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Abstract 

Genomics is advancing towards data-driven science. Through the advent of high-throughput data generating 
technologies in human genomics, we are overwhelmed with the heap of genomic data. To extract knowledge and 
pattern out of this genomic data, artificial intelligence especially deep learning methods has been instrumental. In 
the current review, we address development and application of deep learning methods/models in different subarea 
of human genomics. We assessed over- and under-charted area of genomics by deep learning techniques. Deep 
learning algorithms underlying the genomic tools have been discussed briefly in later part of this review. Finally, we 
discussed briefly about the late application of deep learning tools in genomic. Conclusively, this review is timely for 
biotechnology or genomic scientists in order to guide them why, when and how to use deep learning methods to 
analyse human genomic data.
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Introduction
Understanding the genomes of diverse species, specifi-
cally, the examination of more than 3 billion base-pairs of 
Homo sapiens DNA, is a crucial aim of genomic studies. 
Genomics takes a comprehensive view that implicates all 
the genes within an organism, including protein-coding 
genes, RNA genes, cis- and trans-elements, etc. It is a 
data-driven science involving the high-throughput tech-
nological development of next-generation sequencing 
(NGS) that generates the entire DNA data of an organ-
ism. These techniques include whole genome sequencing 
(WGS), whole exome sequencing (WES), transcriptomic 
and proteomic profiling [1–5]. With the recent rapid 

accumulation of these omics data, increased attention 
has been paid to bioinformatics and machine learning 
(ML) tools with established superior performance in sev-
eral genomics implementations [6]. These implementa-
tions involve finding a genotype–phenotype correlation, 
biomarker identification and gene function prediction, as 
well as mapping the biomedically active genomic regions, 
for example, transcriptional enhancers [7–10].

Machine learning (ML) has been deliberated as a core 
technology in artificial intelligence (AI), which ena-
bles the use of algorithms and makes critical predic-
tions based on data learning and not simply following 
instructions. It has broad technology applications; how-
ever, standard ML methods are too narrow to deal with 
complex, natural, highly dimensional raw data, such 
as those of genomics. Alternatively, the deep learning 
(DL) approach is a promising and exciting field cur-
rently employed in genomics. It is an ML derivative 
that extracts features by applying neural networks (NN) 
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automatically [11–14]. Deep learning has been effectively 
applied in fields such as image recognition, audio classi-
fication, natural language processing, online web tools, 
chatbots and robotics. In this regard, the utilisation of DL 
as a genomic methodology is totally apt to analyse a large 
amount of data. While it is still in its infant stages, DL in 
genomics holds the promise of updating arenas such as 
clinical genetics and functional genomics [15]. Undoubt-
edly, DL algorithms have dominated computational mod-
elling approaches in which they are currently regularly 
expanded to report a variety of genomics questions rang-
ing from understanding the effects of mutations on pro-
tein–RNA binding [16], prioritising variants and genes, 
diagnosing patients with rare genetic disorders [17], pre-
dicting gene expression levels from histone modification 

data [18] and to identifying trait-associated single-nucle-
otide polymorphisms (SNPs) [19].

Although the first concept of the DL theory originated 
in the 1980s was based on the perceptron model and neu-
ron concept [20], within the last decade, DL algorithms 
have become a state-of-the-art predictive technology 
for big data [21–23]. The initial efficient implementation 
of DL prediction models in genomics was in the 2000s 
(Fig.  1) [24]. The difficulty associated with the require-
ment of DL models to train an enormous amount of 
training datasets and the need for powerful computing 
resources limited their applications until the introduction 
of modern hardware, such as the high-efficiency graphi-
cal processing units (GPUs) with equivalent structures. 
Now, the architectures of DL models (also known as 

Fig. 1  Timeline of implementing deep learning algorithms in genomics. This timeline plot demonstrated the delay of implementing DL tools in 
genomics; for example, both (LSTM) and (BLSTM) algorithms have been invented in 1997 and the first genomic application was implemented in 
2015. Similar observations are for the rest of the deep learning algorithms (Table 6)
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DNNs) are implemented in diverse areas, as mentioned 
earlier. Classical neural networks consist of only two to 
three hidden layers; however, DL networks extend this up 
to 200 layers. Thus, the word “deep” reflects the number 
of layers that the information passes through. However, 
DL requires superior hardware and substantial paral-
lelism to be applicable [25]. Due to overwhelmed hard-
ware limitations and demanding resources, several DL 
packages and resources were introduced to facilitate DL 
model implementation (discussed in section deep learn-
ing resources for genomics).

The evolution of software, hardware (GPUs) and big 
data in genomics has facilitated the development of deep 
learning-based prediction models for the prediction of 
functional elements in genomes. These genetic variants 
from NGS data predict splice sites in genomic DNA, 
predict the transcription factor binding sites (TFBSs) 
via classification tasks, classify the pathogenicity of mis-
sense mutations and predict drug response and synergy 
[26–31]. An example of a technological evolution that 
has enhanced DL implementation is cloud platforms, 
which provide GPU resources as a DL solution. GPUs 
can considerably escalate the training speed as the neural 
network training style can be more adaptable in certain 
model architecture situations, thus permitting fast math-
ematical processes through the use of larger process-
ing unit numbers and high-memory capacities. Primary 
examples of cloud computing platforms include Amazon 
Web Services, Google Compute Engine and Microsoft 
Azure. However, these elucidations still require users to 
implement model codes [32].

For all ML models, the evaluation metrics are essential 
in understanding the model performance. Basically, these 
metrics are crucial to be considered in case of genomic 
datasets which generate naturally a highly imbalanced 
classes that makes them demanding to be applied by ML 
and DL models. A sufficient number of solutions usu-
ally applied in this case such as transfer learning [33] and 
Matthews correlation coefficient (MCC) [34]. In common 
sense, every ML task can be divided into a regression task 
(e.g. predicting certain outcomes/effects of a disease) or 
a classification task (e.g. predicting the presence/absence 
of a disease); additionally, multiple measurement metrics 
are obtained from those tasks. Generally, some, but not 
all, performance metrics used in ML regression-based 
methods include: mean absolute error (MAE), mean 
squared error (MSE), root-mean-squared error (RMSE) 
and coefficient of determination (R2). In contrast, the 
performance metrics in ML classification-based methods 
include: accuracy, confusion matrix, area under the curve 
(AUC) or/and area under receiver operating characteris-
tics (AUROC) and F1-score. The classification tasks are 
most commonly applied to problems in research areas 

in genomics and for comparing different models’ perfor-
mance. For example, AUC is the most widely used metric 
for evaluating the model performance ranging from [0, 
1]. It measures the true-positive rate (TPR) or sensitiv-
ity, true-negative rate (TNR) or specificity and the false-
positive rate (FPR). Additionally, the F1-score is used to 
test the model accuracy in highly imbalanced dataset and 
is  the harmonic mean between the precision and recall 
(also ranging from [0, 1]). For both AUC and F1-score, 
a greater value reflects better model performance. Also, 
the confusion matrix describes the complete model per-
formance by measuring the model accuracy to calculate 
true-positive values plus true-negative values and divid-
ing the sum over the total number of samples [35, 36]. 
For a greater understanding of the ML evaluation met-
rics—purpose, calculation, etc.—recommended papers 
include Handelman et al. (2019) and England and Cheng 
(2019).

This article reviews deep learning tools/methods based 
on their current applications in human genomics. We 
began by collecting recent (i.e. published in 2015–2020) 
DL tools in five main genomics areas: variant calling and 
annotation, disease variants, gene expression and regu-
lation, epigenomics and pharmacogenomics. Then, we 
briefly discussed DL genomics-based algorithms and 
their application strategies and data structure. Finally, we 
mentioned DL-based practical resources to facilitate DL 
adoption that would be extremely beneficial mostly to 
biomedical researchers and scientists working in human 
genomics. For further information on the field of DL 
applications in genomics, we recommend: [37–39].

Deep learning tools/software/pipelines 
in genomics
Multiple genomic disciplines (e.g. variant calling and 
annotation, disease variant prediction, gene expres-
sion and regulation, epigenomics and pharmacogenom-
ics) take advantage of generating high-throughput data 
and utilising the power of deep learning algorithms for 
sophisticated predictions (Fig.  2). The modern evolu-
tion of DNA/RNA sequencing technologies and machine 
learning algorithms especially deep learning opens a new 
chapter of research capable of transforming big biological 
data into new knowledge or novel findings in all subareas 
of genomics. The following sections will discuss the latest 
software/tools/pipelines developed using deep learning 
algorithms in various genomics areas.

Variant calling and annotation
This first section discusses the applications of the latest 
DL algorithms in variant calling and annotation. We pro-
vided a short list of tools/algorithms for variant calling 
and annotation with their source code links, if available 
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(Table  1), to facilitate the selection of the most suitable 
DL tool for a particular data type.

