysis. The columns headed with the 1000 Genomes popula-
tion codes are the allele frequencies for each SNP in those populations. 
The SNPs are listed in order of removal in the sensitivity analysis. Table S2. 
Melanoma full data set. SNP rs number and minor allele are included, as 
well as the  r2 values from the sensitivity analysis. The columns headed 
with the 1000 Genomes population codes are the allele frequencies for 
each SNP in those populations. The SNPs are listed in order of removal 
in the sensitivity analysis. Table S3. Multiple sclerosis full data set. SNP rs 
number and minor allele are included, as well as the  r2 values from the 
sensitivity analysis. The columns headed with the 1000 Genomes popula-
tion codes are the allele frequencies for each SNP in those populations. 
The SNPs are listed in order of removal in the sensitivity analysis. Table S4. 
Height full data set. SNP rs number and minor allele are included, as well 
as the  r2 values from the sensitivity analysis. The columns headed with the 
1000 Genomes population codes are the allele frequencies for each SNP 
in those populations. The SNPs are listed in order of removal in the sen-
sitivity analysis. Table S5. 1000 Genomes superpopulations, populations 
and population description. Table S6. PRS values for each population, 
before and after maximization.  Table S7. Female height  r2 values from 
the maximization analysis. Table S8. Lactase persistence filtered data set.   
Table S9. Melanoma filtered allele frequency data. Table S10. Multiple 
sclerosis filtered allele frequency data. Table S11. Male Height filtered 
allele frequency data. Table S12. Female Height filtered allele frequency 
data.
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