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Abstract 

Background: Genome-wide association studies (GWASs) have identified hundreds of loci for body mass index (BMI), 
but functional variants in these loci are less known. The purpose of this study was to identify RNA modification-related 
SNPs (RNAm-SNPs) for BMI in GWAS loci. BMI-associated RNAm-SNPs were identified in a GWAS of approximately 
700,000 individuals. Gene expression and circulating protein levels affected by the RNAm-SNPs were identified by 
QTL analyses. Mendelian randomization (MR) methods were applied to test whether the gene expression and protein 
levels were associated with BMI.

Results: A total of 78 RNAm-SNPs associated with BMI (P < 5.0 ×  10–8) were identified, including 65  m6A-, 10  m1A-, 
3  m7G- and 1 A-to-I-related SNPs. Two functional loss, high confidence level  m6A-SNPs, rs6713978 (P = 6.4 ×  10–60) 
and rs13410999 (P = 8.2 ×  10–59), in the intron of ADCY3 were the top significant SNPs. These two RNAm-SNPs were 
associated with ADCY3 gene expression in adipose tissues, whole blood cells, the tibial nerve, the tibial artery and 
lymphocytes, and the expression levels in these tissues were associated with BMI. Proteins enriched in specific KEGG 
pathways, such as natural killer cell-mediated cytotoxicity, the Rap1 signaling pathway and the Ras signaling pathway, 
were affected by the RNAm-SNPs, and circulating levels of some of these proteins (ADH1B, DOCK9, MICB, PRDM1, 
STOM, TMPRSS11D and TXNDC12) were associated with BMI in MR analyses.

Conclusions: Our study identified RNAm-SNPs in BMI-related genomic loci and suggested that RNA modification 
may affect BMI by affecting the expression levels of corresponding genes and proteins.
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Background
In recent decades, obesity, a metabolic disease, has 
become globally prevalent. The number of people suf-
fering from obesity nearly tripled from 1980 to 2016[1]. 

With its overwhelming effects on national health and 
the social economy, the epidemic of obesity poses a 
great challenge to the healthcare system[2]. Body mass 
index (BMI) is used to evaluate overweight or obesity. 
According to the standard established by the World 
Health Organization, 25  kg/m2 ≤ BMI < 30  kg/m2 is 
characterized as overweight, and BMI ≥ 30  kg/m2 is 
obesity. Approximately 34.3% and 16.4% of adults are 
overweight and obese, respectively, and the prevalence 
of obesity is affected by age, urbanization and the level 
of education[3]. Obesity is a common risk factor for 
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cardiovascular disease, hypertension, type 2 diabetes and 
some types of cancer[4–6].

Obesity is the result of a combination of many factors, 
including environmental factors and the expression of 
some genes, and is heritable[7]. The heritability of obe-
sity is generally 40–70%[8]. Genome-wide association 
studies (GWASs) have identified a large number of BMI-
associated loci. In recent years, with the rapid develop-
ment of genetic epidemiological approaches, particularly 
GWASs, the number of SNPs associated with BMI has 
increased substantially[9]. However, risk factors involved 
in the pathway of the regulation of genetic variants on 
BMI and the functional roles of the GWAS-identified 
genes in the development of obesity are still unclear. Elu-
cidation of their biological functions can be very useful 
for the translation of GWAS signals into causal mecha-
nisms and clinical applications.

In recent years, studies have focused on the role of 
epigenetics in metabolism-related diseases such as obe-
sity, and a link between epigenetic modification and 
metabolic health in humans has been proposed [10, 11]. 
Studies related to the modification of protein-coding 
and noncoding RNAs are rapidly accumulating. To date, 
over 170 different types of RNA modifications have been 
identified in various RNA molecules. This number is 
growing with the improvement of technical approaches. 
N6-methyladenosine  (m6A), which is one of the most 
important modifications in eukaryotic messenger 
RNAs, plays a crucial role in various biological processes 
of living organisms, such as gene expression regula-
tion[12–14]. Studies have shown that RNA molecules are 
unstable and susceptible to dynamic, reversible chemi-
cal modifications, which may alter gene expression and 
affect RNA function [15, 16]. Single nucleotide polymor-
phisms affecting RNA modification (RNAm-SNPs) play 
key roles in many aspects of RNA metabolism and have 
recently been linked to many metabolic diseases [17–21].

