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Abstract 

CYP2D6 is a key drug-metabolizing enzyme implicated in the biotransformation of approximately 25% of currently 
prescribed drugs. Interindividual and interethnic differences in CYP2D6 enzymatic activity, and hence variability in 
substrate drug efficacy and safety, are attributed to a highly polymorphic corresponding gene. This study aims at 
reviewing the frequencies of the most clinically relevant CYP2D6 alleles in the Arabs countries. Articles published 
before May 2021 that reported CYP2D6 genotype and allelic frequencies in the Arab populations of the Middle East 
and North Africa (MENA) region were retrieved from PubMed and Google Scholar databases. This review included 15 
original articles encompassing 2737 individuals from 11 countries of the 22 members of the League of Arab States. 
Active CYP2D6 gene duplications reached the highest frequencies of 28.3% and 10.4% in Algeria and Saudi Arabia, 
respectively, and lowest in Egypt (2.41%) and Palestine (4.9%). Frequencies of the loss-of-function allele CYP2D6*4 
ranged from 3.5% in Saudi Arabia to 18.8% in Egypt. The disparity in frequencies of the reduced-function CYP2D6*10 
allele was perceptible, with the highest frequency reported in Jordan (14.8%) and the lowest in neighboring Palestine 
(2%), and in Algeria (0%). The reduced-function allele CYP2D6*41 was more prevalent in the Arabian Peninsula coun‑
tries; Saudi Arabia (18.4%) and the United Arab Emirates (15.2%), in comparison with the Northern Arab-Levantine 
Syria (9.7%) and Algeria (8.3%). Our study demonstrates heterogeneity of CYP2D6 alleles among Arab populations. The 
incongruities of the frequencies of alleles in neighboring countries with similar demographic composition empha‑
size the necessity for harmonizing criteria of genotype assignment and conducting comprehensive studies on larger 
MENA Arab populations to determine their CYP2D6 allelic makeup and improve therapeutic outcomes of CYP2D6- 
metabolized drugs.
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Background
Interindividual variability in drug response, affecting 
both drug efficacy and safety, is perceived as a major 
challenge in clinical practice. Intrinsic factors (age, gen-
der, ethnicity, pregnancy, lactation, and comorbidities), as 
well as extrinsic ones (environment, smoking, nutrition, 

alcohol consumption, and drug interactions), can influ-
ence the response to therapeutic drugs [1]. The last few 
decades have witnessed a mounting interest in the sig-
nificance of genetic variations in genes encoding key 
drug transporters, metabolizing enzymes, and targets, 
owing to their explanatory contribution of approximately 
20–30% of the variability in drug response [2].

Strikingly, polymorphic enzymes, mainly mem-
bers of the cytochrome P450 superfamily, metabolize 
60–80% of all prescribed drugs [3]. Cytochrome P450 
2D6 (CYP2D6) constitutes only 1–5% of total hepatic 

Open Access

*Correspondence:  ylama@hotmail.com
2 Program of Clinical and Hospital Pharmacy, Department 
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, 
Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1954-9621
http://orcid.org/0000-0003-4894-8522
https://orcid.org/0000-0002-5749-4174
https://orcid.org/0000-0002-5418-3186
https://orcid.org/0000-0001-8013-7856
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-022-00378-z&domain=pdf


Page 2 of 12Alali et al. Human Genomics            (2022) 16:6 

CYPs content; nevertheless, it is involved in metaboliz-
ing approximately 25% of currently available drugs; such 
as tricyclic antidepressants, selective serotonin reuptake 
inhibitors, antipsychotics, opioids (e.g., codeine, and 
tramadol), antiarrhythmics, β-blockers, antineoplastic 
agents (e.g., tamoxifen and gefitinib), and a variety of 
other drugs [3, 4].

CYP2D6 is encoded by a highly polymorphic gene that 
has over 140 allelic variants characterized to date [5]. 
The CYP2D6 gene is located on the long arm of chro-
mosome 22 (22q13.2) in a gene cluster that also com-
prises two highly homologous pseudogenes, CYP2D7 
and CYP2D8. It consists of nine exons and contains 4382 
base pairs that code for a 497-amino acid protein [6]. 
The CYP2D6 alleles are classified into; null alleles (e.g., 
*3, *4, *5, *6, and *4xN) that cause ablation or absence 
of enzymatic activity, reduced-function alleles (e.g., *9, 
*10, *17, *29, and *41) that result in decreased functional 
products, normal function alleles (e.g., *1, *2, *33, *35, 
*17 × 2, *29 × 2, and *41 × 2) that possess normal activity, 
and increased function alleles (*1xN, *2xN, *35 × 2, and 
*45 × 2) with higher CYP2D6 activity. In addition, there 
is a considerable number of alleles whose function is still 
unknown (e.g., *58, *73, *74, and *85), or uncertain (e.g., 
*22, *23, *37, and *43) [5, 7].