NGS, including whole genome or exome, sets the 
stage for early developments in personalised medicine, 

along with its known implications in Mendelian disease 
research. With the advent of massively parallel, high-
throughput sequencing, sequencing thousands of human 
genomes to identify genetic variations has become a 

Fig. 2  Deep learning applications in genomics. This figure represents the application of deep learning tools in five major subareas of genomics. 
One example deep learning tool and underlying network architecture has been shown for each of the genomic subareas, and its input data type 
and the predictive output were mentioned briefly. Each bar plot depicts the frequency of most used deep learning algorithms underlying deep 
learning tools in that subarea of genomics (Tables 1, 2, 3, 4, 5)

Table 1  Genomic tools/algorithm based on deep learning architecture for variant calling and annotations

Tools DL model Application Input/Output Website Code Source References

Clairvoyante CNN To predict variant type, zygosity, alter-
native allele and Indel length

BAM/VCF https://​github.​com/​aquas​kyline/​Clair​
voyan​te

[145]

DeepVariant CNN To call genetic variants from next-
generation DNA sequencing data

BAM,CRAM/VCF https://​github.​com/​google/​deepv​
ariant

[30]

GARFIELD-NGS DNN + MLP To classify true and false variants from 
WES data

VCF/VCF https://​github.​com/​gedoa​rdo83/​
GARFI​ELD-​NGS

[146]

Intelli-NGS ANN To define good and bad variant calls 
from Ion Torrent sequencer data

VCF/xlsx https://​github.​com/​aditya-​88/​intel​
li-​ngs

[147]

DAVI (Deep Alignment 
and Variant Identifica-
tion)

CNN + RNN To identify variants in NGS reads FASTQ/VCF N/A [116]

DeepSV CNN To call genomic deletions by visualis-
ing sequence reads

BAM/VCF https://​github.​com/​CSupe​rlei/​DeepSV [52]

https://github.com/aquaskyline/Clairvoyante
https://github.com/aquaskyline/Clairvoyante
https://github.com/google/deepvariant
https://github.com/google/deepvariant
https://github.com/gedoardo83/GARFIELD-NGS
https://github.com/gedoardo83/GARFIELD-NGS
https://github.com/aditya-88/intelli-ngs
https://github.com/aditya-88/intelli-ngs
https://github.com/CSuperlei/DeepSV
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routine practice in genomics, including cancer research. 
Sophisticated bioinformatics and statistical frameworks 
are available for variant calling.

The weakness of high-throughput sequencing proce-
dures is represented by significantly high technical and 
bioinformatics error rates [40–42]. Numerous compu-
tational problems have originated due to the enormous 
amounts of medium or low coverage genome sequences, 
short read fragments and genetic variations among 
individuals [43]. Such weaknesses make the NGS data 
dependent on bioinformatics tools for data interpreta-
tion. For instance, several variant calling tools are broadly 
used in clinical genomic variant analyses, such as genome 
analysis toolkit (GATK) [44], SAMtools [45], Freebayes 
[46] and Torrent Variant Caller (TVC; [47]). However, 
despite the availability of whole genome sequencing, 
some actual variants are yet to be discovered [48].

Contemporary deep learning tools have been proposed 
in the field of next-generation sequencing to overcome 
the limitations of conventional interpretation pipe-
lines. For example, Kumaran et  al. demonstrated that 
combining DeepVariant, a deep learning-based variant 
caller, with conventional variant callers (e.g. SAMtools 
and GATK) improved the accuracy scores of single-
nucleotide variants and Indel detections [49]. Imple-
menting deep learning algorithms in DNA sequencing 
data interpretation is in its infancy, as seen with the 
recent pioneering example, DeepVariant, developed by 
Google. DeepVariant relies on the graphical dissimilari-
ties in input images to perform the classification task for 
genetic variant calling from NGS short reads. It treats the 
mapped sequencing datasets as images and converts the 
variant calls into image classification tasks [30]. However, 
this model does not provide details about the variant 
information, for example, the exact alternative allele and 
type of variant. As such, it is classified as an incomplete 
variant caller model [50].

Later, several DL models for variant calling and anno-
tation were introduced. For instance, Cai et  al. (2019) 
introduced DeepSV, a genetic variant caller that aims to 
predict long genomic deletions (> 50 bp) extracted from 
sequencing read images but not other types of structural 
variants, such as long insertions or inversions. It pro-
cesses the BAM format or VCF files as inputs and out-
puts the results in the VCF form. In terms of evaluating 
DeepSV, it was compared with another eight deletion 
calling tools and one machine learning-based tool called 
Concod [51]. The results reveal that although Concod has 
shorter training times in the case of fewer trained sam-
ples, DeepSV shows a higher accuracy score and fewer 
training losses using the same dataset [52]. Another 
genomic variant filtering tool, GARFIELD-NGS, can 
be applied directly to the variant caller outputs. It relies 

on an MLP algorithm to investigate the true and false 
variants in exome sequencing datasets generated from 
the Ion Torrent and Illumina platforms. It represents a 
robust performance at low coverage data (up to 30X) by 
handling standard VCF file, resulting in another VCF file. 
Ravasio et al. (2018) observed that the GARFIELD-NGS 
model recorded a significant reduction in the false can-
didate variants after applying a canonical pipeline for the 
variant prioritisation of disease-related data [53].

The Clairvoyante model was introduced to predict var-
iant type (SNP or Indel), zygosity, allele alternative and 
Indel length. Thus, it overcomes the DeepVariant model’s 
drawback of lacking the full variant details, including the 
precise alternative allele and variant type. The Clairvoy-
ante model was specifically designed to utilise long-read 
sequencing data generated from SMS technologies (e.g. 
PacBio and ONT), although it is commonly applicable 
for short read datasets as well [50]. Another variant caller 
and annotation model, Intelli-NGS, was introduced by 
Singh and Bhatia (2019). One variant calling was based 
on artificial neural network (ANN), which utilises the 
data generated from the Ion Torrent platform to identify 
true and false effectively. Intelli-NGS takes any number 
of VCF files as batch inputs and processes them in order. 
The processed data results in an excel sheet related to 
each VCF file containing the HGVS codes of all variants 
[54]. All in all, several studies confirmed the capabilities 
of deep learning in genetic variant calling and annotation 
from sequencing data.

Disease variants
Deep learning-based models for the prediction of patho-
genic variants, their application and input/output for-
mats with source codes (if available) are listed in Table 2.

Considering extra data from patient relatives or rel-
evant cohorts, medical geneticists frequently prioritise 
and filter the observed genetic variants after variant 
calling and annotation (Müller et  al. [55]). Variant pri-
oritisation is a method of determining the most likely 
pathogenic variant within genetic screening that dam-
ages gene function and underlying the disease phenotype 
[56]. Variant prioritisation involves variant annotation to 
discover clinically insignificant variants, such as synony-
mous, deep-intronic variants and benign polymorphisms. 
Subsequently, the remaining variants, such as known 
variants or variants of unknown clinical significance 
(VUSs), become attainable [57]. Furthermore, complica-
tions in interpreting rare genetic variants in individuals, 
for example, and understanding their impacts on dis-
order risk influence the clinical capability of diagnostic 
sequencing. For example, the numerous and infrequent 
VUSs in rare genetic diseases represent a challenging 
obstacle in sequencing implementation for personalised 
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medicine and healthy population assessment (Sunda-
ram et  al., 2018). Although statistical methods, such 
as GWAS, have had huge success in combining genetic 
variants to disorders, they still require heavy sampling 
to distinguish rare genetic variants and cannot deliver 
information about de novo variants (Fu et  al., 2014). 
Thus, current annotation approaches, such as PolyPhen 
[58], SIFT [59] and GERP [60], represent beneficial meth-
ods for prioritising the causative variants, despite facing 
some drawbacks. For such problems, DL-based models 
have been implemented to enable a powerful method for 
exploiting the deep neural network (DNN) architecture 
to prioritise variants, for instance, the Basset model, a 
variant annotator, that relies on a CNN algorithm and is 
designed to predict the causative SNP exploiting DNase 
I hypersensitivity sequencing data as an input (Kelley, 
Snoek and Rinn, 2016).