At present, it is not clear how RNAm-SNPs affect BMI. 
This study posited that the GWAS-identified BMI-associ-
ated loci contain RNAm-SNPs, which may be important 
functional variants, and that the RNAm-SNPs affect BMI 
by altering gene expression at the RNA or protein level. 
Therefore, this study first distinguished RNAm-SNPs 
from other types of SNPs in BMI-associated genomic 
loci. Then, the impacts of RNAm-SNPs on gene expres-
sion were evaluated in quantitative trait locus (QTL) 
studies, including RNA expression QTL (eQTL) and 
circulating protein levels QTL (pQTL), to support the 
functionality of the RNAm-SNPs. By applying Mendelian 
randomization (MR) analysis methods, the associations 
between gene expression and circulating protein levels 
and BMI were examined, and thus, potential novel risk 
factors for obesity were identified.

Materials and methods
Determination of RNAm‑SNPs for BMI
The RNAm-SNP information is available in the RMVar 
database and can be accessed at http:// rmvar. renlab. org/ 
downl oad. html. RMVar, a database of functional variants 
involved in RNA modification, contains more than 1.6 
million RNA modification-related variants for nine types 
of RNA modifications, including  m6A (N6-adenosine 
methylation),  m5C (5-methylcytidin), A-to-I RNA edit-
ing, Nm (ribose 2’-O-methylation), Ψ (pseudouridine), 
 m7G (N7-methylguanosine),  m1A (N1-adenosine meth-
ylation),  m5U (5-methyluridine) and  m6Am (N6,2’-O-
dimethyladenosine) [17]. Compared with the m6Avar 
database (older version), not only are the numbers and 
categories of RNA modifications increased, but the infor-
mation is also annotated more comprehensively. Due to 
different acquisition methods, the confidence levels of 
these RNAm-SNPs are classified as high, medium and 
low. According to the rs ID numbers of the RMVar and 
BMI GWAS databases, RNAm-SNPs associated with 
BMI were screened out (P < 5.0 ×  10–8).

In this study, RNAm-SNPs associated with BMI were 
obtained by integrating summary data from a BMI 
GWAS with information from the RMVar database. 
Summary statistics of associations between more than 10 
million SNPs and BMI have been collected from a BMI 
GWAS dataset (http:// cnsge nomics. com/ data. html), 
which was assessed on approximately 700,000 individu-
als of European ancestry, including ~ 250,000 partici-
pants from the Genetic Investigation of ANthropometric 
Traits (GIANT) consortium study and ~ 450,000 par-
ticipants from the UK Biobank[9]. The ~ 250,000 par-
ticipants from the GIANT study were European-descent 
individuals[22]. The UK Biobank included subjects of 
European, African and South Asian ancestries[23], but 
in this GWAS, the analysis was restricted to 456,426 
participants of European ancestry[9]. Replication analy-
sis in the East Asian population for the identified asso-
ciations was performed. Data for the replication analysis 
were obtained from a GWAS of BMI in 158,284 Japanese 
people[24]. Summary statistics of associations between 
5,961,600 SNPs and BMI were downloaded at http:// 
jenger. riken. jp/ en/ result.

eQTL analysis for BMI‑associated RNAm‑SNPs
As an important epigenetic modification, gene expres-
sion regulation is one of the most important roles of RNA 
modifications. RNAm-SNPs may affect BMI by regulating 
the expression levels of mRNAs. Therefore, eQTL analy-
sis was performed to discover the association between 
RNAm-SNPs and mRNA expression levels in differ-
ent types of cells and tissues. Generally, eQTLs can be 
divided into two categories: cis-eQTLs and trans-eQTLs. 

http://rmvar.renlab.org/download.html
http://rmvar.renlab.org/download.html
http://cnsgenomics.com/data.html
http://jenger.riken.jp/en/result
http://jenger.riken.jp/en/result
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This study mainly focused on cis-eQTL effects. The cis-
eQTL identified in this study means that the RNAm-SNP 
is located in the genomic region of a gene and was asso-
ciated with the expression levels of its host genes. The 
data required for analysis can be obtained via the Hap-
loReg browser (http:// archi ve. broad insti tute. org/ mamma 
ls/ haplo reg/ haplo reg. php), which contains eQTL data 
from 13 studies performed in different human tissues and 
cells[25].