Due to the complexity of the CYP2D6 gene and allelic 
combinations, translating CYP2D6 genotype into pheno-
type is quite challenging. The activity score (AS) system 
suggested by Gaedigk et al. (2008) has been adopted and 
standardized by the Clinical Pharmacogenetics Imple-
mentation Consortium (CPIC) and the Dutch Phar-
macogenetics Working Group (DPWG) [7, 8]. In order 
to facilitate the assignment of an individual’s pheno-
type, each CYP2D6 allele is assigned a value from zero 
to one that reflects its activity, which in turn is used to 
allocate four distinctive phenotypes based on the indi-
viduals’ allelic combination in their diplotype. Poor 
metabolizers (PMs, AS = 0) exhibit an absolute lack of 
CYP2D6 activity, whereas intermediate metabolizers 
(IMs, 0.25 ≤ AS ≤ 1) have reduced CYP2D6 metabolic 
capacity relative to that of normal metabolizers (NMs, 
1.25 ≤ AS ≤ 2.25). CYP2D6 ultrarapid metabolizers 
(UMs, AS > 2.25) demonstrate a higher CYP2D6 activ-
ity than NMs, and subsequently rapid metabolism of 
CYP2D6 substrates [7].

The frequencies of CYP2D6 alleles vary significantly 
between ethnic groups and geographical regions, result-
ing in interethnic variability of predicted phenotypes 
[9]. For instance, CYP2D6*4 (defined by rs3892097; 
NC_000022.11:g.42128945C>T) is predominant in 
Europeans, signifying a relatively high prevalence of 
PM phenotype among this population. On the other 
hand, IM phenotype is more commonly observed 

among East Asians, in part due to the highest preva-
lence (~ 41%) of the reduced-function CYP2D6*10 
(defined by rs1065852; NC_000022.11:g.42130692G>A) 
allele. In contrast, Middle Easterners are character-
ized by a higher frequency of the CYP2D6*1 × N and 
CYP2D6*2 × N duplication alleles and the reduced-
function CYP2D6*41 (defined by rs28371725; 
NC_000022.11:g.42127803C>T) allele. Furthermore, the 
reduced-function CYP2D6*17 (defined by rs28371706; 
NC_000022.11:g.42129770G>A) and CYP2D6*29 
(defined by rs61736512; NC_000022.11:g.42129132C>
T + rs59421388; NC_000022.11:g.42127608C>T) alleles 
are more frequent among African and African Ameri-
can populations [10, 11]. Owing to the critical impact 
of CYP2D6 genotypes on enzymatic activity, hence sub-
strate drug metabolism, it is of great interest to deter-
mine the frequencies of CYP2D6 alleles in different 
populations to improve genotype-guided drug response 
predictions. However, information on the genotypes and 
the frequencies of CYP2D6 alleles in Arab populations is 
scarce. Here, we review the published data on the preva-
lence of CYP2D6 alleles among Arab populations of the 
MENA countries defined as members of the League of 
Arab States in Western Asia, North Africa, and the Horn 
of Africa.

Methods
A literature search of PubMed and Google Scholar data-
bases was conducted using the following keywords; 
"CYP2D6" and "allele" or "frequency" or "polymorphism" 
or "genotype" or "gene duplications," and the nation-
alities or the 22 Arab country names (Algeria, Bahrain, 
Comoros, Djibouti, Egypt, Iraq, Jordan, Kuwait, Lebanon, 
Libya, Mauritania, Morocco, Oman, Palestine, Qatar, 
Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United 
Arab Emirates "UAE", or Yemen). All original articles 
published in English before May 2021 were included. 
Moreover, a supplementary manual search of the refer-
ence lists of included studies and relevant review articles 
was performed to identify any article not retrieved from 
searching databases.

Studies were excluded if: they did not report the exact 
frequency of the concerned CYP2D6 alleles and only 
referred to them as mutant alleles, they were confined to 
CYP2D6 phenotypes regardless of genotypes, the geno-
typing approach is equivocal, or the genotyping details 
that support the resulting frequencies are not provided. 
Reviews, case reports, or studies conducted in Arab 
countries but on non-Arabs were also excluded. Two 
independent reviewers screened titles, abstracts, and full-
text articles. The following information was extracted 
from each study: the Arab country, number and type of 
each sample (healthy subjects or patients), the genotyping 
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method, and the frequencies of investigated alleles and 
CYP2D6 phenotypes. In case the assignment of pheno-
types did not follow the updated AS system, we re-esti-
mated the frequency of different CYP2D6 phenotypes 
where applicable [7]. Furthermore, CYP2D6*1 was not 
calculated in the present review due to its default assign-
ment and imprecise frequency, which varies according to 
the number of single nucleotide polymorphisms (SNPs) 
identified in each study.

Results
The literature search revealed 15 studies, encompass-
ing 2737 individuals, that met the inclusion criteria. 
Four studies were conducted in Egypt, two in Saudi Ara-
bia, one study each in Iraq, Jordan, Lebanon, Morocco, 
Tunisia, and the UAE. Additionally, international stud-
ies that included Arab populations were also included. 
Unpublished data of our own on the frequencies of 
CYP2D6 alleles in Syrian breast cancer patients were also 
included. In our study, genotyping was performed using 
targeted standard sequencing of specific polymerase 
chain reaction (PCR) products containing the gene loci 
of three SNPs 100C>T, 1847G>A, and 2989G>A. Sub-
sequently, star alleles including CYP2D6*4, CYP2D6*10, 
and CYP2D6*41 were assigned based on each individual’s 
haplotype.

