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Enhancer promoter interactome 
and Mendelian randomization identify network 
of druggable vascular genes in coronary artery 
disease
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Abstract 

Coronary artery disease (CAD) is a multifactorial disorder, which is partly heritable. Herein, we implemented a map-
ping of CAD-associated candidate genes by using genome-wide enhancer-promoter conformation (H3K27ac-HiChIP) 
and expression quantitative trait loci (eQTL). Enhancer-promoter anchor loops from human coronary artery smooth 
muscle cells (HCASMC) explained 22% of the heritability for CAD. 3D enhancer-promoter genome mapping of 
CAD-genes in HCASMC was enriched in vascular eQTL genes. By using colocalization and Mendelian randomization 
analyses, we identified 58 causal candidate vascular genes including some druggable targets (MAP3K11, CAMK1D, 
PDGFD, IPO9 and CETP). A network analysis of causal candidate genes was enriched in TGF beta and MAPK pathways. 
The pharmacologic inhibition of causal candidate gene MAP3K11 in vascular SMC reduced the expression of athero-
relevant genes and lowered cell migration, a cardinal process in CAD. Genes connected to enhancers are enriched in 
vascular eQTL and druggable genes causally associated with CAD.
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Introduction
Coronary artery disease (CAD) is a complex trait disor-
der and a leading cause of morbidity-mortality. The dys-
regulated expression of genes and activation of pathways 
culminate in the development of vascular atheromatous 
plaque, a hallmark feature of CAD [1]. Functional assess-
ment and cell tracking experiments have shown that 
vascular smooth muscle cells are recruited to the plaque 
where they play a significant role in the development 

of CAD [2]. The identification of molecules involved in 
the pathophysiology of CAD could lead to the develop-
ment of novel therapies. However, the discovery of dis-
ease-associated drug targets is limited by several factors, 
which include limited information about the disease pro-
cess and indirect evidence obtained from animal and cell 
experiments [3]. Also, epidemiological studies carried 
out in humans by measuring biomarkers or intermedi-
ate molecules is subject to bias and reverse causality [4]. 
As such, only a small fraction of drug development pro-
grams leads to licensed drugs [5].

Genetic association studies (GWAS) have under-
lined that CAD is heritable (narrow sense heritability 
estimated at 40–50%) and involves several loci (~ 160 
identified so far) [6]. Genetic association data provides 
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a rich resource, which may help identify key targets 
involved in the development of disorders. Gene vari-
ants associated with intermediate phenotypes (e.g. gene 
expression) and the disease can be leveraged to assess 
causality similarly to a randomized clinical trial [7]. 
According to Mendel’s second law of random alloca-
tion of alleles, independent instrumental variables (IVs) 
(uncorrelated variants) can be assessed to mimic the 
effect of drugs (exposure, e.g. as determined by gene 
expression) on the risk of disorders (outcome). The use 
of multiple genetic variants that are associated with the 
exposure can be used as IVs in Mendelian randomiza-
tion (MR) to assess causal associations for the risk of 
disorders [8]. Since the allocation of alleles is random 
and occurs before the development of the outcome, MR 
technique is not prone to bias and reverse causation 
[9]. Studies have underlined that pharmacological tar-
gets supported by genetics have a much higher chance 
of success during the different phases of drug develop-
ment [10].

Despite rigorous preclinical screening, the failure of 
some compounds is related to drug-related adverse side-
effects, which are often discovered in large phase 3 ran-
domized clinical trials (RCTs) [11]. This may result in 
substantial monetary loss with the attrition of resources 
for the development of novel drug pipelines [12]. Target-
related pleiotropy is one cause of such failure [10]. For 
instance, a drug target with opposite directional effect on 
two major outcomes may negate potential benefit. Inter-
rogation of large electronic health record databases in 
genotyped individuals provides a resource to assess hun-
dreds of traits and disorders. The assessment of risk vari-
ants linked to a target in a phenome-wide analysis study 
(PheWAS) is thus a strategy to evaluate potential side-
effects of drug-gene pairs [13]. Also, the assessment of 
putative causal candidate drug targets for their associa-
tion with monogenic disorders by using large resources 
where data are collated, such as in the Human Phenotype 
Ontology, is another approach to assess drug-related 
safety issues [14, 15].

Complex systems in which gene expression and inter-
action of molecules are establishing a trajectory to health 
or disease are increasingly investigated by the integration 
of data in network [16]. The network topology is highly 
modular and provides information for distinctive mol-
ecules, which interact together to drive different func-
tions [17]. As such, genes highly connected tend to be 
enriched in essential functions and in drug targets [18, 
19]. The implementation of network to assess molecules 
with impact on the biological pathways relevant to a dis-
ease is a useful strategy to prioritize genes and to address 
the function of the whole system and its components 
(modules).

In order to identify causal genes by using genome-wide 
association studies (GWAS), we need to map variants to 
potential gene targets. Mapping of genes is compounded 
by several factors, which includes the linkage disequi-
librium (LD) between the variants (the extent to which 
variants are correlated) and the fact that the vast major-
ity of gene variants associated with complex traits  and 
disorders reside in the noncoding genome [20]. Variants 
within the noncoding genome are enriched in active 
regulatory regions such as distant acting enhancers and 
may impact on the expression in cis (locally) through the 
conformation of chromatin [21]. Genome-wide assess-
ment of chromatin conformation based on Hi-C and 
its derivatives (e.g. HiChIP) has revealed that chroma-
tin looping between enhancers and promoters provides 
regulatory mechanisms to control gene expression [22]. 
Growing evidence suggests that a hierarchy among the 
distant regulatory regions provides another layer of 
control on gene expression [23]. To this effect, highly 
connected hub enhancers in 3D communities regulate 
lineage-specific genes [24]. In addition, the architecture 
of chromatin conformation is largely cell specific [25]. 
Hence, GWAS mapping using genome-wide 3D data pro-
vides an additional layer of information to identify puta-
tive causal genes in disease-relevant cells [26]. Another 
strategy to map the genetic variants to potential targets 
is to assess the associations with expression quantitative 
trait loci (eQTL) derived from disease-relevant tissue(s) 
[27]. Herein, we implemented an integrative approach 
including enhancer-promoter chromatin conformation 
and eQTL mapping, causal inference, interrogation of 
the druggable genome and network biology to capture 
GWAS-associated molecules and pathways, which could 
be targeted pharmacologically. Specifically, we assessed 
whether enhancer-promoter chromatin looping in vas-
cular smooth muscle cells explained a significant pro-
portion of the heritability for CAD and if it was enriched 
in vascular eQTL genes. Genome-wide mapping using 
enhancer-promoter conformation and eQTL data were 
integrated in a framework to assess causal associa-
tions and to prioritize druggable genes with the help of 
networks.