The clinical and molecular validations cannot be 
replaced by in silico prediction models; however, in a 
sense, they can contribute to decrease waiting times for 
results and can prioritise variants for further functional 
analysis. These predictable models are mainly suitable 
when several poorly understood candidate variants 
convey certain phenotypes [27]. Medical genetics has 
been significantly transformed following the proposi-
tion of NGS technology, particularly with WGS because 

of its power to interpret genomic variations in both 
coding and non-coding fragments within the entire 
human genome. Recently, several ML-based methods 
have offered to prioritise non-coding variants; still, the 
recognition of disease-associated variants in complex 
traits, such as cancers, is challenging. Plus, the major-
ity of positive variants associated with a certain phe-
notype is required to predict general and precise novel 
correlations (Schubach et  al., 2017). Lately, several DL 
approaches have been proposed to overcome these 
challenges. For example, the DeepWAS model relies on 
a CNN algorithm that allows regulatory impact pre-
diction of each variant on numerous cell-type-specific 
chromatin features. The key result of the DeepWAS 
model is the direct determination of the disease-asso-
ciated SNPs with a common effect on a certain chro-
matin trait in the related tissue. The DeepWAS model 
demonstrated the ability to detect the disease-relevant, 
transcriptionally active genomic position after combin-
ing the expression and methylation quantitative-trait 
loci data (eQTL and meQTL, respectively) of various 
resources and tissues [19]. Nevertheless, several deep 
learning algorithms have been described as discovering 
novel genes. For this reason, deep learning approaches 
are particularly suited for variant investigation for 
genes not yet related to specific disease phenotypes [61, 
62].

Table 2  Genomic tools/algorithm based on deep learning architecture for disease variants

Tools DL model Application Input/Output Website Code Source References

DeepPVP (PhenomeNet Variant 
Predictor)

ANN to identify the variants in both 
whole exome or whole genome 
sequence data

VCF / VCF https://​github.​com/​bio-​ontol​
ogy-​resea​rch-​group/​pheno​
menet-​vp

[61]

ExPecto CNN Accurately predict tissue-specific 
transcriptional effects of muta-
tions/functional
SNPs

VCF/ CSV https://​github.​com/​Funct​
ionLab/​ExPec​to

[138]

PEDIA (Prioritisation of exome 
data by image analysis)

CNN To prioritise variants and genes 
for diagnosis of patients with 
rare genetic disorders

VCF / CSV https://​github.​com/​PEDIA-​Chari​
te/​PEDIA-​workf​low

[148]

DeepMILO (Deep learning for 
Modeling Insulator Loops)

CNN + RNN to predict the impact of non-
coding sequence variants on 3D 
chromatin structure

FASTA / TSV https://​github.​com/​khura​nalab/​
DeepM​ILO

[119]

DeepWAS CNN To identify disease or trait-asso-
ciated SNPs

TSV / TSV https://​github.​com/​cellm​apslab/​
DeepW​AS

[19]

PrimateAI CNN To classify the pathogenicity of 
missense mutations

CSV / CSV + txt https://​github.​com/​Illum​ina/​
Prima​teAI

[27]

DeepGestalt CNN To Identifying facial phenotypes 
of genetic disorders

Image / txt Is available through the Face-
2Gene application, http://​face2​
gene.​com

[149]

DeepMiRGene RNN, LSTM To predict miRNA precursor FASTA / Cross-Val-
idation (CV)-Splits 
file

https://​github.​com/​eleve​nth83/​
deepM​iRGene

[150]

Basset CNN To predict the causative SNP 
with sets of related variants

BED, FASTA/ VCF https://​github.​com/​davek​44/​
Basset

[151]

https://github.com/bio-ontology-research-group/phenomenet-vp
https://github.com/bio-ontology-research-group/phenomenet-vp
https://github.com/bio-ontology-research-group/phenomenet-vp
https://github.com/FunctionLab/ExPecto
https://github.com/FunctionLab/ExPecto
https://github.com/PEDIA-Charite/PEDIA-workflow
https://github.com/PEDIA-Charite/PEDIA-workflow
https://github.com/khuranalab/DeepMILO
https://github.com/khuranalab/DeepMILO
https://github.com/cellmapslab/DeepWAS
https://github.com/cellmapslab/DeepWAS
https://github.com/Illumina/PrimateAI
https://github.com/Illumina/PrimateAI
http://face2gene.com
http://face2gene.com
https://github.com/eleventh83/deepMiRGene
https://github.com/eleventh83/deepMiRGene
https://github.com/davek44/Basset
https://github.com/davek44/Basset
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Gene expression and regulation
In this section, we focused on the most efficient deep 
learning-based tools in the area of gene expression and 
regulation in the genome. We listed several models apply-
ing various deep learning algorithms and summarised the 
information and source codes mostly in splicing and gene 
expression applications, if available (Table 3).

Gene expression involves the initial transcriptional 
regulators (e.g. pre-mRNA splicing, transcription and 
polyadenylation) to functional protein production [63]. 
The high-throughput screening technologies that test 
thousands of synthetic sequences have provided rich 
knowledge concerning the quantitative regulation of 
gene expression, although with some limitations. The 
main limitation is that huge biological sequence regions 
cannot be explored using experimental or computational 
techniques [64]. Although recent NGS technology has 
provided great knowledge in the gene-regulation field, 
the majority of natural mRNA screening approaches still 
utilise chromatin accessibility, ChIP-seq and DNase-seq 
information; they focus on studying promoter regions. 
Therefore, a robust method is required to understand 
the relationship between various regions of gene regula-
tory structures and their networks expression connection 
[65]. Likewise, the current technology in RNA sequenc-
ing has empowered the direct sequencing of single cells, 
identified as single-cell RNA sequencing (scRNA-seq), 
that permits querying biological systems at unique inten-
tion. For example, the data of scRNA-seq produce valu-
able information into cellular heterogeneity that could 
expand the interpretation of human diseases and biol-
ogy [66, 67]. Its major applications of scRNA-seq data 
understanding involved in detecting the type and state of 
the cells [68, 69]. However, the two main computational 
questions include how to cluster the data and how to 
retrieve them [70].

Deep learning has empowered essential progress for 
constructing predictive methods linking regulatory 
sequence elements to the molecular phenotypes [71–
74]. Just recently, Gundogdu and his colleagues (2022) 
demonstrate an excellent classification model based on 
deep neural networks (DNNs). It constricted numerous 
types of previous biological information on functional 
networks between genes to understand a biological sig-
nificant illustration of the scRNA-seq data [70]. Moreo-
ver, Li et  al. (2020) present a DESC an unsupervised 
deep learning algorithm implemented based on python, 
which understands iteratively representation of cluster-
specific gene expression and the scRNA-seq analysis 
cluster tasks [75]. Further, deep learning model has also 
been applied for  single-cell sequencing  data. Its deep 
neural network (DNN) model designed to measure the 
immune infiltration in both colorectal and breast cancers 

bulk scRNA-seq  data. This approach permits quantify-
ing a particular type of immune cells such as CD8 + and 
CD4Tmem plus the general population of lymphocytes 
together with Stromal content and B cells [76].

Recently, Jaganathan et al. (2019) constructed SpliceAI, 
a deep residual neural network that predicts splice func-
tion using only pre-mRNA transcript sequencing as 
inputs. An architecture contained a 32-dilated convolu-
tional layer employed to identify sequence determinates 
crossing enormous genomic gaps since there are tens of 
thousands of nucleotides separated splice-donors and 
splice-acceptors [71].

Many experimental datasets, such as the ChIP-seq 
and DNase-seq assays, do not measure the effects on 
gene expression directly; however, they are an ideal 
complement to deep neural network methods. For 
instance, Movva et  al. (2019) introduced the MPRA-
DragoNN model, based on CNN architecture for pre-
diction and analysis of  the transcription regulatory 
activity of non-coding DNA sequencing data meas-
ured from (MPRAs) data. Approximately 16  K dis-
tinct regulatory regions in K562 and HepG2 cell lines 
of 295  bp cis-regulatory elements cloned upstream of 
either minimal-promoter or strong-promoter used in 
the Sharpr-MPRA evaluation [77]. A very contempo-
rary DL model, introduced by Agarwal and Shendure, 
named the Xpresso model, a deep convolutional neu-
ral network (CNN), conjointly models the promoter 
sequence and its related mRNA stability features to 
predict the gene expression levels of mRNA. Interest-
ingly, Xpresso models are simple to train at several 
arbitrary cell types, even when they lack experimental 
information, such as ChIP and DNase [73]. Zhang Z. 
et  al. (2019) developed a deep learning-based model 
called DARTS; deep learning augmented RNA-seq 
analysis of transcript splicing, that use a wide-ranging 
RNA-seq resources of a various alternative splicing. 
It consists of two main modules: deep neural net-
work (DNN) and Bayesian hypothesis testing (BHT) 
[78]. More DL-based models (specifically, four dif-
ferent CNN architectures) designed by Bretschneider 
et  al. (2018), named the competitive splice site model 
(COSSMO), which adapts to various quantities of 
alternative splice sites and precisely estimates them 
via genome-wide cross-validation. The frameworks 
consist of convolutional layers, communication lay-
ers, long short-term memory (LSTM) and residual 
networks, correspondingly, to discover related motifs 
from DNA sequences. In every putative splice site, 
the used model inputs are DNA and RNA sequences 
with 80 nucleotide-wide windows around the alter-
native splice sites and opposite constitutive splice 
sites together with the intron length. The outputs of 
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Table 3  Genomic tools/algorithm based on deep learning architecture for gene expression regulation