Our search revealed the absence of published stud-
ies on the frequencies of CYP2D6 alleles in 10 of 22 
Arab countries including Bahrain, Comoros, Djibouti, 
Kuwait, Libya, Mauritania, Oman, Qatar, Somalia, and 
Yemen. Studies’ objectives varied and were concerned 
with investigating the frequency of CYP2D6 genetic 
polymorphisms in a healthy cohort of subjects, deter-
mining the influence of CYP2D6 genotype on the thera-
peutic outcomes of CYP2D6-metabolized drugs, and/
or exploring a plausible relationship between CYP2D6 
genotype and susceptibility to some diseases. Genotyp-
ing was performed in the majority of the included stud-
ies by polymerase chain reaction-restriction fragment 
length polymorphism (PCR–RFLP) analysis [12–19]. 
Standard sequencing, real-time PCR, and long PCR were 
the applied genotyping methods in a few studies [20–25, 
and our unpublished data]. The frequencies of CYP2D6 
alleles and gene duplications in various Arab countries 
are summarized in Tables 1 and 2, respectively.

Frequencies of CYP2D6 null alleles
CYP2D6*4 was the most studied null allele with frequen-
cies showing great variability between Arabs (Fig. 1). The 
highest prevalence was observed in Egypt with an aver-
age frequency of (18.8%), whereas the lowest frequency 
was reported in Saudi Arabia (3.5%).

In North Africa, CYP2D6*3 allele was reported at a 
high frequency of (11.13%) in Morocco, and to the con-
trary, was absent in neighboring Algeria. It presented at 
substantially low frequency or was absent in the Levant; 
Lebanon (0.9%), Palestine (0%) and Syria (0%), and the 
Arabian Peninsula; Saudi Arabia (0%) and UAE (0%). 
CYP2D6 deletion variant CYP2D6*5 was investigated 
only in five countries that revealed the paucity of this 
allele among Arabs with a frequency ranging from 0.98% 
in Syrians to 3.3% in Algerians. Similarly, CYP2D6*6 
frequency pivoted around 0–2%. Only one study in 
Saudi Arabia reported a frequency of 0.3% of the scarce 
CYP2D6*14 null allele.

Frequencies of CYP2D6 reduced‑function alleles
Amongst the reduced-function alleles, CYP2D6*41 
ranked as the most prevalent allele with a clear South-to-
North gradient ranging from the lowest in the Levantines 
(9.28% in Syrians, 12.1% in Lebanese, and 12.7% in Pales-
tinians) to 15.2% in the UAE and 18.4% in Saudi Arabia, 
where the highest frequency was reported among Arabs. 
Additionally, a West-to-East gradient was evident in 
North African countries; as a relatively lower frequency 
was observed in Algeria (8.3%) in comparison to Egypt 
(15.1%) (Fig. 2).

CYP2D6*10 was the most investigated reduced-func-
tion allele. It was reported in Jordan and Iraq at frequen-
cies of 14.8% and 13.4%, respectively. The prevalence 
was much lower in Palestine (2%), Egypt (3.4%), UAE 
(3.3%), and Saudi Arabia (3%). CYP2D6*10 was absent in 
Algeria; to the contrary of neighboring Morocco where 
a substantially higher frequency of 8.5% was reported 
(Fig. 3). The prevalence of CYP2D6*17 was relatively low 
in the Arab countries, except for Iraq, Algeria, and Jor-
dan, in which similar frequencies of 9.2%, 8.3%, and 8.3% 
were reported, respectively. Other rare alleles such as 
CYP2D6*29 were only screened in Saudi Arabia (2.9%), 
UAE (1.6%), Algeria (0%), and Palestine (0%).

Normal function CYP2D6*2 allele and CYP2D6 gene 
duplications
The frequency of the functional CYP2D6*2 allele ranged 
between 7.6% and 31.3% among Arabs. The majority of 
gene duplication events were observed for the func-
tional CYP2D6*2xN allele. Active gene duplications were 
most prevalent in Algeria with a frequency of 28.3%, 
and Saudi Arabia (10.4%) (Table  2, Fig.  4). Duplications 
of other reduced-function and nonfunctional alleles 
were only screened in a few studies and none of them 
reported CYP2D6*4xN gene duplication. CYP2D6*10xN 
was reported at a low frequency in UAE (0.3%). Mutawi 
et  al. (2021) identified three subjects with the *2/*41 
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(3N) genotype and one subject with *2/*10 (3N) geno-
type in Egyptians. Due to the inability to discriminate 
which allele has been duplicated, CYP2D6*10xN and 
CYP2D6*41xN frequencies in Egypt cannot be precisely 
estimated and are expected to range between 0–0.35% 
and 0–1.04%, respectively (Table 2).