Results
Tissue enrichment and pathway analyses
Summary-level data of meta-analysis from UK Biobank 
(UKB) and CARDIoGRAMplusC4D including 123,733 
CAD cases and 424,528 controls [28] was leveraged 
to assess tissue and pathway enrichment. We imple-
mented Data-driven Expression Prioritized Inte-
gration for Complex Traits (DEPICT) to document 
the enrichment of tissue and pathways for genetic 
association data in CAD. By using GWAS summary 
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statistics, DEPICT provides an analysis in which risk 
loci mapped genes are integrated to a vast collection 
of human tissue gene expression to prioritize highly 
expressed genes and their relevant pathways. Accord-
ing to DEPICT, genetic association for CAD was 
enriched in arteries (P = 7.38 × 10–9), smooth muscle 
(P = 4.33 × 10–6) and blood vessels (P = 4.77 × 10–6) 
(Fig.  1A) (Additional file  1: Table  S1). We next evalu-
ated the enrichment of genetic association in path-
ways. DEPICT showed an enrichment for abnormal 
cell adhesion (P = 5.04 × 10–14), abnormal vitelline 
vasculature morphology (P = 5.64 × 10–13), abnormal 
cell migration (P = 3.67 × 10–11), integrin cell surface 
interactions (P = 7.37 × 10–11) and src PPI subnetwork 
(P = 9.31 × 10–11) (Fig. 1B) (Additional file 2: Table S2). 
These data thus indicated that the vasculature and 
smooth muscle cells as well as their related functions 
such as adhesion and migration are key features associ-
ated with CAD-gene variants.

Heritability for CAD explained by the vascular 
enhancer‑promoter connectome
Considering the high enrichment of genetic association 
data for CAD in smooth muscle and arteries, we ana-
lyzed publicly available HiChIP for H3K27ac obtained in 
human coronary artery smooth muscle cells (HCASMC) 
(GSE101498). H3K27ac-HiChIP provides a high-defini-
tion map of chromatin conformation between enhancers 
and promoters [29]. After a stringent loop call with FitH-
iChIP (FDR < 1 × 10–6), we identified 224,209 confident 
loops in HCASMC. The anchor loops were significantly 
enriched in open chromatin detected by assay for trans-
posase-accessible chromatin and sequencing (ATAC-
seq) in HCASMC (fold enrichment = 2.9, P < 2.2 × 10–16, 
binomial test) (Fig.  1C). By using HOMER, a pathway 
enrichment of anchor loops in HCASMC using the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
showed an enrichment for endocytosis (P = 1.36 × 10–10), 
regulation of actin cytoskeleton (P = 1.70 × 10–8), phos-
phatidylinositol signaling system (P = 5.43 × 10–8) and 

Fig. 1  Enrichment and enhancer-promoter mapping. A, B Tissue and pathway enrichment of CAD GWAS. C Heatmap representing the relative 
distance of ATAC-seq signal to enhancer-promoter anchor loops; correlation is the measure of the observed to expected relative distance to 
the query point. D, E Individual independent significant SNPs and 3D mapping in enhancer-promoter HiChIP; tracks represent genes, ATAC-seq, 
H3K27ac ChIP, 1D H3K27ac-HiChIP and arcs of significant loops; vertical bar represents the SNP of interest and mapped genes are in red
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autophagy (P = 5.54 × 10–8) (Additional file  3: Table  S3). 
We next wondered whether enhancer-promoter contacts 
in HCASMC explained a significant part of the herit-
ability in CAD risk. For that purpose, we partitioned the 
heritability of cis-anchor loops in HCASMC by using the 
full baseline model of 53 annotations in the stratified LD 
score regression framework (Methods) [30]. This analy-
sis revealed that chromosomal interactions in HCASMC 
were enriched for regions that explained the heritability 
of CAD (enrichment = 2.38, P = 5.90 × 10–5) (Additional 
file  4: Table  S4). Despite representing only 9% of CAD-
single nucleotide polymorphisms (SNPs), variants within 
anchor loops in HCASMC explained 22% of the herit-
ability for CAD (Additional file 4: Table S4).

Identification of gene promoters connected to CAD 
associated variants within distant enhancers
To identify gene promoters mapped by chromatin loop-
ing in H3K27ac-HiChIP in HCASMC, we identified lead 
and individual significant SNPs (PGWAS < 5 × 10–8, r2 < 0.6) 
that overlapped with enhancer loops (Methods). In total, 
353 individual significant SNP-enhancer-promoter loop 
pairs tagging 228 gene promoters were identified (Addi-
tional file  5: Table  S5). The mean number of loops per 
gene promoter was 1.5 and the average distance between 
enhancers and gene promoters was ~ 168 kb. For instance, 
at 11q13.1, rs3741380, a CAD individual significant SNP 
intronic to EHBP1L1, is localized within an interact-
ing loop with the promoter of MAP3K11 located ~ 32 kb 
downstream (Fig. 1D). We next hypothesized that CAD 
gene variants may be enriched in hub enhancers hav-
ing a high level of chromatin contacts (in network with 
a degree ≥ 90th percentile) (Methods). In HCASMC, we 
identified 5,455 highly connected hub enhancers involved 
in chromatin looping. This analysis showed a significant 
enrichment of CAD individual significant SNPs asso-
ciated with hub enhancers (observed/expected = 3.4, 
P = 1.9 × 10–6, binomial test). Among the different genes 
mapped by CAD variants and enhancer-promoter loop-
ing, SH2B3 is a gene connected to a hub enhancer. SH2B3 
has been previously identified as a causal candidate gene 
for CAD [31]. On the other hand, some genes identified 
by chromatin looping were not previously mapped in 
CAD. For instance, at 11q13.4, rs590121 is located in a 
distant hub enhancer intronic to SERPINH1 and having 
contacts with multiple enhancers-promoters including 
with the promoter of ARRB1 located ~ 298 kb upstream 
(Fig. 1E).