The SMR (summary data–based Mendelian randomi-
zation) approach [26] was applied to identify the asso-
ciations between gene expression levels and BMI by 
integrating summary-level data from eQTL studies with 
summary-level data from the BMI GWAS. We evaluated 
the associations between gene expression levels in six rel-
evant tissues (subcutaneous and visceral omentum adi-
pose tissues, skeletal muscle, whole blood, pancreas and 
thyroid) and BMI. The data needed for SMR analysis were 
collected from the BMI GWAS dataset[9] and eQTL data 
from the GTEx project[27]. The eQTL summary dataset 
of the nine tissues in SMR file format can be downloaded 
at http:// cnsge nomics. com/ softw are/ smr/# DataR esour 
ce. The SMR package (version 0.712) is available at http:// 
cnsge nomics. com/ softw are/ smr/ index. html. It is a com-
mand line program running under the Windows system. 
Default parameters of SMR were used in the analysis, and 
results with P < 5.0 ×  10–6 were considered significant. In 
addition, the HEIDI test was employed to test for hetero-
geneity in SMR association statistics.

pQTL analysis for BMI‑associated RNAm‑SNPs
RNAm-SNPs may also affect BMI by regulating gene 
expression at the protein level. Circulating proteins play 
important roles in many biological processes and are 
important therapeutic targets. Therefore, pQTL analysis 
was further applied to identify circulating proteins asso-
ciated with the identified RNAm-SNPs. The data used for 
pQTL analysis were collected from the INTERVAL pQTL 
study[28]. This study enrolled 3,301 individuals of Euro-
pean descent and examined the associations between 
10.6 million imputed autosomal variants and circulating 
levels of 2,994 proteins (http:// www. phpc. cam. ac. uk/ ceu/ 
prote ins/).

Functional enrichment analysis
KEGG (Kyoto Encyclopedia of Genes and Genomes; 
https:// www. kegg. jp/ kegg/) is a collection of databases 
dealing with genomes, diseases, biological pathways, 
drugs and chemical materials that can help us understand 
the functional interpretation of genes and their prod-
ucts as a whole network. Genetic ontology (GO; http:// 
www. geneo ntolo gy. org) is a bioinformatics resource that 
uses the ontology to represent biological knowledge and 

provides information about gene function. The GO pro-
ject is a powerful tool for a comprehensive description 
of functional genomics. It is a common resource that 
describes the various roles of genes in biological systems, 
including biological processes, molecular functions and 
cellular components. DAVID, an online feature annota-
tion tool[29], was used to perform the functional enrich-
ment analysis. It can be performed through https:// david. 
ncifc rf. gov/ websi te.

MR analysis of proteins
To obtain further supporting evidence for proteins iden-
tified in pQTL analysis, we employed four MR analysis 
methods, including the weighted median[30], inverse-
variance weighted (IVW) [31], MR-Egger[32] and MR 
pleiotropy residual sum and outlier (MR-PRESSO)[33], 
to test for potential causal relationships between circu-
lating protein levels and BMI. The IVW method com-
bines the ratio estimates from each IV in a meta-analysis 
model[31]. If the associations with circulating protein 
levels were to lead to horizontal pleiotropy, the inter-
cept from MR-Egger would be expected to differ from 
zero[32]. Weighted median estimation can provide a con-
sistent assessment if more than 50% of the weights for 
the SNPs come from valid SNPs[30]. We also applied the 
MR-PRESSO method to detect horizontal pleiotropy and 
obtain outlier-corrected causal estimations [33]. The out-
lier test in MR-PRESSO is the procedure to test for the 
MR assumption of no pleiotropy.

The data used in these MR analyses were the pQTL 
and GWAS data described above. Data required in the 
analyses (i.e., the SNP rs number, beta values, standard 
errors and P values) were extracted from the pQTL study 
and GWAS datasets described above. In the pQTL sum-
mary data, SNPs with P values less than 5.0 ×  10–6 were 
selected as potential instrumental variables. To select 
independent instrumental variables, we applied the 
“clump_data” function in the R package TwoSampleMR 
to clump SNPs within 10,000 kb with the criteria of link-
age disequilibrium  r2 < 0.01 based on data from Europe-
ans from the 1000 Genomes project. Then, we used the 
“merge” function of the R program to incorporate the 
summary data of the instrumental variables into a spe-
cific file (an ordinary document with 5 columns of the 
SNP rs number, beta values for protein, standard errors 
for protein, beta values for BMI and standard errors for 
BMI) for each protein-trait pair. After that, the effect 
allele of each instrumental variable in the BMI GWAS 
and pQTL studies was manually checked for consistency.