Frequencies of CYP2D6 phenotypes
The frequencies of the different CYP2D6 genotypes and 
their corresponding phenotypes were available for only 
six countries including Egypt, Iraq, Jordan, Syria, Tuni-
sia, and UAE (Table 3, Fig. 5). The average frequencies 
of CYP2D6 phenotypes among Egyptians were esti-
mated based on data derived from four studies. NM 
phenotype was the predominant phenotype among 

Arabs (70.53%). In contrast, the percentage of individu-
als with PM phenotype was found to be relatively low 
in Arabs (3.39%) with the highest frequency reported in 
Egypt (6.08%) and lowest in UAE (2%). IM phenotype 
was most prevalent in Egypt (27.11%), and lowest in 
Syria (14.4%). Moreover, UM phenotype was presented 
at a relatively high frequency among Arabs (9.2%), with 
the highest frequency reported in Jordanians (13.5%).

Discussion
Interethnic variability in individuals’ metabolic capacity 
due to genetic differences has been well-established. The 
clinical relevance of this phenomenon is mirrored by the 
apparent ethnic and regional variability in drug response 

Table 1  Frequencies of CYP2D6 alleles in the Arab countries

a OP: organophosphate, bACS: acute coronary syndrome

Country/References No. of 
individuals

Subject type Genotyping method Alleles’ activity

Normal Reduced Non-functional

*2 *10 *17 *41 *3 *4 *5 *6

Algeria (Mozabite)
[20]

30 – Long PCR 28.3 0 8.3 8.3 0 11.7 3.3 0

Egypt
[12]

308 Healthy fertile + infertile men RFLP analysis – – – – – 25.6 – –

Egypt
[13]

29 Healthy subjects RFLP analysis – – – – – 18.1 – –

40 Acute OPa intoxicated patients

Egypt
[14]

29 Healthy subjects RFLP analysis – – – – – 22.0 – –

30 Chronic OPa exposed patients

Egypt
[21]

145 Healthy subjects TaqMan 31.3 3.4 – 15.1 – 9.6 2.0 –

Iraq
[15]

250 ACSb patients RFLP analysis 7.6 13.4 9.2 – – 6.8 – –

Jordan
[16]

192 Healthy subjects RFLP analysis – 14.8 8.3 – – 12.8 – –

Lebanon
[22]

111 Breast cancer patients Real-time PCR – – – 12.1 0.9 15.9 – –

Morocco
[17]

200 Healthy subjects RFLP analysis – 8.5 – – 11.13 10.1 – –

200 Breast cancer patients

Palestine
[20]

51 – Long PCR 27.5 2.0 2.0 12.7 0 7.8 1.0 2.0

Saudi Arabia
[23]

192 Healthy subjects Sequencing – – – 18.4 0 – – 0

Saudi Arabia
[18]

101 Healthy subjects RFLP analysis – 3.0 3.0 – – 3.5 1.0 –

Syria
[24]

51 Healthy subjects Long PCR 30.39 2.94 0 – 0 9.8 0.98 0.98

Syria
unpublished data

97 Breast cancer patients Sequencing – 7.2 – 9.28 – 7.2 – –

Tunisia
[19]

300 Breast cancer patients RFLP analysis – – – – – 13.39 – –

230 Healthy subjects

UAE
[25]

101 Psychiatric patients Sequencing 12.2 3.3 2.5 15.2 0 9.0 – 0

50 Healthy subjects
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and susceptibility to some diseases. Accordingly, a 
plethora of pharmacogenetic studies has contributed to 
gaining insights into the genetic basis of drug response 
variabilities in various global populations.

CYP2D6 has gained enormous attention due to its key 
role in metabolizing a significant proportion of widely 
used drugs. Historically, phenotype studies relying on 
metabolic assessments using CYP2D6 probe drugs, such 
as debrisoquine and sparteine, have revealed a highly 

Table 2  Frequencies of CYP2D6 gene duplications in Arab countries

a Mutawi et al. identified 4 subjects with *2/*41 (3N) and *2/*10 (3N) genotypes without discrimination of which allele has been duplicated

Country/References Duplicated alleles All 
duplications 
combined

*4xN *10xN *41xN *1xN *2xN xN

Algeria (Mozabite)
[20]

0 0 0 0 28.3 28.3

Egypt
[21]

0 (0–0.35)a (0–1.04)a (2.41–3.8)a  3.8

Jordan
[16]

– – – – 6.75 6.75

Lebanon
[22]

– – – – – 9.45

Palestine
[20]

0 0 0 0 4.9 4.9

Saudi Arabia
[18]

– – – – 10.4 10.4

Syria
[24]

0 – – 3.92 3.92 7.84

UAE
[25]

– 0.3 – 1.6 4.3 6.2

15%

10%

5%

0

13.3%
Khedhaier et al.

(2008)10.1%
Elouilamine et al.

(2020)

3.5%
McLellan et al.

(1997)

12.8%
Zihlif et al.

(2012)

15.9%
Tfayli et al.

(2011) 7.2%
Unpublished data

9.6%
Mutawi et al.

(2021)

6.8%
Swadi et al.

(2019)

7.8%
Sistonen et al.

(2007)

9%
Qumsieh et al.

(2011)

11.7%
Sistonen et al.