Identification of vascular eQTLs
We next examined if CAD-associated genes mapped 
by enhancer-promoter chromatin looping were also 

significant vascular expression quantitative trait loci 
(eQTL). CAD-individual significant SNPs were mapped 
to eQTLs of the aorta in GTEx v8. In total, 15,516 
CAD SNP-eQTL gene pairs were significant at FDR 
5% in the aorta and tagged 202 genes (Additional file 6: 
Table S6). Among the 228 genes mapped by enhancer-
promoter chromatin looping there were 41 genes (18%), 
which were also CAD-associated eQTL genes (fold 
enrichment observed/expected = 21.4, P < 2.2 × 10–16, 
binomial test). Hence, these findings highlight that 
gene mapping of CAD genetic association data with 
enhancer-promoter chromatin conformation in 
HCASMC is enriched in vascular eQTL genes.

Genetic colocalization analyses
By combining enhancer-promoter chromatin loop-
ing and eQTL data, there were 383 genes mapped by 
CAD-associated SNPs. We performed Bayesian colo-
calization analyses between the eQTL signal (GTEx 
v8) of the 383 mapped genes in the aorta with the 
GWAS signal for CAD. We identified 35 genes with 
a with a high posterior probability (PP) (PP > 0.8) of 
shared signal between eQTLs in the aorta and CAD-
GWAS (CDH13, PHACTR1, TCF21, N4BP2L2, SYPL2, 
TWIST1, PDGFD, IPO9, FHL3, UTP11, GGCX, 
SEMA5A, DMPK, MIA3, TMEM133, CAMK1D, ARH-
GAP42, DAGLB, DMWD, CETP, MORF4L1, JCAD, 
MFGE8, HAPLN3, HHIPL1, DHX36, B3GNT8, BMP1, 
LMOD1, FAM117B, MAT2A, ATP2B1, EXOSC5, 
EIF2B2, ZEB2) (Additional file  7: Table  S7). Genes 
with a shared signal were enriched in gene ontology 
(GO) for nervous system development (P = 1.24 × 10–4) 
negative regulation of cell adhesion (P = 1.99 × 10–4) 
and positive regulation of endothelial cell proliferation 
(P = 2.18 × 10–4) (Additional file 8: Table S8). Figure 2A 
shows a LocusCompare plot for the GWAS associations 
at 6p24.1 where there is a shared signal (PP = 1) with 
the expression of PHACTR1, a gene previously identi-
fied as a causal candidate at this locus [32]. Rs9349379 
is the strongest SNP for both GWAS and eQTL in the 
aorta for the expression of PHACTR1, a gene encod-
ing for a regulator of actin polymerization [33]. Allele 
G-rs9349379 (EUR freq = 0.40) increases the risk of 
CAD (OR: 1.11, 95% CI 1.10–1.12, PGWAS = 2.71 × 
10–76) and is associated with a decreased expression of 
PHACTR1 in the aorta (Fig.  2B). This analysis under-
lined some targets identified in previous screen and 
functional assays such as CDH13, TCF21, LMOD1 
and JCAD [34–37], but also identified novel potential 
causal candidates such as EXOSC5 and B3GNT8, which 
encode for a RNA exosome component and a galacto-
syltransferase respectively.
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Mendelian randomization
In order to further evaluate causal associations, we 
implemented a 2-sample Mendelian randomization (MR) 
between gene expression in the aorta (GTExV8) by using 
a minimum of three independent (r2 < 0.1) cis-variants as 
IVs and genetic associations for CAD as the outcome. For 
that purpose 3D and eQTL mapped genes were evalu-
ated in MR. In inverse variance weighted (IVW) MR, we 
identified 74 vascular genes expressed in the aorta that 

were significantly associated with CAD (FDR < 0.05). 
Among these genes, 33 did not show heterogeneity 
(Cochran’s Q test > 0.05) and were considered as causally 
associated with CAD (MRAS, HHIPL1, CDH13, JCAD, 
MFGE8, BMP1, FGD6, CTSK, MAP3K11, TMEM133, 
CAMK1D, DMPK, ZEB2, EIF2B2, HSD17B12, CDC25A, 
ARRB1, SFMBT1, TRIP4, KCNH2, NME7, ATP1B1, 
MRPL35, CCDC181, AGPAT4, RNF123, ANKDD1A, 
BEND6, CTSH, NPHP3, PIF1, ALKBH5, MEAF6) (Fig. 3) 
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Fig. 2  Colocalization and vascular eQTL. A LocusCompare plot showing –log P-values for CAD-GWAS and eQTL in the aorta (GTEx v8) at the 
PHACTR1 locus. B eQTL in the aorta (GTEx v8) for rs9349379
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(Additional file  9: Table  S9). These 33 vascular genes 
were enriched in GO for cardiac muscle cell membrane 
repolarization (P = 1.44 × 10–4), proteolysis involved in 
cellular catabolic process (P = 4.80 × 10–4) and positive 
regulation of potassium ion transmembrane transport 

(P = 2.74 × 10–4) (Additional file 10: Table S10). Among 
the causally associated vascular genes, there were 10 
genes also identified in colocalization analyses (PP > 0.8) 
(HHIPL1, CDH13, JCAD, MFGE8, BMP1, TMEM133, 
CAMK1D, DMPK, ZEB2, EIF2B2). In total, by using 

Fig. 3  Mendelian randomization. Odds ratio and 95% CI for vascular genes (aorta) and CAD risk. Data are for 1SD
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colocalization and MR approaches, we identified 58 
potential causal vascular genes for CAD (Additional 
file 11: Table S11). Among the causal candidate genes, 9 
were identified by both eQTL and enhancer-promoter 
conformation mapping (FHL3, MIA3, MAT2A, GGCX, 
DAGLB, MAP3K11, ATP2B1, EXOSC5, B3GNT8), 
whereas 6 genes (MEAF6, AGPAT4, KCNH2, ARRB1, 
PIF1, UTP11) were mapped only by chromatin con-
formation. For instance, AGPAT4, a gene encoding for 
a lysophosphatidic acid acyltransferase, is negatively 
associated with the CAD risk in MR (OR: 0.94, 95% CI 
0.91–0.97, Pcausal = 1.5 × 10–3). At this locus, two CAD 
independent significant SNPs (rs9295142, rs142697177) 
located in an intronic enhancer of AGPAT4 are within 
a chromatin loop with the promoter of the same gene 
(Additional file 19: Figure S1).