Tools DL model Application Input/Output Website Code Source References

DanQ CNN + BLSTM To predict DNA function 
directly from sequence 
data

.mat /.mat https://​github.​com/​uci-​
cbcl/​DanQ

[152]

SPEID CNN + LSTM For enhancer–promoter 
interaction (EPI) prediction

.mat /.mat https://​github.​com/​ma-​
compb​io/​SPEID

[153]

EP2vec NLP + GBRT To predict enhancer–pro-
moter interactions (EPIs)

CSV / CSV https://​github.​com/​
wanwe​nzeng/​ep2vec

[154]

D-GEX (deep learning for 
gene expression)

FNN To understand the expres-
sion of target genes 
from the expression of 
landmark genes

.cel, txt, BAM / txt https://​github.​com/​uci-​
cbcl/D-​GEX

[155]

DeepExpression CNN To predict gene expression 
using promoter sequences 
and enhancer–promoter 
interactions

.txt /.txt https://​github.​com/​
wanwe​nzeng/​DeepE​xpres​
sion

[156]

DeepGSR CNN + ANN To recognise various types 
of genomic signals and 
regions (GSRs) in genomic 
DNA (e.g. splice sites and 
stop codon)

FASTA /.txt https://​zenodo.​org/​
record/​11171​59#.​Xp4B4​
y2B1p8

[157]

SpliceAI CNN To identify splice function 
from pre-mRNA sequenc-
ing

VCF / VCF https://​github.​com/​Illum​
ina/​Splic​eAI

[71]

SpliceRover CNN For splice site prediction FASTA /.txt N/A [158]

Splice2Deep CNN For splice site prediction in 
Genomic DNA

FASTA /.txt https://​github.​com/​Somay​
ahAlb​aradei/​Splice_​Deep

[29]

DeepBind CNN To characterise DNA- and 
RNA-binding protein 
specificity

FASTA /.txt https://​github.​com/​
MedCh​aabane/​DeepB​ind-​
with-​PyTor​ch

[111]

Gene2vec NLP To produce a representa-
tion of genes distribution 
and predict gene–gene 
interaction

.txt /.txt https://​github.​com/​jingc​
heng-​du/​Gene2​vec

[130]

MPRA-DragoNN CNN To predict and analyse the 
regulatory DNA sequences 
and non-coding genetic 
variants

N/A https://​github.​com/​kunda​
jelab/​MPRA-​Drago​NN

[77]

BiRen CNN + GRU + RNN For enhancers predictions BED, BigWig /CSV https://​github.​com/​wenji​
egroup/​BiRen

[159]

APARENT (APA REgression 
NeT)

CNN To predict and engineer 
the human 3’ UTR Alterna-
tive Polyadenylation (APA) 
and annotate pathoge-
netic variants

FASTA / CSV https://​github.​com/​johli/​
apare​nt

[72]

LaBranchoR (LSTM Branch-
point Retriever)

BLSTM To predict the location of 
RNA splicing branchpoint

FASTA / FASTA https://​github.​com/​
jpaggi/​labra​nchor

[160]

COSSMO CNN, BLSTM + ResNet To predict the splice site 
sequencing and splice 
factors

TSV, CSV /CSV http://​cossmo.​genes.​toron​
to.​edu/

[79]

Xpresso CNN To predict gene expres-
sion levels from genomic 
sequence

FASTA /.txt https://​github.​com/​vagar​
wal87/​Xpres​so

[73]

DeepLoc CNN + BLSTM To predict subcellular 
localisation of protein from 
sequencing data

FASTA/ prediction score https://​github.​com/​JJAlm​
agro/​subce​llular_​local​
izati​on

[161]

SPOT-RNA CNN To predict RNA Secondary 
Structure

FASTA /.bpseq,.ct, and.
prob

https://​github.​com/​jaswi​
nders​ingh2/​SPOT-​RNA/

[162]

DeepCLIP CNN + BLSTM For predicting the effect of 
mutations on protein–RNA 
binding

FASTA /.txt https://​github.​com/​deepc​
lip/​deepc​lip

[163]

https://github.com/uci-cbcl/DanQ
https://github.com/uci-cbcl/DanQ
https://github.com/ma-compbio/SPEID
https://github.com/ma-compbio/SPEID
https://github.com/wanwenzeng/ep2vec
https://github.com/wanwenzeng/ep2vec
https://github.com/uci-cbcl/D-GEX
https://github.com/uci-cbcl/D-GEX
https://github.com/wanwenzeng/DeepExpression
https://github.com/wanwenzeng/DeepExpression
https://github.com/wanwenzeng/DeepExpression
https://zenodo.org/record/1117159#.Xp4B4y2B1p8
https://zenodo.org/record/1117159#.Xp4B4y2B1p8
https://zenodo.org/record/1117159#.Xp4B4y2B1p8
https://github.com/Illumina/SpliceAI
https://github.com/Illumina/SpliceAI
https://github.com/SomayahAlbaradei/Splice_Deep
https://github.com/SomayahAlbaradei/Splice_Deep
https://github.com/MedChaabane/DeepBind-with-PyTorch
https://github.com/MedChaabane/DeepBind-with-PyTorch
https://github.com/MedChaabane/DeepBind-with-PyTorch
https://github.com/jingcheng-du/Gene2vec
https://github.com/jingcheng-du/Gene2vec
https://github.com/kundajelab/MPRA-DragoNN
https://github.com/kundajelab/MPRA-DragoNN
https://github.com/wenjiegroup/BiRen
https://github.com/wenjiegroup/BiRen
https://github.com/johli/aparent
https://github.com/johli/aparent
https://github.com/jpaggi/labranchor
https://github.com/jpaggi/labranchor
http://cossmo.genes.toronto.edu/
http://cossmo.genes.toronto.edu/
https://github.com/vagarwal87/Xpresso
https://github.com/vagarwal87/Xpresso
https://github.com/JJAlmagro/subcellular_localization
https://github.com/JJAlmagro/subcellular_localization
https://github.com/JJAlmagro/subcellular_localization
https://github.com/jaswindersingh2/SPOT-RNA/
https://github.com/jaswindersingh2/SPOT-RNA/
https://github.com/deepclip/deepclip
https://github.com/deepclip/deepclip
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the model are predictions of percent selected index 
(PSI) distribution of every putative splice-site. All of 
COSSMO model’s performance exceeds MaxEntS-
can; however, there were large performance variances 
among the four frameworks, in which recurrent LSTM 
reached the best accuracy over the communication 
networks, which did not consider the splice-site order-
ing [79]. However, to learn the automated relationships 
among heterogeneous datasets in imperfect biological 
situations, deep learning models offer unprecedented 
opportunities.

Epigenomics
This section discusses some epigenomics challenges and 
summarises up-to-date deep learning models in epig-
enomics, their implementation, data types and source 
code (Table 4). Modifications in phenotypes that are not 
based on genotype modifications are referred to as epi-
genetics. It is defined as the study of heritable modifica-
tions in gene expressions which does not include DNA 
sequence modifications [80]. Epigenomic mechanisms, 
including DNA methylation, histone modifications 
and non-coding RNAs, are considered fundamental in 
understanding disease developments and finding new 

Table 3  (continued)

Tools DL model Application Input/Output Website Code Source References

DECRES (DEep learning for 
identifying Cis-Regulatory 
ElementS)

MLP + CNN To predict active enhanc-
ers and promoters across 
the human genome

FASTA /.txt https://​github.​com/​
yifeng-​li/​DECRES

[74]

DeepChrome CNN For prediction of gene 
expression levels from 
histone modification data

Bam / TSV https://​github.​com/​
QData/​DeepC​hrome

[164]

DARTS DNN + BHT Deep learning augmented 
RNA-seq analysis of tran-
script splicing

.txt https://​github.​com/​Xingl​
ab/​DARTS

Table 4  Genomic tools/algorithm based on deep learning architecture for epigenomics

Tools DL model Application Input/Output Website Code Source References

DeepSEA CNN To predict multiple chromatin 
effects of DNA sequence altera-
tions

N/A https://​github.​com/​Team-​Neptu​
ne/​DeepS​ea

[165]

FactorNet CNN + RNN For predict the cell-type specific 
transcriptional binding factors (TF)

BED / BED, 
gzipped bed-
graph file

https://​github.​com/​uci-​cbcl/​Facto​
rNet

[120]

DeMo (Deep Motif Dashboard) CNN + RNN For transcription factor binding 
site perdition (TFBS) by classifica-
tion task

FASTA / txt https://​github.​com/​const-​ae/​
Neural_​Netwo​rk_​DNA_​Demo

[166]

DeepCpG CNN + GRU​ To predict the methylation states 
from single-cell data

TSV / TSV https://​github.​com/​cange​rmuel​
ler/​deepc​pg

[83]