The weighted median, IVW and MR-Egger analyses 
were performed by using the MendelianRandomization 
R package[34]. The source code and documents for MR-
PRESSO are available at https:// github. com/ rondo lab/ 

http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://cnsgenomics.com/software/smr/#DataResource
http://cnsgenomics.com/software/smr/#DataResource
http://cnsgenomics.com/software/smr/index.html
http://cnsgenomics.com/software/smr/index.html
http://www.phpc.cam.ac.uk/ceu/proteins/
http://www.phpc.cam.ac.uk/ceu/proteins/
https://www.kegg.jp/kegg/
http://www.geneontology.org
http://www.geneontology.org
https://david.ncifcrf.gov/website
https://david.ncifcrf.gov/website
https://github.com/rondolab/MR-PRESSO
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MR- PRESSO. In the MR-PRESSO analysis, parameters 
were left to their default values.

Results
BMI‑associated RNAm‑SNPs
First, a total of 4,820 RNAm-SNPs were selected by inte-
grating the BMI GWAS and RMVar database. According 
to P < 5.0 ×  10–8, 78 BMI-associated RNAm-SNPs con-
taining four types of RNA modifications were identified, 
including 65  m6A-, 10  m1A-, 3  m7G- and 1 A-to-I-related 
SNPs (Additional file  1: Table  S1). Among them, the 
3’-UTR SNP rs17771942 (P = 7.4 ×  10–10) in SOCS5 was 
related to both  m6A and  m1A.

The number of BMI-associated SNPs related to 
 m6A was the largest (Fig.  1). Most (n = 53) of them 
were located in protein-coding genes (81.5%); 10 
were located in lncRNAs (MIR137HG, LINC01114, 
LOC105377876, LINC00599, LOC105369928, 
MEG9, KCTD13-DT, ZNF747-DT, FBXL19-AS1 
and LINC01524), and 2 were located in pseudogenes 
(SERBP1P3 and RPL27AP5). Among the 65  m6A-SNPs, 
25, 15 and 25 RNAm-SNPs belonged to the high con-
fidence, medium confidence and low confidence lev-
els, respectively; 50 were functional loss, and 15 were 
functional gain. For the 53  m6A-SNPs located in pro-
tein-coding genes, 16 (30.8%) were in the 3’-UTR, 2 

(3.1%) were in the 5’-UTR, 20 (36.9%) were intronic 
and 15 (32.3%) were exonic, among which 13 mis-
sense and 8 synonymous variants were found (Addi-
tional file  1: Table  S1). The top 10 most significant 
BMI-associated SNPs related to  m6A methylation are 
presented in Table  1. Two functional loss, high confi-
dence level  m6A-SNPs, rs6713978 (P = 6.4 ×  10–60) and 
rs13410999 (P = 8.2 ×  10–59), in the intron of ADCY3 
were the top significant SNPs (Fig. 1, Fig. 2A), followed 
by the functional gain  m6A-associated SNP rs12716973 
(P = 8.9 ×  10–32) in the lncRNA KCTD13-DT. Repli-
cation analysis in the East Asian population identi-
fied associations between 11 of the 65  m6A-SNPs and 
BMI, including the associations between rs6713978 
(P = 3.5 ×  10–10) and rs13410999 (P = 2.6 ×  10–7) in 
ADCY3 and BMI (Additional file 1: Table S2).