In sensitivity analysis, we assessed causal associations 
by using weighted median MR, which provides a robust 
assessment with up to 50% of invalid instrumental varia-
bles (variants with horizontal pleiotropy) [38]. Among the 
33 vascular genes associated with CAD in IVW MR, we 
found that 29 genes (MFGE8, CAMK1D, CTSK, JCAD, 
CDH13, EIF2B2, MAP3K11, FGD6, RNF123, ATP1B1, 
SFMBT1, MRPL35, MRAS, KCNH2, NPHP3, ANKDD1A, 
BEND6, CTSH, NME7, CCDC181, HSD17B12, TRIP4, 
CDC25A, TMEM133, DMPK, ZEB2, ARRB1, BMP1, 
HHIPL1) were also significant in weighted median MR 
analysis (Additional file  12: Table  S12). The directional 
effects were concordant between IVW and weighted 
median MR analyses.

Network and prioritization
We aimed to characterize putative causal vascular genes 
singled out by the colocalization and MR screens by 
using a network approach with the objectives to iden-
tify: (1) key driver genes and (2) pathways of connected 
genes with functional relevance. A network was con-
structed from the DifferentialNet dataset, which includes 
134,223 protein interactions, and inferred to the aorta 
from the gene expression profile (Methods) [39]. Can-
didate causally associated vascular genes identified by 
MR and colocalization analyses were used as seeds to 
generate the network, which encompassed 681 nodes 
(genes) and 763 edges (connections) (Fig.  4A). A path-
way enrichment analysis showed that genes within the 
network were enriched in TGF-beta signaling pathway 
(P = 1.87 × 10–20), signaling events mediated by HDAC 
class I (P = 3.46 × 10–17), and MAPK signaling pathway 
(P = 1.62 × 10–16) (Additional file  13: Table  S13). Caus-
ally associated genes were enriched in nodes with a high 
degree (degree > 90th percentile) (fold enrichment 3.83, 
P = 2.70 × 10–25, hypergeometric test). Genes with a 
high degree and acting as hub in networks are enriched 

in drug targets and are involved in key biological func-
tions. Predicted CAD causally associated vascular genes 
in MR and acting as hub gene (high degree in PPI net-
work) include among others ARRB1 (OR: 0.84, 95%CI: 
0.78–0.91, Pcausal = 9.46 × 10–6), CDC25A (OR: 0.96, 95% 
CI 0.95–0.98, Pcausal = 5.33 × 10–6), KCNH2 (OR: 1.03, 
95% CI 1.01–1.04, Pcausal = 7.14 × 10–5) and MAP3K11 
(OR: 1.07, 95%CI: 1.05–1.10, Pcausal = 8.46 × 10–9).

Druggability of candidate causal genes
We next assessed whether causally associated vascular 
genes in CAD were potentially druggable by using The 
Drug Gene Interaction Database (DGIdb) [40]. DGIdb 
includes an exhaustive list of drug-gene pairs, which 
are collated from different resources. In total 383 com-
pounds targeting 13 predicted causally associated vascu-
lar genes were identified by DGIdb (CTSK, MAP3K11, 
CDC25A, ARRB1, KCNH2, ATP1B1, PDGFD, IPO9, 
GGCX, DAGLB, CETP, DHX36, CAMK1D) (Additional 
file 14: Table S14). Considering the directional effects in 
MR, 5 vascular genes are potential targets for drug inhi-
bition (CTSK, MAP3K11, KCNH2, ATP1B1, CAMK1D). 
For instance, the vascular expression of CAMK1D which 
encodes for a calcium calmodulin dependent protein 
kinase, is positively associated with the risk of CAD in 
MR (OR: 1.11, 95% CI 1.07–1.16, Pcausal = 5.12 × 10–8) 
(Fig.  4B). Several drugs under investigation are kinase 
inhibitors, which are reported to target CAMK1D. By 
using colocalization analyses, the directional effects 
of the candidate causal SNP between vascular gene 
expression and CAD-risk suggest that the inhibition 
of 4 genes may lower disease-associated risk (PDGFD, 
IPO9, GGCX, CETP). As an example, among the poten-
tial drug targets, PDGFD encodes for platelet derived 
growth factor D. In the aorta, colocalization between 
eQTL for PDGFD and CAD-GWAS (PP = 0.99) suggests 
a causal association and prioritizes gene variant rs974819 
(Fig.  4C). In the aorta, T-rs974819 (EUR freq = 0.72) is 
associated with a higher expression of PDGFD (Fig. 4D) 
and an elevated CAD-risk (OR: 1.06, 95% CI 1.05–1.07, 
PGWAS = 1.11 × 10–28). According to the directional 
effects in MR and colocalization data, 4 genes (CDC25A, 
ARRB1, DAGLB, DHX36) could be targeted by agonist-
based therapy. However, for these targets there is no ago-
nist compound reported in DGIdb.