DeepHistone CNN To accurately predict histone 
modification sites based on 
sequences and DNase-Seq (experi-
mental) data

txt, CSV / CSV https://​github.​com/​ucrbi​oinfo/​
DeepH​istone

[84]

DeepTACT​ CNN To predict 3D chromatin interac-
tions

CSV / CSV https://​github.​com/​liwen​ran/​
DeepT​ACT

[167]

Basenji CNN To predict cell-type-specific epige-
netic and transcriptional profiles in 
large mammalian genomes

FASTA / VCF https://​github.​com/​calico/​basen​ji [114]

Deopen CNN To predict the chromatin acces-
sibility from DNA sequence/ 
Downstream analysis also included 
QTL analysis

BED, hkl /hkl https://​github.​com/​kimmo​1019/​
Deopen

[31]

DeepFIGV (Deep Functional 
Interpretation of Genetic 
Variants)

CNN To predicts impact on chromatin 
accessibility and histone modifica-
tion

FASTA / TSV http://​deepf​igv.​mssm.​edu [62]

https://github.com/yifeng-li/DECRES
https://github.com/yifeng-li/DECRES
https://github.com/QData/DeepChrome
https://github.com/QData/DeepChrome
https://github.com/Xinglab/DARTS
https://github.com/Xinglab/DARTS
https://github.com/Team-Neptune/DeepSea
https://github.com/Team-Neptune/DeepSea
https://github.com/uci-cbcl/FactorNet
https://github.com/uci-cbcl/FactorNet
https://github.com/const-ae/Neural_Network_DNA_Demo
https://github.com/const-ae/Neural_Network_DNA_Demo
https://github.com/cangermueller/deepcpg
https://github.com/cangermueller/deepcpg
https://github.com/ucrbioinfo/DeepHistone
https://github.com/ucrbioinfo/DeepHistone
https://github.com/liwenran/DeepTACT
https://github.com/liwenran/DeepTACT
https://github.com/calico/basenji
https://github.com/kimmo1019/Deopen
https://github.com/kimmo1019/Deopen
http://deepfigv.mssm.edu
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treatment targets. Although in clinical implementations, 
epigenetics has yet to be completely employed. Recently, 
complications initiated in developing data interpreta-
tion tools to advances in next-generation sequencing 
and microarray technology to produce epigenetic data. 
The insufficiency of suitable and efficient computational 
approaches has led current research to focus on a spe-
cific epigenetic mark separately, although several mark 
interactions and genotypes occurred in vivo [81]. Several 
previous studies have disclosed the fundamental appli-
cations of deep learning models in epigenomics. They 
reached unlimited success in predicting 3D chromatin 
interactions, methylation status from single-cell datasets 
and histone modification sites based on DNase-Seq data 
[62, 82–84].

Liu et al. (2018) introduced a hybrid deep CNN model, 
Deopen, which was applied to predict chromatin acces-
sibility within a whole genome from learned regulatory 
DNA sequence codes. In order to analytically evaluate 
Deopen’s function in capturing the accessibility codes of 
a genome, a series of experiments were conducted from 
the perspective of binary classification [31]. As an exam-
ple of Deopen applications, in the androgen-sensitive 
human prostate adenocarcinoma cell lines (LN-CaP), 
the EGR1 recovered by the Deopen model is assumed to 
play a critical role as a treatment target in gene therapy 
for prostate cancer [31, 85]. Recently, Yin et  al. (2019) 
proposed the DeepHistone framework, a CNN-based 
algorithm to predict the histone modifications to various 
site-specific markers. For precise predictions, this model 
combines DNA sequence data with chromatin accessibil-
ity information. It has revealed the capability to discrimi-
nate functional SNPs from their adjacent genetic variants, 

thus having the possibility to be utilised for investigating 
functional impacts of putative disorder-related variants 
[84]. Hence, efficient deep learning models are necessary 
for genome research to elucidate the epigenomic modifi-
cations’ impact on the downstream outputs.

Pharmacogenomics
We listed the most deliberated deep learning pharmacog-
enomics models, their common purposes, input/output 
formats and the source of code (Table 5). Although there 
has been a great interest in deep learning approaches in 
the last few years, until very recently, deep learning tools 
have been rarely employed for pharmacogenomics prob-
lems, such as to predict drug response [86]. Knowledge 
concerning the association between genetic variants in 
enormous gene clusters up to whole genomes and the 
impacts of varying drugs is called pharmacogenomics 
[87]. A key challenge in modern therapeutic methods 
is understanding the underlying mechanisms of vari-
ability. Sometimes the medication response distribu-
tion through a certain population is evidently bimodal, 
proposing a dominant function for one variable, which 
is usually genetic. Nonetheless, an understanding of the 
underlying mechanisms of pharmacokinetics or pharma-
codynamics could be utilised to detect candidate genes, 
wherein the function of those gene variants could expli-
cate various drug reactions (88). The clinical experiments 
generate various errors during the investigation of drug 
combination efficiency, which is time- and cost-intensive. 
Besides, it could expose the patient to excessive risky 
therapy [89, 90]. In order to identify alternative drug syn-
ergy strategies without harming patients, high-through-
put screening (HTS) using several concentrations of a 

Table 5  Genomic tools/algorithm based on deep learning architecture for pharmacogenomics

Tools Function DL model Application Input/Output Website Code Source References

DeepDR Drug Repositioning DNN To translate pharmacog-
enomics features identified 
from in vitro drug screen-
ing to predict the response 
of tumours

txt / txt https://​github.​com/​
ChengF-​Lab/​deepDR

[97]

DNN-DTI (Drug–target 
interaction prediction)

Database DNN To predict drug-target 
interaction

txt / txt https://​github.​com/​Johnn​
yY8/​DNN-​DTI

[168]

DeepBL Antibiotic Resistance CNN To predict the beta-lacta-
mase (BLs) using protein or 
genome sequence datasets

FASTA / CSV http://​deepbl.​erc.​monash.​
edu.​au

[98]

DeepDrug3D Binding Site for drugs CNN To characterise and classify 
the protein 3D binding 
pockets

pdb / txt https://​github.​com/​pulim​
eng/​DeepD​rug3D

[115]

DrugCell Drug response and syn-
ergy for cancer cells

CNN To predict drug response 
and synergy

txt / txt https://​github.​com/​ideke​
rlab/​DrugC​ell

[26]

DeepSynergy Anticancer drug synergy FNN To predict anticancer drug 
synergy

CSV / CSV https://​github.​com/​Krist​
inaPr​euer/​DeepS​ynergy

[95]

https://github.com/ChengF-Lab/deepDR
https://github.com/ChengF-Lab/deepDR
https://github.com/JohnnyY8/DNN-DTI
https://github.com/JohnnyY8/DNN-DTI
http://deepbl.erc.monash.edu.au
http://deepbl.erc.monash.edu.au
https://github.com/pulimeng/DeepDrug3D
https://github.com/pulimeng/DeepDrug3D
https://github.com/idekerlab/DrugCell
https://github.com/idekerlab/DrugCell
https://github.com/KristinaPreuer/DeepSynergy
https://github.com/KristinaPreuer/DeepSynergy
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couple of drugs employed to a cancer cell line is utilised 
[91]. Utilising existing HTS synergy datasets allowed the 
use of accurate computational models to investigate an 
enormous synergistic space. Such reliable models would 
provide direction for both in  vitro and in  vivo studies, 
and they are great steps towards personalised medicine, 
for instance, prediction approaches of anticancer syn-
ergic, systems biology [92], kinetic methods [93] and in 
silico-based models of gene expression screening after 
single-drug and dose-reaction treatments [94]. Nonethe-
less, these approaches are limited to particular targets, 
pathways or certain cell lines and sometimes need a par-
ticular omics dataset of treated cell lines with specific 
compounds [95].

To investigate these pharmacogenomics associations, 
statistical, such as the analysis of variance (ANOVA) 
test, is utilised. This can identify, for example, oncogenic 
changes that occur in patients, which are indicators of 
drug-sensitivity variances in cell lines. In order to move 
beyond the drug’s relations to the actual drug reaction 
predictions, numerous statistical and machine learning 
methods can be employed, from linear regression models 
to nonlinear ones, such as kernel methods, neural net-
works and SVM. A central weakness of these approaches 
is the massive number of inputs feature alongside the low 
sampling, such as in standard gene expression analysis, 
and the total number of input genes (or features) exceeds 
the sample number. An up-to-date strategy to overcome 
the low sampling number issue is to engage multitasking 
models [96].