(2007)

Fig. 1  Arab map of the most clinically important CYP2D6 null allele CYP2D6*4. Frequencies ranged between 15.9% in Lebanon (dark red) and 3.5% 
in Saudi Arabia (light red)
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interindividual variability in metabolic activity rang-
ing from complete deficiency to excessive activity [26, 
27]. This variability is attributed in part to the highly 

polymorphic nature of the CYP2D6 gene, whose allelic 
profile varies substantially between ethnicities.

Despite the abundance of studies that have investi-
gated the frequencies of CYP2D6 alleles worldwide, only 

20%

15%

10%

5%

18.4%
Al-Dosari MS et al.

(2013) 

12.1%
Tfayli et al.

(2011) 9.28%
Unpublished data

15.1%
Mutawi et al.

(2021)

12.7%
Sistonen et al.

(2007)

15.2%
Qumsieh et al.

(2011)

8.3%
Sistonen et al.

(2007)

Fig. 2  Arab map of CYP2D6*41 frequencies. A South-to-North CYP2D6*41 gradient frequencies were observed, as the highest frequency was found 
in the Arabian Peninsula Saudi Arabia (18.4%, dark blue) and lowest in North Levantine Syria (9.28%, light blue), and a similar trend of West-to-East 
gradient was exemplified by a higher frequency in Egypt (15.1%, dark blue) and lower prevalence in Algeria (8.3%, light blue)

15%

10%

5%

0

3.4%
Mutawi et al.

(2021)

13.4%
Swadi et al.

(2019)

8.5%
Elouilamine et al.

(2020)

3 %
McLellan et al.

(1997)

14.8%
Zihlif et al.

(2012)

2%
Sistonen et al.

(2007)

3.3%
Qumsieh et al.

(2011)

0%
Sistonen et al.

(2007)

7.2%
Unpublished data

Fig. 3  Arab map of CYP2D6*10 frequencies. The highest frequencies were in Jordan (14.8%, orange) and lowest were in Palestine and Algeria (2% 
and 0%, respectively, light yellow)
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a few have evaluated the distribution of CYP2D6 alleles 
in Arabs. In this review, we highlight and consolidate the 
available information to date regarding the prevalence 
of CYP2D6 alleles across Arab countries. Moreover, we 
address the gaps in our knowledge regarding the genetic 
background of these unique populations. The Arab world 
stretches over Western Asia, North Africa, and the Horn 
of Africa and comprises 22 countries with a total popula-
tion of over 436 million people in 2020, thus constituting 
approximately 5.6% of the total world’s population [28].

The observed differences in the frequencies of CYP2D6 
alleles in the Arab populations could be attributed to 
demographic as well as technical factors. Firstly, the 
MENA region has been historically a "melting pot" for 
human migrations, which resulted in a remarkable ethnic, 

cultural, and genetic diversity. Secondly, the included 
studies used various genotyping methods, and more 
than half of them utilized PCR–RFLP analysis for detect-
ing CYP2D6 alleles. In general, no such ideal genotyp-
ing method exists [29], and all the applied methods are 
widely used and have proved high reliability in CYP2D6 
genotyping [30]. However, each method has its advan-
tages and limitations. For instance, PCR–RFLP analysis 
is inexpensive and does not require complex instrumen-
tation; however, it is a very laborious strategy and con-
sists of several sequential and mostly nonautomated 
steps [29]. Moreover, PCR–RFLP-based-genotyping is 
not always precise when there is more than one nucleo-
tide variation in the restriction enzyme recognition site 
[31]. Furthermore, genetic analysis of the CYP2D6 gene 

20%

15%

10%

5%

0%

2.41%
Mutawi et al.

(2021)
10.4%

McLellan et al.
(1997)

6.75%
Zihlif et al.

(2012)

4.9%
Sistonen et al.

(2007)

5.9%
Qumsieh et al.

(2011)

28.3%
Sistonen et al.

(2007)

7.84%
Fuselli et al.

(2004)

Fig. 4  Arab map of active CYP2D6 gene duplications and multiplications (CYP2D6*1xN and CYP2D6*2xN), which were most common in Algeria, and 
Saudi Arabia (28.3% and 10.4%, respectively, dark green)

Table 3  Frequencies of CYP2D6 phenotypes in Arab countries

Country Poor Metabolizers Intermediate 
Metabolizers

Normal Metabolizers Ultrarapid 
Metabolizers

References

Egypt 6.08 27.11 65.08 4.83 [12–14, 21]

Iraq 2.8 21.2 76 – [15]

Jordan 2.6 21.1 62.5 13.5 [16]

Syria 4.2 14.4 81.5 – Unpublished data

Tunisia 2.64 21.51 75.85 – [19]

UAE 2 21.85 62.25 9.27 [25]

Arab countries (aver‑
age)