As some potential disease-associated targets may 
be linked with adverse side-effects, we undertook 
a phenome-wide analysis (PheWAS) by using Gene 
ATLAS, which includes 778 diseases-traits from the 
UK Biobank [41]. Genes identified as candidates for 
drug inhibitors were included in this analysis (CTSK, 
MAP3K11, KCNH2, ATP1B1, CAMK1D, PDGFD, IPO9, 
GGCX, CETP). The strongest instrumental variable 
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(lowest P-value) in MR or the variant prioritized in 
colocalization analyses for each of the potential drug 
target gene was assessed in the cross-phenotype asso-
ciation analysis. Diseases-traits were deemed signifi-
cantly associated with the variant at FDR 5% and data 
are presented in Additional file 15: Table S15. In GTEx, 
gene variant A-rs12042263 (strongest IV in MR for the 
expression) (EUR freq = 0.91) is associated with a lower 
vascular expression of CTSK (PeQTL = 1.69 × 10–10) and 
a decreased risk for CAD (OR: 0.96, 95% CI 0.95–0.98, 
PGWAS = 1.18 × 10–3). In PheWAS, A-rs12042263 is 
positively associated with the risk of cerebrovascular 
disease (PPheWAS = 3.15 × 10–4) (I67 other cerebrovas-
cular disease) (Additional file  15: Table  S15). These 
data suggest that the inhibition of CTSK may lower 
the risk of CAD (data in MR are concordant as the vas-
cular expression of CTSK is positively associated with 
CAD-risk), but at the expense of increasing cerebro-
vascular events. Several drugs under investigation are 
reported in DGIdb to inhibit CTSK (Additional file 14: 
Table  S14). A recent randomized clinical trial evaluat-
ing odanacatib, a CTSK inhibitor developed for post-
menopausal osteoporosis, has found that inhibition of 
the target lowered primary endpoints, but increased 
the risk of stroke (HR 1.32, P = 0.03) [42]. Also, inhi-
bition of ATP1B1, a gene positively associated with 
the CAD-risk in MR, is predicted to increase the risk 
of venous thromboembolic disease (Additional file  15: 
Table  S15). Prediction based on colocalization analy-
sis suggests that inhibition of GGCX may lower CAD-
risk, but according to the PheWAS it is associated with 
an increase risk of malignant neoplasm of prostate 
(PPheWAS = 3.06 × 10–9) (Additional file  15: Table  S15). 
We next interrogated the Human Phenotype Ontol-
ogy database [43] to identify disease-trait associa-
tions for the genes deemed druggable (Additional 
file  16: Table  S16). In Human Phenotype Ontology, 
CTSK, GGCX and KCNH2, have been linked to bone-
related conditions, coagulation defects and ventricular 
arrhythmia respectively. KCNH2 encodes for the Ether-
A-Go-Go-Related Protein 1, a potassium voltage-gated 
channel, involved in arrhythmia. Consistently, in the 
Side Effect Resource (SIDER) [44], several drugs target-
ing KCNH2 in DGIdb are reported to induce ventricu-
lar arrhythmia. After a comprehensive filtering based 
on multiple resources including a PheWAS analysis and 
interrogation of Human Phenotype Ontology as well as 
SIDER databases, potential vascular drug targets such 
as MAP3K11, CAMK1D, PDGFD, IPO9 and CETP were 
not predicted to be associated with major adverse side 
effects (cardiovascular, neurologic, metabolic, cancer) 
that would result from drug inhibition. Thus, some of 

these genes may represent suitable potential drug tar-
gets for follow-up studies.

Impact of targeting MAP3K11 in vascular smooth muscle 
cells
By using the present framework, we showed that some 
causally associated vascular genes were central in a net-
work and were potentially druggable. Among those 
genes, MAP3K11 (also known as MLK3) is positively 
associated with the CAD risk (OR: 1.07, 95%CI: 1.05–
1.10, Pcausal = 8.46 × 10–9) and is a target of the experi-
mental compound URMC-099 [45]. Community network 
analysis using random walks showed that a module 
including MAP3K11 (P = 1.94 × 10–6) (Additional file 20: 
Figure S2) was enriched in GO for the regulation of JNK 
cascade (P = 1.81 × 10–10) (Additional file 17: Table S17), 
which is involved in inflammation and cell migration 
[46]. URMC-099 is an experimental compound that 
inhibits MAP3K11. We hypothesized that URMC-099 
may modulate the expression of key cytokines and tran-
scription factors involved in the development of athero-
sclerosis. We observed that vascular smooth muscle cells 
(VSMCs) treated with URMC-099 (100 nM) for 6 h had 
lower expression of transcripts encoding for interleukin1 
beta (IL1B), C–C motif chemokine ligand 2 (CCL2 and 
also known as MCP1) and plasminogen activator uroki-
nase (PLAU) (Fig.  5A–C). IL1B, CCL2 and PLAU are 
key mediators involved in plaque activity [47–49]. Early 
growth response 1 (EGR1) is a transcription factor known 
to enhance the expression of IL1B and chemokines as 
well as to promote the development of atherosclerosis 
in mice [50]. In isolated VSMCs, URMC-099 reduced 
the transcript level encoding for EGR1 by 30% (Fig. 5D). 
Considering the pathway enrichment of CAD gene vari-
ants in cell migration (Additional file  2: Table  S2), we 
assessed the impact of URMC-099 on VSMC transmigra-
tion in a Boyden chamber. Consistent with the impact of 
URMC-099 on genes having a role on cell migration such 
as CCL2 and EGR1 [51], we observed a reduction of cell 
migration by 40% in VSMC treated with the inhibitor for 
6  h (Fig.  5E). As a proof of concept, these data provide 
further evidence that the pharmacological inhibition of 
predicted causally associated genes such as MAP3K11 in 
VSMC impacts athero-relevant gene expression and cell 
phenotype.

Discussion
In this work, we provide evidence that promoter-
enhancer anchor loops in HCASMC explain 22% of the 
heritability for CAD. 3D mapped vascular smooth mus-
cle genes were enriched in eQTL genes and in predicted 
causal targets. After filtering by using cross-phenotype 
analyses and curation of Human Phenotype Ontology 
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and SIDER databases, we identified a set of druggable 
vascular genes, which are not predicted to be associated 
with major adverse events. Network of CAD-causally 
associated vascular genes was enriched in TGF-beta sign-
aling, HDAC class I and MAPK pathways. As an illus-
trative case, the pharmacological inhibition of causally 
associated gene MAP3K11 in vascular smooth muscle 
cells reduced cell migration, a key process involved in the 
development of plaque [52].