The 10  m1A-SNPs associated with  BMI at P < 5 ×  10–8 
are all located in protein coding genes and are all func-
tional loss. Among them, 6 belonged to the high confi-
dence level and 4 belonged to the medium confidence 
level; 3 were in the 3’-UTR, 3 were intronic, and 4 were 
exonic (2 missense and 2 synonymous) (Table  2, Addi-
tional file 1: Table S1). The most significant SNP was the 
intronic SNP rs3803286 (P = 1.7 ×  10–20) in TRAF3, fol-
lowed by rs1051436 (P = 3.9 ×  10–12) in the 3’-UTR of 
CGGBP1. An association between rs227584 in HROB 
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Fig. 1 Genome-wide distribution of the identified BMI-associated  m6A-SNPs. This Manhattan plot shows the associations between  m6A-SNPs and 
BMI. The x-axis indicates chromosome positions. The y-axis indicates -log10P values of the associations. The P value information was extracted from 
the summary dataset of the BMI GWAS. The red line indicates the significance level of 5.0 ×  10–8. Genes containing the top 10 most significant 
 m6A-SNPs were annotated

https://github.com/rondolab/MR-PRESSO
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and BMI was also found in the East Asian population 
(Additional file 1: Table S2).

For the  m7G modification, only 3  m7G-SNPs associ-
ated with BMI (P < 5.0 ×  10–8) were identified (Addi-
tional file 1: Table S1), including the missense mutation 
rs11545169 (P = 3.3 ×  10–9) in PSMD2, rs11596235 
(P = 2.7 ×  10–8) in the 3’-UTR of SUFU, and the synony-
mous mutation rs2270576 in SNF8 (P = 1.4 ×  10–13). In 
addition, one functional loss A-to-I modification-related 
SNP, rs2577951, in an intron of MGA was identified 
(P = 4.2 ×  10–9). An association between rs11596235 in 
SUFU and BMI was also found in the East Asian popula-
tion (Additional file 1: Table S2).

Gene expression associated with BMI
We investigated whether the RNAm-SNPs were associ-
ated with gene expression. eQTL analysis was performed 
for the 78 identified RNAm-SNPs associated with BMI 
(P < 5.0 ×  10–8). According to the HaploReg database, 
most of these RNAm-SNPs (84.6%) showed eQTL effects 
in different cells or tissues, and cis-eQTL signals were 

found for 39 RNAm-SNPs. Among these 39 cis-acting 
RNAm-SNPs, 32 were related to  m6A, 6 were related 
to  m1A and 1 was related to  m7G. For example, the 
 m6A-SNPs rs13410999 and rs6713978 in ADCY3 were 
associated with the expression levels of ADCY3 in sub-
cutaneous adipose tissue (P = 3.97 ×  10–7 and 1.11 ×  10–6, 
respectively) and whole blood cells (P = 1.91 ×  10–57 and 
1.62 ×  10–52, respectively). A total of 31 RNAm-SNPs 
showed eQTL effects in adipose tissues (Additional file 1: 
Table  S3), and 11 of them in GPBP1L1, EVI5, ADCY3, 
IP6K2, SERBP1P3, PIDD1, RPAIN, ZSWIM7, HAPLN4 
and PSMG1 were cis-acting RNAm-SNPs. The two 
top significant cis-acting RNAm-SNPs in adipose tis-
sues were rs14194 in PSMG1 and rs10902221 in PIDD1 
(P = 1.04 ×  10–16 and 9.80 ×  10–14, respectively), which 
were associated with  m1A methylation.

In SMR analysis, we found that the expression levels of 
12 genes in the six relevant tissue types were significantly 
associated with BMI (P < 5.0 ×  10–6) (Additional file  1: 
Table  S4). The number of significant associations found 
in each tissue was 6 in adipose tissue, 7 in skeletal muscle, 

Fig. 2 Association between the ADCY3 gene and BMI. A The  m6A-SNPs rs6713978 and rs13410999 in the ADCY3 gene were significantly associated 
with BMI; SNPs in ADCY3 were strongly associated with the expression level of ADCY3, and the expression levels of the ADCY3 gene in subcutaneous 
B and visceral omentum adipose tissues C and whole blood cells D were significantly associated with BMI
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4 in whole blood cells, 4 in the thyroid and 2 in the pan-
creas. We found that the expression levels of some key 
obesity susceptibility genes were significantly associated 
with BMI in related tissues. For example, the expression 
levels of the ADCY3 gene were significantly associated 
with BMI in subcutaneous (P = 3.25 ×  10–14) (Fig.  2B) 
and visceral omentum adipose tissues (P = 1.86 ×  10–9) 
(Fig.  2C) and whole blood cells (P = 3.62 ×  10–30) 
(Fig. 2D). The results of the eQTL and SMR analyses sug-
gested that the RNAm-SNPs rs6713978 and rs13410999 
may affect ADCY3 gene expression in these tissues and 
then affect obesity risk.