Deep learning methods are reportedly well suited to 
treatment response prediction tasks based on cell-line 
omics datasets [95, 97]. One of the examples is, DrugCell, 
a visible neural network (VNN) interpretation model for 
the structure and function of human cancer cells in ther-
apy response. It pairs the model’s central mechanisms to 
the human cell-biology structure. Permitting the predic-
tion of any drug response within any cancer then smartly 
plans the successful combination of treatments. Drug-
Cell was developed to capture both elements of therapy 
response in an explainable model with two divisions, the 
VNN-integrating cell genotype and the artificial neural 
network (ANN)-integrating drug design. The first VNN 
model inputs comprise text files of the hierarchal asso-
ciation between molecular sub-systems in human cells, 
which contain 2086 biological process standards in the 
Gene Ontology (GO) database. The second ANN model 
inputs were conventional ANN integrating text files of 
the Morgan fingerprint of medicine, the chemical struc-
ture of a canonical vector symbol. The outputs from 
these two divisions were combined into a single layer of 
neurons that produced the response of a given genotype 
to a certain therapy. The prediction accuracy of each drug 

separately revealed a drug sub-population with signifi-
cant accuracy. This, in turn, competes with the state-of-
the-art regression methods applied in previous models 
to predict the drug response. Additionally, comparing 
DrugCell with a parallel neural network model trained 
merely on drug design and labelled tissue extremely 
outperformed the tissue-based model. This means that 
DrugCell has learned data from somatic mutations 
exceeding the tissue-only method [26]. Another recent 
model called DeepBL is based on deep learning architec-
ture executed based on Small VGGNet structure (a type 
of CNNs) and TensorFlow library. This approach detects 
the beta-lactamases (BLs) and their varieties that pro-
vide resistance to beta-lactam antibiotics, with protein 
sequences as inputs. It is based on well-interpreted mas-
sive RefSeq datasets covering > 39 K BLs extracted from 
the NCBI database. Comparing this model with the other 
conventional machine learning-based algorithms, includ-
ing SVM, RF, NB and LR, DeepBL outperformed them 
after evaluation on an independent test set comprising 
more than 10 K sequences [98]. Until very recently, deep 
learning applications in pharmacogenomics remained 
under consideration.

Deep learning algorithms/techniques used 
in genomics
The accomplishment of the recent, attainable models 
mentioned in deep learning tools/software/pipelines in 
genomics section suggests that deep learning is a pow-
erful technique in genomic research. Here, we focus on 
deep learning algorithms recently applied in genomic 
applications: convolutional neural networks (CNNs), 
feedforward neural networks (FNN), natural language 
processing (NLP), recurrent neural networks (RNNs), 
long short-term memory networks (LSTMs), bidirec-
tional long short-term memory networks (BLSTMs) and 
gated recurrent unit (GRU; Table 6; Fig. 1).

Deep learning is a contemporary and rapidly expanding 
subarea of machine learning. It endeavours to model con-
cepts from wide-ranging data by occupying multi-layered 
DNNs, hence creating data logic, such as pictures, sounds 
and texts. Generally, deep learning has two features: first, 
the structure of nonlinear processing parts is multiple 
layers, and second, the feature extraction fashion on each 
layer is either the supervised or unsupervised method 
[99]. In the 1980s, the initial deep learning architecture 
was constructed on artificial neural networks (ANNs) 
[100], but the actual power of deep learning developed 
outward in 2006 [101, 102]. Since then, deep learning has 
been functional in various arenas involving genomics, 
bioinformatics, drug discovery, automated speech detec-
tion, image recognition and natural language processing 
[6, 13, 103].



Page 12 of 20Alharbi and Rashid ﻿Human Genomics           (2022) 16:26 

Ta
bl

e 
6 

D
ee

p 
le

ar
ni

ng
 a

lg
or

ith
m

s 
in

 g
en

om
ic

s 
an

d 
th

ei
r o

rig
in

al
 d

ev
el

op
m

en
t a

nd
 a

pp
lic

at
io

ns

A
N

N
 A

lg
or

ith
m

s
N

at
ur

al
 L

an
gu

ag
e 

Pr
oc

es
si

ng
 (N

LP
)

Fe
ed

fo
rw

ar
d 

ne
ur

al
 

ne
tw

or
k

Co
nv

ol
ut

io
na

l n
eu

ra
l 

ne
tw

or
k 

(C
N

N
)

Re
cu

rr
en

t n
eu

ra
l 

ne
tw

or
ks

 (R
N

N
s)

Bi
di

re
ct

io
na

l l
on

g 
sh

or
t-

te
rm

 m
em

or
y 

ne
tw

or
ks

 (B
LS

TM
s)

Lo
ng

 s
ho

rt
-t

er
m

 
m

em
or

y 
ne

tw
or

ks
 

(L
ST

M
s)

G
at

ed
 re

cu
rr

en
t u

ni
t 

(G
RU

)

A
lg

or
ith

m
 In

ve
nt

or
A

pp
lie

d 
in

 d
ic

tio
n-

ar
y 

lo
ok

-u
p 

sy
st

em
 

de
ve

lo
pe

d 
at

 B
irk

be
ck

 
Co

lle
ge

, L
on

do
n

Fr
an

k 
Ro

se
nb

la
tt

It 
w

as
 n

am
ed

 a
s 

“n
eo

co
gn

itr
on

 “ 
by

 
Fu

ku
sh

im
a

Ru
m

el
ha

rt
, H

in
to

n 
an

d 
W

ill
ia

m
s

Sc
hu

st
er

 a
nd

 P
al

iw
al

H
oc

hr
ei

te
r a

nd
 

Sc
hm

id
hu

be
r

C
ho

 e
t a

l

Ye
ar

 o
f D

ev
el

op
m

en
t

19
48

19
58

19
80

19
86

19
97

19
97

20
14

Ye
ar

 o
f I

ni
tia

l G
en

om
-

ic
s’ 

Fu
nc

tio
n

19
96

19
93

20
15

20
05

20
15

20
15

20
17

Fi
rs

t U
se

r i
n 

G
en

om
ic

s
Sc

hu
le

r e
t a

l
S 

Es
ki

iz
m

ili
le

r
A

lip
an

ah
i e

t a
l

M
ar

az
io

tis
, D

ra
go

m
ir 

an
d 

Be
ze

ria
no

s
Q

ua
ng

 a
nd

 X
ie

Q
ua

ng
 a

nd
 X

ie
A

ng
er

m
ue

lle
r e

t a
l

Fi
rs

t G
en

om
ic

 A
pp

lic
a-

tio
n

En
tr

ez
 d

at
ab

as
es

Ka
ry

ot
yp

in
g 

ar
ch

ite
c-

tu
re

 b
as

ed
 o

n 
A

rt
ifi

ci
al

 
N

eu
ra

l N
et

w
or

ks

D
ee

pB
in

d
Pr

ed
ic

tin
g 

th
e 

co
m

-
pl

ic
at

ed
 c

au
sa

tiv
e 

as
so

ci
at

io
ns

 b
et

w
ee

n 
ge

ne
s 

fro
m

 m
ic

ro
ar

-
ra

y 
da

ta
se

ts
 b

as
ed

 o
n 

re
cu

rr
en

t n
eu

ro
-fu

zz
y 

te
ch

ni
qu

e

D
an

Q
 m

od
el

D
an

Q
 m

od
el

D
ee

pC
pG

G
en

om
ic

 F
un

ct
io

n 
Ex

em
pl

ar
(s

)
G

en
et

ic
 c

ou
ns

el
lo

rs
 

A
I-b

as
ed

 c
ha

tb
ot

s 
an

d 
EP

Is
 p

re
di

ct
io

n

Ka
ry

ot
yp

in
g,

 P
re

na
ta

l 
di

ag
no

st
ic

 fo
r e

ar
ly

 
de

te
ct

io
n 

of
 a

ne
-

up
lo

id
y 

sy
nd

ro
m

e

Pr
ed

ic
tio

n 
of

 v
ar

ia
nt

 
im

pa
ct

s 
on

 e
xp

re
ss

io
n 

an
d 

di
se

as
e 

ris
k,

 p
re

-
di

ct
in

g 
dr

ug
 re

sp
on

se
 

of
 tu

m
ou

rs
 fr

om
 

ge
no

m
ic

 p
ro

fil
es

, a
nd

 
ph

ar
m

ac
og

en
om

ic
s

Pr
ed

ic
tin

g 
tr

an
sc

rip
-

tio
n 

fa
ct

or
 b

in
di

ng
 

si
te

s, 
fo

r A
lig

nm
en

t 
an

d 
SN

V 
id

en
tifi

ca
tio

n

D
N

A
 fu

nc
tio

n 
pr

ed
ic

-
tio

ns
 a

nd
 p

re
di

ct
io

n 
of

 p
ro

te
in

 lo
ca

lis
a-

tio
n,

 p
re

di
ct

 m
iR

N
A

 
pr

ec
ur

so
r

En
ha

nc
er

–p
ro

m
ot

er
 

in
te

ra
ct

io
n 

(E
PI

) 
pr

ed
ic

tio
n

En
ha

nc
er

s 
an

d 
m

et
hy

la
-

tio
n 

st
at

es
 p

re
di

ct
io

ns

La
nd

m
ar

k 
Re

fe
re

nc
es

[1
28

, 1
69

, 1
70

]
[1

71
–1

73
]

[9
7,

 1
11

, 1
74

–1
76

]
[2

4,
 1

16
, 1

18
, 1

77
, 1

78
]

[1
22

, 1
23

, 1
79

, 1
80

]
[1

6,
 1

21
, 1

23
]

[1
26

, 1
81

]



Page 13 of 20Alharbi and Rashid ﻿Human Genomics           (2022) 16:26 	

Artificial neural networks (ANNs) were motivated 
by the human brain’s neurons and their networks [104]. 
They consist of clusters of fully connected nodes, or neu-
rons, demonstrating the stimulus circulation of synapses 
in the brain through the neural networks. This archi-
tecture of deep learning networks is utilised for feature 
extraction, classification, decreased data dimensions or 
sub-elements of a deeper framework such as CNNs [105].