Among the causal candidate vascular genes iden-
tified by MR, ARRB1 (OR: 0.84, 95% CI 0.78–0.91, 
Pcausal = 9.45 × 10–6) and MFGE8 (OR: 1.13, 95%CI: 
1.09–1.17, Pcausal = 2.08 × 10–12) were the genes with the 
highest effect size on the risk of CAD. ARRB1 encodes 
for arrestin beta 1, which is involved in the regulation of 
G-protein coupled receptor (GPCR) signaling. As illus-
trated by the network approach, ARRB1 interacts with 
a large number of proteins and modulates, in a context 

Fig. 5  Functional impact of MAP3K11 inhibition on HCASMC. A–D VSMC treated with an inhibitor of MAP3K11 (URMC-099, 100 nM for 6 h) and 
expression mRNAs encoding for PLAU, CCL2, IL1B and EGR; n = 6. E Cell transmigration assay with URMC-099 (100 nM for 6 h); n = 6. The n represents 
experiments performed from 3 different donors in duplicate (performed at different passage); *P < 0.05
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specific manner, a myriad of signaling events related, 
among others, to inflammation [53]. At the 15q26.1 
locus, we found a shared signal between the vascular 
expression of MFGE8 and the risk of CAD (PP = 0.90). 
Taken together, colocalization and MR analyses strongly 
militate for a role of MFGE8, which encodes for Milk 
Fat Globule EGF And Factor V/VIII Domain Containing 
(also known as lactadherin), on the risk of CAD. A previ-
ous study conducted in VSMCs showed that the knock-
down of MFGE8 reduced the proliferation rate of cells 
[54]. Similarly, in a mouse model of vascular injury, the 
silencing of MFGE8 decreased the migration of VSMCs 
and the formation of neointima [55]. Taken together, 
these data are consistent with an implication of MFGE8 
on the proliferation/migration of VSMC, a key process in 
atherogenesis.

Among the causal associations with CAD, 15 genes 
were identified by enhancer-promoter looping includ-
ing 6 genes that were mapped only by using 3D genome 
data. Among those genes, several novel causal candi-
dates, which have not been investigated in the context 
of atherosclerosis, were identified and include EXOSC5, 
B3GNT8, ARRB1, PIF1, UTP11, AGPAT4 and MAP3K11. 
For instance, MR data indicate that the vascular expres-
sion of AGPAT4 is negatively associated with CAD-risk. 
AGPAT4 encodes for a membrane enzyme that inacti-
vates lysophosphatidic acid, a small lipid mediator with 
pro-atherogenic activity [56]. Also, PIF1, which encodes 
for a helicase involved in the activity of telomerase [57], is 
a candidate gene for further exploration as the telomere 
length has been linked to the CAD-risk [58].

Network provides a holistic approach in identify-
ing pathways and gene modules with specialized func-
tions in chronic disorders [59]. A pathway analysis of 
the network constructed by using the candidate causal 
genes showed an enrichment for TGF-beta and MAPK 
pathways. These data are consistent with a role of the 
TGF-beta pathway in atherogenesis [60]. Drug targets 
are enriched in hub molecules [61] and the present data 
are in line with this notion. In this regard, we found 
that causally associated vascular genes were acting 
as hub in a network and were also deemed druggable 
according to DGIdb. After a comprehensive assess-
ment of potential side effects, we narrowed down the 
number of druggable causal candidate genes to 5 tar-
gets (MAP3K11, CAMK1D, PDGFD, IPO9 and CETP). 
PDGFD was identified in colocalization analysis. The 
prioritized SNP, a frequent gene variant (T-rs974819, 
EUR freq = 0.72) was associated with an increased 
risk of CAD and a higher expression of PDGFD in the 
aorta. PDGFD encodes for a platelet derived growth 
factor with implication in atherosclerosis [62]. CETP, 
which has been identified by colocalization analysis, 

encodes for cholesteryl ester transfer protein. CETP is 
involved in the metabolism of high-density lipoprotein 
(HDL) and low-density lipoprotein (LDL). Genetic sig-
nal at the CETP locus suggested that inhibition of this 
enzyme may lower the risk of CAD [63]. Drugs target-
ing CETP were evaluated in 4 different randomized 
clinical trials with inconsistent results, which are pos-
sibly linked to drug-related off-target effects on the 
blood pressure and the design of studies (reviewed in 
[64]). In the present work, we identified by using MR 
that two druggable kinases (MAP3K11, CAMK1D) 
were positively associated with CAD. A previous analy-
sis using MR showed that the expression of CAMK1D 
in blood cells was positively associated with the risk of 
CAD (OR: 1.05) [16]. These data are concordant with 
the present findings, which demonstrate a causal asso-
ciation for the vascular expression of CAMK1D on 
the risk of CAD (OR: 1.11). As a proof of concept, we 
evaluated a drug under development, which targets 
MAP3K11, on the expression of key genes involved 
in atherosclerosis and on the migration of VSMCs. In 
VSMCs, drug-induced inhibition of MAP3K11 reduced 
the expression of IL1B and CCL2, two genes causally 
associated with CAD [65, 66]. Also, the pharmacologi-
cal inhibition of MAP3K11 decreased substantially the 
migration of VSMC, a cardinal process in the develop-
ment of atheromatous plaques.

The present work has some limitations as causal infer-
ence using MR is subject to horizontal pleiotropy (i.e. 
gene variants that affect the outcome through an alterna-
tive pathway) [67]. However, the assessment of pleiotropy 
with the Cochran’s Q test and also the implementation of 
sensitivity analyses with the median weighted analyses 
minimize this risk. Also, the assessment of both MR and 
colocalization provides robustness to the findings. As 
such, the combined evidence derived from colocalization 
and MR for a drug target (gene) increased substantially 
the likelihood for a drug to be licensed [68]. Functional 
assays were carried out from a limited number of cell 
donors and additional follow-up studies are needed to 
probe the role of candidate causal vascular genes in 
atherosclerosis.