3.39 21.2 70.53 9.2
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is quite challenging. Several limitations have been widely 
described such as the presence of highly homologous 
CYP2D7 and CYP2D8 pseudogenes within the gene 
locus, the occurrence of copy number variations (CNVs), 
and structural variants that give rise to CYP2D7-2D6 
hybrids in single entities or tandem arrangements [32]. 
On the other hand, the relatively small sample size in 
some studies, such as those in Algeria (n = 30) and Pal-
estine (n = 51), may be inadequate to reflect the actual 
allelic frequencies in these countries. Another important 
point to discuss is the differences in the characteristics 
of the evaluated subjects (patients versus healthy volun-
teers). Generally, CYP2D6 is not directly related to any 
disease, and the average allelic frequencies for each eth-
nic group provided by the Pharmacogenomics Knowl-
edge Base (PharmGKB) were calculated based on studies 
of both healthy and patient individuals [33, 34]. How-
ever, CYP2D6 is involved in metabolizing and detoxify-
ing numerous xenobiotics [35] and some of the included 
studies have proved a linkage between CYP2D6 genetic 
polymorphisms and susceptibility to diseases [12–14, 17, 
19]. Therefore, in the absence of profound evidence, we 
here reported the frequency of each CYP2D6 allele in 
the overall population rather than only healthy subjects. 
Nevertheless, we cannot exclude the health state of the 
subjects as a source of variability.

Our current analysis of UM phenotype estimation in 
Arabs (9.2%) corresponds to the results reported by a 
previous review by LLerena et  al. (2014) in which they 

demonstrated that UMs are most prevalent in the Mid-
dle Eastern population with a frequency of 10.45% [10]. 
Our results are also in line with the frequency reported 
by the PharmGKB CYP2D6 reference material for Near 
Easterners (9.47%) [34]. Middle Eastern Arab popula-
tions exhibited higher frequencies of CYP2D6*1xN and 
CYP2D6*2xN duplications (2.41–10.4%) than those 
reported in Americans (3.47%), Europeans (1.97%), 
Central/South Asians (1.51%), and East Asians (0.79%) 
[34]. Remarkably, the highest frequency (28.3%) of 
CYP2D6*2xN duplications in Algerians is comparable to 
that of Ethiopians (29%) [36]. Nevertheless, the main lim-
itation of the Algerian data is the small size of the study 
cohort (n = 30). Moreover, the study subjects were only 
from the Mozabites and may not be representative of 
the entire Algerian population, hence, the estimated fre-
quency should be interpreted with caution. Arabs besides 
Ethiopians are characterized by the highest prevalence of 
active CYP2D6 gene duplications. Ingelman-Sundberg 
M (2005) suggested an evolutionary basis of this phe-
nomenon and attributed it to the CYP2D6-mediated 
detoxifying of some constituents found in the local diets, 
especially alkaloids plants. Historically, 5000–10000 years 
ago, during periods of starvation, Ethiopians and Middle 
Easterners who harbored multiple functional CYP2D6 
alleles, such as UMs, gained a natural selection advantage 
over individuals with lower metabolizing capacity (e.g., 
NMs, IMs, and PMs). Consequently, an expansion of 

Fig. 5  The frequencies of CYP2D6 phenotypes in different Arab countries. NM phenotype is the most prevalent phenotype among Arabs followed 
by IM, UM and lastly PM
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UMs’ sub-population occurred in North East Africa and 
the Middle East [37].

In terms of non-functional alleles, the highly investi-
gated CYP2D6*4 allele occurred with considerably lower 
frequencies across Arab populations compared to Euro-
peans (18.54%), but higher than the reported frequencies 
in Sub-Saharan Africa (3.38%) and East Asian countries 
(0.54%) [34]. CYP2D6*4 frequencies varied between 
Arab countries, with a noticeable decrease in Saudi 
Arabians (3.5%), which can be interpreted by the previ-
ous presumption that food consumed by this population 
has resulted in selection pressure in CYP2D6 metabolic 
activity favoring carriers of CYP2D6 alleles without del-
eterious mutations [18]. Furthermore, Saudi Arabians are 
expected to have Afro-Asian influence, which resulted in 
a decrease in CYP2D6*4 frequency [11]. The frequency 
of CYP2D6 gene deletion (CYP2D6*5) was substantially 
low among Arabs. However, Algerians exhibited a rela-
tively high frequency (3.3%) comparable to that in Cen-
tral Europe (3%) but lower than that observed among 
Sub-Saharan African populations (5.15%) [34, 38]. The 
CYP2D6*3 null allele was almost absent in Arab coun-
tries except for Moroccans with an intriguingly high 
frequency of (11.13%), and thus exceeding by far frequen-
cies in Europeans (1.59%) [34].

Globally, CYP2D6*41 is reported to be most common 
in Middle Easterners [10, 39]. Our comparative analysis 
has confirmed this observation, as CYP2D6*41 was the 
most predominant reduced-function allele with a rela-
tively higher frequency in the Arabian Peninsula in com-
parison with Central/South Asians (12.3%), Sub-Saharan 
Africans (11.47%), Americans (2.33%), and East Asians 
(2.27%) [34]. The South-to-North gradient observed 
in our study is further supported by the documented 
decreased frequencies in Iran (8.71%) and European 
countries (9.24%) [34, 40]. Conversely, the frequency of 
CYP2D6*10 allele showed mixed patterns between Arab 
populations with no clear gradient, but still at much 
lower prevalence (0–14.8%) than frequencies reported in 
Asians (43.5%) [34].