Circulating proteins related to the RNAm‑SNPs
We found 54 pQTL signals (P < 5.0 ×  10–5) for 19 RNAm-
SNPs that were significantly associated with BMI 
(P < 5.0 ×  10–8) (Additional file 1: Table S5). Among these 
signals, 49 were identified in SNPs associated with  m6A 
modification. The SNP with the strongest pQTL signal 
was rs3172494  (m6A-associated SNP), which was associ-
ated with circulating TXNDC12 levels (P = 1.95 ×  10–72). 
rs3172494 and rs853678 each were associated with cir-
culating levels of 9 proteins. A total of 50 proteins were 
associated with BMI-associated RNAm-SNPs. These pro-
teins were enriched in specific KEGG pathways, such as 
natural killer cell-mediated cytotoxicity (P = 8.1 ×  10–3), 
proteoglycans in cancer (P = 3.0 ×  10–2), the Rap1 signal-
ing pathway (P = 3.1 ×  10–2) and the Ras signaling path-
way (P = 4.0 ×  10–2) (Fig.  3A). These proteins were also 
enriched in GO terms of biological processes (Fig. 3B).

Proteins causally associated with BMI
The pQTL analysis showed that RNAm-SNPs were asso-
ciated with circulating protein levels. To support the 
functional role of RNAm-SNPs in BMI, we still need 
to demonstrate that the circulating proteins affected 
by the RNAm-SNPs were associated with BMI. We 
chose proteins for MR analysis from two aspects based 
on the findings of the pQTL analysis. First, 13 proteins 
(ADH1B, CTSB, DOCK9, MICB, PDE4D, PRDM1, RAC-
GAP1, SCG3, STOM, TDGF1, TMPRSS11D, TNS2 and 
TXNDC12) that showed strong signals (P < 5.0 ×  10–8) 
in the pQTL analysis were chosen. Second, five proteins 
(CCL25, GRIA4, HBEGF, NPPA and RETN) were also 
considered because they have been reported to be asso-
ciated with obesity. Therefore, we tested whether these 
18 proteins were genetically associated with BMI using 
four MR methods. Associations with P < 6.94 ×  10−4 
were considered significant in this analysis. We found 
that the associations between circulating levels of seven 
proteins (ADH1B, DOCK9, MICB, PRDM1, STOM, 
TMPRSS11D and TXNDC12) and BMI were significant 
in weighted median, IVW, MR-Egger or MR-PRESSO 

analyses (Table 3). Based on the results of the MR-Egger 
and MR-PRESSO analyses, the associations between cir-
culating levels of ADH1B, TMPRSS11D and TXNDC12 
and BMI were likely due to pleiotropic effects. Therefore, 
the MR analyses provided evidence for the causal asso-
ciations between circulating levels of DOCK9, MICB, 
PRDM1 and STOM and BMI, and the strongest evidence 
was found for STOM.

Discussion
In this study, 78 RNAm-SNPs associated with BMI were 
identified by integrating BMI GWAS data with informa-
tion from the RMVar database and QTL studies. The 
findings indicated that RNA modification may play a role 
in obesity. The identified RNAm-SNPs were related to the 
RNA modifications of  m6A,  m1A,  m7G and A-to-I. These 
SNPs showed cis-acting eQTL effects in relevant tissues, 
and some of them were found to be associated with pro-
teins that were enriched in specific pathways. Moreover, 
we demonstrated that the affected gene expression and 
protein levels were associated with BMI in MR analyses. 
Therefore, by applying this study strategy, we clarified 
how RNAm-SNPs affected BMI, i.e., the RNAm-SNPs 
affect RNA modification, which controls gene expression, 
and the altered RNA expression or protein levels result in 
abnormal BMI.