Conclusions
In this work we found that the connectome of enhancer-
promoter in HCASMC explained a significant proportion 
of the heritability for CAD. The mapping of genes using 
3D enhancer-promoter contacts was enriched in vascular 
eQTL genes and causally-associated CAD genes. Among 
the causal candidate vascular genes, some are drugga-
ble and need further investigation to assess their role as 
potential pharmacologic targets for CAD.
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Methods
CAD genetic associations
Summary statistics from GWAS data of a meta-analy-
sis including 122,733 CAD cases and 424,528 controls 
from the UK Biobank and CARDIoGRAMplusC4D 
were downloaded for analyses [28]. GWAS meta-analy-
sis was adjusted for age, gender and the first 30 princi-
pal components and included 7,947,838 gene variants. 
Cases from UK Biobank were identified by using ICD 
codes I21-I25 for ischemic heart disease and the cor-
responding OPCS-4 codes K40-K46, K49, K50 and K75 
including percutaneous angioplasty. Patients report-
ing cardiovascular events such as myocardial infarction, 
coronary angioplasty and coronary artery bypass grafting 
were also included.

Pathway analysis of genetic association data
Genetic association data for CAD were analyzed by using 
DEPICT, which provides an integrative approach to 
assess the most likely causal genes at risk loci and to infer 
pathway and tissue-cell enrichments [69]. Plink was used 
to identify independent loci based on GWAS significant 
SNPs (PGWAS < 5E-8) and DEPICT was used with the pri-
oritization of genes, gene sets and tissue-cells.

Mapping the GWAS
Genetic association data for CAD was mapped by using 
the Functional Mapping and Annotation of GWAS 
(FUMA) framework [70]. Genomic risk loci were defined 
using a pre-calculated LD structure of the 1000G EUR 
reference population. SNPs in genomic loci with LD 
r2 < 0.6, P-value < 5 × 10–8 and MAF ≥ 0.01 were identi-
fied as independent significant SNPs (IndSigSNPs). Ind-
SigSNPs independent from each other (LD r2 < 0.1) were 
identified as lead SNPs. Genomic loci closely located 
(< 250 kb based on the most right and left SNPs of each 
locus) were merged into one genomic locus. Gene anno-
tation was based on Ensembl (build 85) and entrez ID 
yielding identification of 19,436 protein coding genes. 
Vascular eQTL (GTEx v8, aorta) were mapped by using 
IndSigSNPs to genes in cis (± 500  kb). SNP eQTL gene 
pairs were deemed significant at FDR 5%.

Analysis of HiChIP
H3K27ac-HiChIP FASTQ files (GSE101498) from 
HCASMC were downloaded and aligned with HiC-Pro 
using the default settings [71]. Loop call was performed 
with FitHiChIP [72] at FDR < 1 × 10–6 and a resolution of 
5 kb. Mapping of SNP to gene promoters was performed 
by using bedtools with the intersect function. Gene pro-
moters were identified as a region ± 2 kb from the tran-
scription start site (TSS) by using GENCODE version 35 

in build 37. 1D H3K27ac-HiChIP track was generated 
using deepTools bamCoverage from the sorted BAM 
file generated by HiC-Pro. Hub enhancers were identi-
fied from H3K27ac-HiChIP by generating an interac-
tion matrix of interacting pairs, which was analyzed with 
Cytoscape (version 3.8.2). Most connected hub enhanc-
ers were defined as those with a degree ≥ 90th percentile.

Analysis of ATAC‑seq and ChIP‑seq
ATAC-seq and H3K27ac ChIP-seq data from HCASMC 
were downloaded (GSE124011). FASTQ files were 
extracted from SRA by using parallel-fastq-dump. Data 
were aligned on hg19 using Bowtie 2 and converted to 
bam files with Samtools. Duplicate reads were removed 
with Picard tools. Peak call was performed with MACS2 
for broad peak with cutoff at 0.01. BigWig files were gen-
erated with deepTools bamCoverage and the sorted bam 
files.

Enrichment analysis of anchor loops with open chromatin
Anchor loops and ATAC-seq bed files were analyzed for 
enrichment of overlap by using the R package Genom-
etriCorr [73]. The projection test, which uses a binomial 
distribution was used to assess significance of calculated 
enrichment. Relative distance between the reference and 
query features were quantified by the density function 
correlation and illustrated in a heatmap.

Pathway analysis of anchor loops
Significant loop calls of interacting pair regions in 
HCASMC H3K27ac-HiChIP identified from FitHiChIP 
were transformed into a bed file, which integrated the 
interacting regions or anchor loops. Enrichment was per-
formed by using HOMER and the KEGG pathway.

Partitioned heritability
Partitioned heritability of anchor loops in HCASMC was 
integrated to the full baseline model of 53 annotations 
in the stratified LD score regression framework [30]. LD 
score was calculated for each chromosome. CAD sum-
mary statistics was converted using the munge_sumstats.
py and partitioned heritability calculated using the –h2 
flag.

Genetic Colocalization
Shared genetic signal between the eQTL and CAD was 
assessed by using the HyPrColoc package, which pro-
vides Bayesian colocalization analysis between traits 
[74]. Genomic regions were defined as 500  kb down- 
and 500  kb up-stream of the transcription start site 
(TSS) of each gene. Shared genetic signal between the 
expression (eQTL) and CAD was considered if the 
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posterior probability PP > 0.8. Data were visualized by 
using LocusCompare.

Mendelian randomization
Causal inference was evaluated with two-sample MR 
by selecting independent SNPs (instrumental variables) 
associated with the expression. SNPs were analyzed 
within a window of 500 kb around the TSS of each gene, 
then only SNPs strongly associated with the expression 
(P < 0.001 corresponds to ~ F statistics > 10) and inde-
pendent (r2 < 0.1 based on the 1000G EUR reference 
panel) were selected as instrumental variables. MR was 
performed by using the Mendelian Randomisation pack-
age and a minimum of three instrumental variables was 
required to perform the analysis. Horizontal pleiotropy 
was estimated by using the Cochran’s Q test and was 
considered significant when Pheterogeneity < 0.05. Genes 
were considered causally associated with CAD at FDR 5% 
using the IVW MR. Sensitivity analysis was performed 
with the weighted median MR.