The resemblances of the demographic composition 
of the five Arab countries (Syria, Lebanon, Palestine, 
Jordan, and Iraq) that constitute the Levant and Mes-
opotamia regions suggest similarities in their genetic 
structure. However, the conflicting frequencies of 
CYP2D6*10 allele in Iraq (13.4%), Jordan (14.8%), Syria 
(7.2%), and Palestine (2%) are puzzling. Jordan’s popu-
lation includes Syrians and  Palestinians. Prominently, 
Palestinians and their descendants blended into the 
Jordanian society and are estimated to constitute more 
than half of the population of Jordan. These variabili-
ties in allelic frequencies may be due to how alleles are 
assigned, which can cause discrepancies in determining 

genotypes and estimating frequencies. Some of the 
included studies in this review reported allelic fre-
quency in terms of a single variant detected, which 
might not always reflect the actual frequency of alleles 
that are defined by several variants. The CYP2D6*10 
allele, for instance, is defined by the alteration 100C>T, 
which is also present in 22 other alleles and most nota-
bly in the non-functional CYP2D6*4 allele [5]. Thus, 
assigning only the 100C>T variant to the CYP2D6*10 
allele without ruling out other haplotypes carrying the 
100C>T variant may result in overestimating the fre-
quency of CYP2D6*10 [32]. In fact, this observation 
may explain the aforementioned inconsistent frequen-
cies between Levantines, as Jordanians, as well as Ira-
qis, assigned the frequency of the variant 100C>T to 
CYP2D6*10, whereas the documented frequencies in 
both Syrian and Palestinian populations reflect the 
actual haplotype frequency. Therefore, we speculate 
that CYP2D6*10 allelic frequency among Iraqis and 
Jordanians is comparable to that of Syrians, as Pales-
tinian data is based on a relatively small study cohort 
(n = 50). Additionally, the function-altering 2989G>A 
variant is usually used to identify CYP2D6*41. How-
ever, this variant is also not unique to CYP2D6*41 
as other six rare alleles harbor this SNP as well. For 
example, CYP2D6*69 null allele carries the defining 
alleles of both CYP2D6*41 and CYP2D6*10 [41]. Con-
sequently, CYP2D6*41 frequency is also prone to mis-
interpretation and overestimation. This is exemplified 
by our observation of a frequency of 11.86% for the 
variant 2989G>A in Syrians; however, the frequency of 
the CYP2D6*41 haplotype was found to be (9.28%), as 
CYP2D6*69 allele was relatively high in the Syrian pop-
ulation (2.58%) (Our unpublished data).

As expected, CYP2D6*17 presented at lower frequen-
cies in Arabs (0–9.2%) when compared to Africans 
(19.29%), but with the exception of Syrians’ (0%), was 
still at a higher prevalence than that reported in the 
Europeans (0.39%) and South/Central Asians (0.07%) 
[34]. Collectively, the intermediate metabolizer pheno-
type in Arabs is mainly attributed to the presence of the 
reduced-function CYP2D6*41 allele and a lesser extent 
the CYP2D6*10 allele.

The geographic proximity and demographic similarities 
resulting from trade, wars, marriages, and historic migra-
tion flow suggest that the Arab Levantines (Syrians, Leb-
anese, Palestinians, and Jordanians) and Mesopotamians 
(Syrians and Iraqis) are closely related to other Near 
Eastern populations such as Iranians and Turks. Despite 
the discrepancy in the frequencies of the null CYP2D6*4 
allele (7.2% to 15.9%) in the Levant and Mesopotamia, 
the average frequency of 10.05% was in harmony with 
the average frequency in Turkey (13.8%) and Iran (10.3%) 
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[34]. The scarcity of the other null alleles (*3, *5, and *6) 
was also comparable between the Levant and Iran and 
Turkey. Similarly, the frequencies of the reduced-function 
CYP2D6*41 allele in Turkey (14%) and Iran (7.9%) were 
comparable to those reported in Syria (9.28%), Lebanon 
(12.1%), and Palestine (12.7%) [40, 42]. Furthermore, due 
to the inconsistency in assigning the CYP2D6*10 allele, a 
similar intra-ethnicity disparity of its estimated frequen-
cies was evident in Iran (from 3 to 9%) and Turkey (from 
6 to 14.5%). [40, 43–45].