Multi-omics study generates huge volumes of data, 
as mentioned earlier, basically because of the evolu-
tion that has been pursued in genomics and improve-
ments in biotechnology. Symbolic examples involve the 
high-throughput technology, which extent thousands 
of gene expression or non-coding transcription, such as 
miRNAs. Moreover, the genotyping platforms and NGS 
techniques and the associated GWAS that generates 
measurable gene expression reports, such as RNA-Seq, 
discover numerous genetic variants, together with fur-
ther genomic modifications in various populations [11]. 
However, some DL models rely purely on DNA sequence 
datasets that seemingly lack the power to create predic-
tions of a cell-line-exclusive method due to the identical 
DNA sequencing of various cell lines. In order to over-
come this deficiency, several hybrid deep learning mod-
els have been advised and revealed obvious enhancement 
in certain studies through joining DNA sequencing data 
with biological experiments information [84].

Feedforward Neural Networks (FNNs) Are a type of 
artificial neural network that consists of one forward 
direction network starting from input layers, crossing the 
hidden layers and reaching to the output layer, without 
forming loops such as RNNs [106]. It is used in genomics 
to comprehend the expression of target genes from the 
expression of landmark genes using the D-GEX model 
[12]. Moreover, active enhancers and promoters have 
been predicted across the human genome utilising the 
DECRES model [107]. Moreover, anticancer drug syn-
ergy predictions have been made via the DeepSynergy 
model [95].

Convolutional Neural Networks (CNNs) Also called 
ConvNet, CNN is a deep learning algorithm that has 
a deep feedforward architecture consisting of various 
building blocks, such as convolution layers, pooling lay-
ers and fully connected layers [97, 108]. It illustrates a 
fully connected network since each node in a single layer 
is fully connected to the entire node of the next layer. 
The convolution units in the CNN layers can obtain 
the input data from units of the earlier one, which all 
together generate a prediction. The key principle of such 
deep construction is that massive processing and connec-
tion feature represents inferring nonlinear association 
between both inputs and outputs [109, 110]. The most 
common analysis uses of CNNs were applied in graphical 

images and were initially considered a fully automated 
image network interpreter for classifying handcraft fonts 
[105].

For genomic functions, CNNs considered the domi-
nant algorithm utilised genomic information (Fig. 2). The 
primary CNN implementation, DeepBind, was proposed 
by [111] for binding protein predictions and showed 
greater prediction power than conventional models 
(Table  6). More examples of CNN are used as a single 
algorithm in gene expression, and regulations include the 
DeepExpression model, which has been effectively used 
to predict gene expression using promoter sequences 
and enhancer–promoter interactions [112]. The SpliceAI 
model was introduced to identify splice function from 
pre-mRNA sequencing [71]. Further, the SPOT-RNA 
model was developed for predicting RNA secondary 
structure [16]. CNN was also used for DNA sequenc-
ing in call genetic variants, such as Clairvoyante, Intelli-
NGS and DeepSV models [52, 54, 113]. In epigenomics, 
the DeepTACT model was used for predicting the 3D 
chromatin interactions [82], and the Basenji model was 
employed for predicting cell-type-specific epigenetic and 
transcriptional profiles in large mammalian genomes 
[114]. In disease variants, the ExPecto model was used 
to predict tissue-specific transcriptional effects of muta-
tions/functions [32], and the DeepWAS model was used 
to identify disease or trait-associated SNPs [19]. Finally, 
in pharmacogenomics applications, CNN was utilised to 
create the DrugCell model for drug response and synergy 
predictions [26]. Additionally, the DeepDrug3D model 
was obtained for characterising and classifying the 3D 
protein binding pockets [115].

Additionally, CNN algorithms were combined with 
other algorithms to build up efficient approaches in epig-
enomics, combining CNN with GRU to predict the meth-
ylation states from single-cell data [83], while in terms of 
gene expression and regulation, [74] linked CNN algo-
rithms with MLP in the DECRES model to predict active 
enhancers and promoters across the human genome. 
Besides, [116] used CNN with RNN algorithms in a DNA 
sequencing application to create the DAVI model and 
identify NGS read variants.

Recurrent neural networks (RNNs) are ANNs with a 
recurrent layer consisting of typical recurrent layers 
that enable state updates of past and current inputs 
with feedback connections. They are distinguished 
by the internal cycle connections between recurrent 
layer units and are concerned with sequential data-
sets [117, 118]. Recurrent neural networks have regu-
larly expended for the task that comprised in learning 
sequencing datasets, such as translation languages and 
recognising speech. However, it has not been utilised 
widely on DNA sequencing data which is the data style 
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where the order link between bases are crucial for its 
assessment [119]. Maraziotis et  al. [24] initiated RNN 
implementation in genomics using microarray experi-
mental data based on recurrent the neuro-fuzzy pro-
tocol to infer the complicated causative relationship 
between genes by predicting the time-series of gene 
expression (Table 6).

Most RNNs are applied in genomics combined with 
other algorithms, such as CNNs. For example, to iden-
tify NGS read variants, the DAVI model introduced the 
combination of CNN and RNN algorithms [116]. The 
FactorNet model was designed based on both CNN and 
RNN algorithms and raised to predict the cell-type-spe-
cific transcriptional binding factors (TFBSs) [120]. How-
ever, CNN algorithms are perfect at capturing local DNA 
sequence patterns; contrastingly, RNN derivatives, such 
as LSTM, are ideal for capturing long-distance depend-
encies between sequence datasets [119].

Long short-term memory networks (LSTMs) are stand-
ard recurrent cells with “gates” to handle long-term 
dependency tasks [118]. They deliberate to prevent long-
term dependency difficulties through their competence 
in acquiring long-term dependencies. It has a node, input 
gate, output gate and forget gate as core LSTM unit. 
The node considers values through certain time gaps, 
whereas the input and output gates control information 
flow [121]. The preliminary implementations of LSTM 
algorithms in genomics advised the SPEID model, which 
used a pattern of deep learning algorithms utilising both 
LSTM and CNN for EPI predictions (Table 6; [18]). Park 
et al.[122] obtained DeepMiRGene, a fusion of the RNN 
and LSTM models, to predict miRNA precursors.

Bidirectional Long Short-Term Memory Networks 
(BLSTMs) In BLSTM, two RNNs with two hidden lay-
ers (forward and backward layers) can be trained in both 
time directions in parallel to enable the previous context 
usage that cannot be accomplished via standard RNNs 
[118]. Quang et al. [123] expressed the DanQ model, the 
original employment in genomics that predicted DNA 
function directly from sequence data developed from 
CNN and BLSTM constructions (Table  6). Later, [124] 
presented DeepCLIP, also utilising CNN and BLSTM, to 
predict the effect of mutations on protein–RNA binding.

Gated Recurrent Unit (GRU) is categorised as a variant 
of the LSTM algorithm with cell has only “two gates”: the 
update gate and reset gate [118]. It couples neural net-
works opposing each other. The first network produces 
artificial, accurate information, while the second esti-
mates the validity of the information [125]. It was initially 
applied in gene expression and regulation by [126], who 
presented the BiRen model, an architecture consisting of 
RNNs, CNNs and GRUs, to predict enhancers (Table 6). 
After, the DeepCpG model appeared, combining CNN 

and GRU frameworks to predict the methylation states 
from single-cell data [83].