Network analysis
Candidate causal genes were used to extract a network 
from the DifferentialNet dataset [39]. Data inferred for 
the aorta were extracted and analyzed by using Networ-
kAnalyst [75]. Centrality indices were downloaded from 
NetworkAnalyst and hub nodes (genes) were identified as 
those with a degree ≥ 90th percentile. Community iden-
tification was performed by using the random walk algo-
rithm as implemented in NetworkAnalyst. Enrichment 
analysis was performed in Enrichr with the BioPlanet 
2019 resource.

Druggable genome
The Drug Gene Interaction Database (DGIdb) was lever-
aged to assess the druggability of candidate causal genes 
[40]. Drug-gene pairs identified in DGIdb were evaluated 
as potential candidate by using the directional effect of 
the expression on the CAD risk and whether the com-
pound was identified as an agonist or antagonist (in case 
of enzyme: an inhibitor).

PheWAS analysis
PheWAS analysis was performed in Gene ATLAS, which 
integrates 778 traits computed form 452,264 individu-
als in the UK Biobank [41]. Traits and disorders were 
deemed significantly associated with a SNP at FDR 5%.

Cell culture experiments
Human aorta smooth muscle cells were obtained from 
patients undergoing heart transplantation. All donated 
tissues have been obtained with an explicit written con-
sent approved by the local ethical committee and the 

investigations conducted in accordance with the Helsinki 
Declaration. Aortic roots were cut, the tunica adventitia 
and tunica intima were removed, and tissues were cut 
into pieces and incubated 8 min in Trypsin (Invitrogen, 
Thermo Fisher Scientific, ON, Canada) at 37  °C under 
agitation. Trypsin was then removed and tissues were 
resuspended in complete DMEM media (DMEM, 20% 
FBS with L-glutamine and sodium pyruvate). After cell 
growth (approximatively 1  month), DMEM media was 
removed and cells were cultured in smooth muscle cell 
basal media with growth supplements (#310-470 and 
#311-GS, Cell Application, CA, USA). Cells were used 
between passages 2–5. Cells were treated with 100  nM 
of URMC-099 (MedKoo Biosciences, NC, USA) as indi-
cated in the result section. The expression of IL1B, CCL2, 
PLAU and EGR1 was evaluated by quantitative real-time 
PCR. RNA from cells was isolated with E.Z.N.A. Micro 
RNA kit (Omega Bio-tek, VWR, QC, Canada). One 
μg of RNA was reverse transcribed using the Qscript 
cDNA supermix from Quanta (VWR, QC, Canada). 
qPCRs were performed with perfecta sybr supermix 
from Quanta on the Rotor-Gene 6000 system (Corbett 
Robotics Inc, CA, USA). Primers for CCL2 were obtained 
from Qiagen (ON, Canada) and IL1B, PLAU and EGR1 
from IDT (IDT, IL, USA) (Additional file 18: Table S18). 
Transmigration assay was carried out in Boyden chamber 
with the QCM Chemotaxis Cell Migration Assay, 24-well 
(5 µm), fluorimetric (Millipore, Burlington, USA). 10,000 
cells in DMEM 0% FBS with 100  nM of URMC-099 or 
with the control were loaded into the insert, and DMEM 
10% FBS was applied outside the insert. Cell migration 
was quantified after 6  h according to manufacturer’s 
instructions.

Statistics
For cell analyses, continuous data were expressed as 
mean ± SEM. Normality was tested with the Shapiro–
Wilk test. Data with normal distribution were compared 
with Student t-test. For data with non-normal distribu-
tion, groups were compared with the Wilcoxon–Mann–
Whitney test. Statistical analyses were performed with 
Prism 8.0.2. Hypergeometric and binomial tests were 
performed by using R version 4.0. FDR was calculated 
by using the R package multtest with the Benjamini and 
Hochberg test.

URLs
Summary statistics GWAS CAD: https://​data.​mende​ley.​
com/​datas​ets/​gbbsr​px6bs/1

GEO DataSets: https://​www.​ncbi.​nlm.​nih.​gov/​gds
GTEx v8: https://​www.​gtexp​ortal.​org/​home/
DEPICT: https://​data.​broad​insti​tute.​org/​mpg/​depict/
PLINK: http://​zzz.​bwh.​harva​rd.​edu/​plink/

https://data.mendeley.com/datasets/gbbsrpx6bs/1
https://data.mendeley.com/datasets/gbbsrpx6bs/1
https://www.ncbi.nlm.nih.gov/gds
https://www.gtexportal.org/home/
https://data.broadinstitute.org/mpg/depict/
http://zzz.bwh.harvard.edu/plink/
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FUMA: https://​fuma.​ctglab.​nl/
HiC-Pro: https://​github.​com/​nserv​ant/​HiC-​Pro
FitHiChIP: https://​ay-​lab.​github.​io/​FitHi​ChIP/
parallel-fastq-dump: https://​github.​com/​rvali​eris/​paral
​lel-​fastq-​dump
Bowtie 2: http://​bowtie-​bio.​sourc​eforge.​net/​bowti​e2/
​index.​shtml
Samtools: http://​www.​htslib.​org/
Picard: https://​broad​insti​tute.​github.​io/​picard/
MACS2: https://​pypi.​org/​proje​ct/​MACS2/
deepTools: https://​deept​ools.​readt​hedocs.​io/​en/​devel
​op/​index.​html
GenometriCorr: http://​genom​etric​orr.​sourc​eforge.​net/
HOMER: http://​homer.​ucsd.​edu/​homer/
Partitioned heritability: https://​github.​com/​bulik/​ldsc
HyPrColoc: https://​github.​com/​jrs95/​hyprc​oloc
LocusCompare: http://​locus​compa​re.​com/
MR: https://​cran.r-​proje​ct.​org/​web/​packa​ges/​Mende​
lianR​andom​izati​on/​index.​html
NetworkAnalyst: https://​www.​netwo​rkana​lyst.​ca/
Cytoscape: https://​cytos​cape.​org/
DGIdb: https://​www.​dgidb.​org/
Gene Atlas: http://​genea​tlas.​roslin.​ed.​ac.​uk/
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