In our analysis, we found that Individuals with normal 
metabolic capacity (NMs) constitute the majority of Arab 
populations. The frequency of NMs in Arabs (70.53%) 
was higher than that of Europeans (51.05%), East Asians 
(51.91%), and Americans (63.6%) [34]. As expected, PMs 
accounted for only a small percentage of Arabs (3.39%), 
which was higher than that of East Asians (0.86%), Sub-
Saharan Africans (1.53%), and Americans (2.18%), but 
lower than that of Europeans (6.47%). This can be attrib-
uted to the highest prevalence of the null CYP2D6*4 
allele among European populations (18.54%) [34]. How-
ever, our analysis has major limitations. Firstly, we cannot 
extrapolate the precise distribution of CYP2D6 pheno-
types among Arabs based on the limited data available 
for only six countries. Multiple studies reported only 
the frequency of CYP2D6 alleles without referring to the 
genotypes, and hence the metabolic phenotypes of the 
studied populations could not be determined. Further-
more, genotyping only a small set of CYP2D6 alleles can 
considerably affect the resultant predicted phenotypes. 
For instance, a higher frequency of NMs was observed in 
studies that did not genotype a large number of CYP2D6 
allelic variants or did not estimate the frequency of gene 
duplications such as studies conducted in Tunisia, Iraq, 
and Syria (75.85%, 76%, and 81.5%, respectively). On the 
contrary, Mutawi et al. (2021) and Qumsieh et al. (2011) 
reported lower frequencies of NMs in both Egypt and 
UAE (67.6% and 62.25%, respectively), which mirror a 
more comprehensive coverage of CYP2D6 alleles. It will 
be indispensable for future studies to report the various 
observed genotypes along with the AS and predicted 
phenotypes.

Due to the complexity of the CYP2D6 gene locus, the 
presence of CNVs, the enormous number of identi-
fied SNPs, and the fact that some SNPs exist in multi-
ple alleles, it is extremely challenging to unequivocally 
determine the exact individual’s CYP2D6 genotype [32]. 
Many commercially available platforms assign the high-
est probability of an individual’s genotype by identifying 
the most clinically important SNPs. However, the pres-
ence of rare variants, as illustrated by the CYP2D6*69 
allele, should not be trivialized. Furthermore, researchers 
should be cautious and capable of distinguishing between 

the frequency of the variant and that of the haplotype 
(star allele), unless the identified SNP is unique to a par-
ticular allele such as 1847G>A (CYP2D6*4).

The clinical implications of CYP2D6 different pheno-
types are substantially significant, as individuals with 
diminished CYP2D6 metabolic capacity cannot metab-
olize drugs as effectively as NMs. Consequently, PMs 
and IMs are prone to adverse effects and intoxication 
depending on the substrate. On the other hand, the accel-
erated pattern of metabolism in UMs can lead to thera-
peutic failure with the recommended drug dosing. The 
opposite is true in terms of prodrugs (such as codeine, 
tramadol, and tamoxifen) that oblige bioactivation, where 
UMs are prone to a higher risk of adverse effects and 
intoxication [32]. Moreover, the clinical relevance of IM 
phenotype is more evident when CYP2D6 substrates are 
concomitantly administered with CYP2D6 inhibitors. 
This phenomenon is known as phenoconversion, as drug 
interactions mimic the effect of inherited variations. For 
instance, when an individual genotyped as an IM receives 
a strong CYP2D6 inhibitor, such as fluoxetine and parox-
etine, one’s metabolic capacity will be similar to that of 
a PM [46]. Therefore, the Food and Drug Administration 
(FDA) marked the CYP2D6 genotype as a pharmacog-
enomic biomarker in the labeling of numerous drugs [47]. 
Furthermore, CPIC has published to date six guidelines 
for drugs affected by CYP2D6 genetic polymorphisms, 
which provide drug-dependent specific therapeutic rec-
ommendations based on CYP2D6 genotype [48–53].

Pharmacogenetics is considered one of the pillars of 
individualized medicine [54]. Given the pivotal role of 
CYP2D6 in drug metabolism, determining the frequen-
cies of CYP2D6 alleles across world populations as well 
as identifying their impact on treatment outcomes is 
a critical step towards translating pharmacogenetic 
information into clinical settings and optimizing gen-
otype-guided treatment. Studies of CYP2D6 genetic 
polymorphisms are under-represented in quite a large 
number of Arab populations. Moreover, expanding the 
number of healthy individuals representing various Arab 
countries and investigating more alleles are needed to 
enrich the available information about the frequencies 
of CYP2D6 alleles and broaden our knowledge of the 
genetic make-up of this unique ethnic group.

Conclusions
Our study has proved uneven CYP2D6 allelic frequen-
cies across Arab populations. Considered together, active 
CYP2D6 gene duplications, especially CYP2D6*2xN, 
presented at high frequency among Arabs compared 
to other ethnicities, whereas CYP2D6*41 was the most 
prevalent decreased function allele in the Arab popula-
tions, distinguishing them from other ethnicities where 
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the reduced-function alleles were mostly corresponding 
to CYP2D6*10 in Asians or CYP2D6*17 and CYP2D6*29 
in Sub-Saharan Africans and African-Americans/Afro-
Caribbeans. Among non-functional alleles, CYP2D6*4 
was the most studied allele and reported at lower fre-
quencies than the frequency in Europeans, while other 
null alleles were infrequent. However, our findings 
emphasize the need for consistency in genotype profiling 
by following the criteria and recommendations put for-
ward by PharmVar, PharmGKB, and other key pharma-
cogenomics consortia and necessitate conducting further 
studies to better assess the prevalence of the different 
CYP2D6 alleles across the 22 Arab countries, especially 
in countries that lack data on the frequency of CYP2D6 
genotypes.
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