Natural Language Processing (NLP) It examines the 
computers usage to recognise human languages for the 
purpose of executing beneficial tasks [127]. In the field of 
NLP, in fact, the “distributed representations” technique 
is utilised in several state-of-the-art DL models [128]. For 
example, the word2vec model is an achieved NLP that 
utilises the distribution representation process, “neural 
embedding”. This is because of the embedding task that 
is frequently expressed through neural networks beside 
numerous parameters. The aim of word embedding is to 
convey linear mapping and then generate a direct advan-
tage of representing a single word, thereby distinguish-
ing vectors in continuous space and hence become open 
for backpropagation-based methods in neural networks 
[129]. In terms of deep learning demands in the field of 
gene expression and regulation, Du et al. (2019) explored 
the Gene2vec model, an idea of distributed represen-
tation of genes. It engages genes’ natural contexts and 
their expression and co-expression patterns from GEO 
data. The essential layer of a multilayer neural network 
uses the embedded gene, which predicts gene-to-gene 
interactions with a 0.72 AUC score. This is an interesting 
outcome because the initial model input is the names of 
two genes merely. Thus, the distributed representation of 
genes technique is burdened with rich indications about 
gene function [130]. Another NLP implementation in the 
same field was shown by Zeng et  al. (2018), who com-
bined NLP with GBRT and introduced the EP2vec model 
to EPIs.

Graphical Neural Network (GNN) Due to the emerging 
biological network data sets in genomics, graph neural 
network has been evolved as an important deep learn-
ing method to tackle these data sets[131]. GNN was 
proposed by Gori et al. (2005) as a novel neural network 
model to tackle graph structure data [132]. Out of many 
applications of GNN in analysing multi-omics data, the 
few salient ones are disease gene prediction, drug discov-
ery, drug interaction network, protein–protein interac-
tion network and biomedical imaging. GNN is capable 
of modelling both the molecular structure data [133] and 
biological network data[134].

Deep learning resources for genomics
We collected the most efficient user-friendly genomic 
resources developed based on deep learning architectures 
(Table 7). The adoption of various deep learning solutions 
and models is still limited, despite the enormous suc-
cess of these tools in genomics and bioinformatics. One 
reason for this is the lack of deep learning-based pub-
lished protocols to adapt to new, heterogeneous datasets 
requiring significant data engineering [135]. In genomics, 
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high-throughput data (e.g. WGS, WES, RNA-seq, ChIP-
seq, etc.) are utilised to train neural networks and have 
become typical for disease predictions or understand-
ing regulatory genomics. Similarly, developing new DL 
models and testing current models on new datasets face 
great challenges due to the lack of inclusive, generalis-
able, practical deep learning libraries for biology [136]. In 
this respect, software frameworks and genomic packages 
are necessary to allow rapid progress in adopting a novel 
research question or hypothesis, combining original data 
or investigating using different neural network structures 
[135]. In order to facilitate the DL model implementation 
in genomics, the following software packages or libraries 

could become critical for genomic scientists and biomed-
ical researchers.

Janggu is a deep learning python library based on deep 
CNN for genomic implementations. It aims at a data-
procuring facility and model assessment by supporting 
flexible neural network prototype models. The Janggu 
library provides three use cases: transcriptional factor 
predictions, utilising and enhancing the published deep 
learning designs and predicting the CAGE-tag count nor-
malisation of promoters. This library offers easy access 
and pre-processing to convert data from standard file 
formats (e.g. FASTA, BAM, Bigwig, BED and narrow-
Peak) to BigWig files [135].

Table 7  Deep learning packages and resources

a These deep learning libraries/packages are specific to Genomic application

Resource Name Category Application Date created Link Free/paid

Libraries

Janggua Python package facilitates deep learning in 
the context of genomics

2020 https://​github.​com/​BIMSB​
bioin​fo/​janggu

Free

ExPectoa Python-based repository Contains code for predict-
ing expression effects of 
human genome variants 
ab initio from sequence

2018 https://​github.​com/​Funct​
ionLab/​ExPec​to

Free

Selenea PyTorch-based Library A library for biological 
sequence data training 
and model architecture 
development

2019 https://​selene.​flati​ronin​stitu​
te.​org/

Free

Pysstera TensorFlow-based Library Used for learning sequence 
and structure motifs In 
biological sequences 
using convolutional neural 
networks

2018 https://​github.​com/​
budach/​pysst​er

Free

Kipoia Python package Kipoi is an API and a reposi-
tory of ready-to-use trained 
models for genomics

2019 https://​github.​com/​kipoi/​
kipoi
http://​kipoi.​org/

Free

Compute platform

Google Colaboratory 
(Colab)

PnP GPUs Colab allows anybody to 
write and execute arbitrary 
python code through the 
browser, and is especially 
well suited to machine 
learning, data analysis and 
education

2017 https://​colab.​resea​rch.​
google.​com/

Free

IBM Cloud Cloud service Cloud computing platform; 
Design complex neural 
networks, then experiment 
at scale to deploy optimised 
learning models within IBM 
Watson Studio

2011 https://​www.​ibm.​com/​
cloud

Free tier Cost tier

Google CloudML PnP GPUs For extreme scalability in 
the long run

2008 https://​cloud.​google.​com/​
ai-​platf​orm

Paid

Vertex AI AI platform Google Cloud’s new unified 
ML platform

2021 https://​cloud.​google.​com/​
vertex-​ai

Amazon EC2 Cloud service A website facility which 
delivers secure, scalable 
compute power in the 
cloud

2006 https://​aws.​amazon.​com/​
ec2/

Free Paid

https://github.com/BIMSBbioinfo/janggu
https://github.com/BIMSBbioinfo/janggu
https://github.com/FunctionLab/ExPecto
https://github.com/FunctionLab/ExPecto
https://selene.flatironinstitute.org/
https://selene.flatironinstitute.org/
https://github.com/budach/pysster
https://github.com/budach/pysster
https://github.com/kipoi/kipoi
https://github.com/kipoi/kipoi
http://kipoi.org/
https://colab.research.google.com/
https://colab.research.google.com/
https://www.ibm.com/cloud
https://www.ibm.com/cloud
https://cloud.google.com/ai-platform
https://cloud.google.com/ai-platform
https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
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Selene is a deep learning library based on PyTorch 
for biological sequence data training and model archi-
tecture development. Selene supports the prediction of 
genetic variant effects and visualises the variant scores 
as a Manhattan plot. It also automatically generates 
training, testing and validation split from the given 
input dataset. Further, Selene automatically trains the 
data and can examine the model on a test set, thereby 
producing a visualised figure to display the model’s 
performance [137].

ExPecto is a variant prioritisation model for predict-
ing the gene expression levels from a broad regulatory 
region (~ 40 kb) range of promoter-proximal sequenc-
ing regions. It relies on CNN to convert the input 
sequences into epigenomic features. ExPecto facili-
tates rare variants or unprecedented variants predic-
tion. This is because of its unique design architecture, 
which does not utilise any variant information during 
the training process. ExPecto processes VCF files and 
outputs CSV files [138].

Pysster is a python library package based on CNN for 
biological sequencing data training and classification. 
Pysster provides automatic hyperparameter optimisa-
tion and motif visualisation options along with their 
position and class enrichment information [139].

Kipoi (Greek for “gardens”; pronounced “kípi”) is 
a genomic repository for sharing and reusing trained 
genome-related models. Kipoi provides more than 
2  K distinctly trained models from 22 different stud-
ies covering significant predictive genomic tasks. The 
prediction includes chromatin accessibility determina-
tion, transcription factor binding and alternative splic-
ing from DNA sequences [136].

Implementation of these deep learning, genome-
based libraries/packages requires accessing the com-
puter power and familiarity with web-based resources 
(Table  7). Several major cloud-computing platforms 
have proposed on-demand GPU access in user-friendly 
manners, including Google CloudML, IBM cloud, Ver-
tex AI and Amazon EC2 [140–142]. User configuration 
and the installation of the appropriate environments 
for general GPU coding are required in these cloud-
based machines. Concurrently, for users who need to 
avoid semi-manual setup methods, an expert plug-
and-play (PnP) platform GPU access is offered, such as 
Google Colaboratory (Colab). Google Colab is consid-
ered the simplest alternative python-based notebook 
and provides free K80 GPU utilisation for 12 continu-
ous hours [143, 144]. Links to the resources (packages/
libraries and web platforms) for the application of deep 
learning in genomics are provided in Table 7.

Conclusion
This manuscript catalogues different deep learn-
ing tools/software developed in different subareas 
of genomics to fulfil the predictive tasks of various 
genomic analyses. We discussed, in detail, the data 
types in different genomics assays so that readers could 
have primary knowledge of the basic requirements  to 
develop deep learning-based prediction models using 
human genomics datasets. In the later part of the 
manuscript, different deep learning architectures were 
briefly introduced to genomic scientists in order to help 
them decide the deep learning network architecture 
for their specific data types and/or problems. We also 
briefly discussed the late application of the deep learn-
ing technique in genomics and its underlying causes 
and solutions. Towards the end of the manuscript, 
various computational resources, software packages or 
libraries and web-based computational platforms are 
provided to act as pointers for researchers to create 
their very first deep learning model utilising genomic 
datasets. In conclusion, this timely review holds the 
potential to assist genomic scientists in adopting state-
of-the-art deep learning techniques for the exploration 
of genomic NGS datasets and analyses. This will cer-
tainly be beneficial for biomedicine and human genom-
ics researchers.
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