Although hundreds of BMI-related genomic loci have 
been identified by GWASs, many of the SNPs inside the 
loci may not be directly causal variants affecting BMI. 
The genetic associations require more interpretation 
[35]. Previous studies have applied exome sequencing 
technologies to detect potential functional variations that 
can alter amino acid sequences[36]. Functional genetic 
variants that influence RNA–protein interactions[37] 
or change the splicing sites of exonic splicing enhancers 
and silencers [38] through RNA editing [39] have also 
been identified. Studies have shown that epigenetic fac-
tors, such as RNA methylation, may affect the function of 
RNA and its expression level[16]. Genetic variants affect-
ing RNA modification were potentially functional vari-
ants for BMI. Therefore, a combination of information 
from GWASs and RNA modification database could help 
determine the causal relationship between gene variants 
and phenotypes. Our study identified many RNAm-SNPs 
that were significantly associated with BMI, and some of 
them were in well-known obesity susceptibility genes. 
Further eQTL analysis and SMR analysis confirmed that 
some RNAm-SNPs affect gene expression. For exam-
ple, BMI-associated SNPs rs6713978 and rs13410999 in 
ADCY3 were associated with gene expression of ADCY3, 
and expression levels of ADCY3 were associated with 
BMI. ADCY3 (adenylate cyclase 3) is a protein-coding 
gene that encodes adenylate cyclase, which is widely 
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distributed in human tissues, especially adipose tis-
sue[40]. It catalyzes the synthesis of ATP into cyclic AMP 
(cAMP)[41]. The ADCY3-cAMP signaling pathway is 

known to play a critical role in the regulation of adipo-
genesis [42]. According to the results of eQTL and SMR 
analysis, rs6713978 and rs13410999 were associated with 

Fig. 3 Potential biological functions of the proteins affected by the BMI-associated RNAm-SNPs. A KEGG pathway enrichment of the proteins 
affected by the BMI-associated RNAm-SNPs; B The top 20 significant biological process GO terms for the proteins affected by the BMI-associated 
RNAm-SNPs
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the gene expression of ADCY3 in adipose tissues and 
blood cells. These two RNAm-SNPs overlap with enhanc-
ers in several major tissue types and can alter regulatory 
motifs (YY1, AP, GR, HDAC2 and Pax). In addition, they 
were functional loss variants for  m6A methylation and 
might affect downstream signaling pathways associated 
with BMI by influencing the expression levels of ADCY3. 
Therefore, the findings of this study showed that RNAm-
SNPs in GWAS-identified BMI loci may be functional 
variants and that RNAm-SNPs may affect BMI by alter-
ing gene expression levels.

In addition, pQTL analysis also found that these 
RNAm-SNPs affected circulating levels of proteins that 
were related to obesity. Take MAPK3 and SCG3 as exam-
ples. The pQTL analysis showed that rs12716973 and 
rs12102203 were associated with the protein levels of 
MAPK3 and SCG3, respectively. The rs12716973 SNP 
is located in a promoter (chr16:29,936,397–29,939,208) 
and can alter regulatory motifs and protein binding. SNP 
rs12102203 is a missense SNP and is located in the bind-
ing site of transcription factor CTCF (chr15:51,791,545–
51,791,985) and can alter regulatory motifs. MAPK3 
(mitogen-activated protein kinase 3), or ERK1, is a very 
important signaling molecule[43]. Studies have shown 
that MAPK3 plays a critical role in adipocyte differen-
tiation and obesity and can regulate the formation of 
fat[44]. Functional enrichment analysis showed that 
MAPK3 was involved in natural killer cell-mediated 
cytotoxicity[45–47], proteoglycans in cancer, the Rap1 
signaling pathway[48] and the Ras signaling pathway[49, 
50] and 124 GO biological process terms, which showed 
the important role of MAPK3 in obesity[44–50]. SCG3 
(secretogranin III) is involved in the regulation of BMI 
by influencing the secretion of neuropeptides associated 
with food intake[51]. In addition, the proteins CCL25, 
GRIA4, HBEGF, NPPA and RETN, which are affected by 
RNAm-SNPs, have been reported to be related to obesity. 
More importantly, circulating levels of DOCK9, MICB, 

PRDM1 and STOM were causally associated with BMI in 
MR analysis. The relationships between these identified 
proteins and obesity have not been studied. The MR anal-
ysis identified risk factors for obesity, and the results sug-
gested that genes involved in natural killer cell-mediated 
cytotoxicity, proteoglycans in cancer, the Rap1 signaling 
pathway and the Ras signaling pathway play functional 
roles in obesity. In summary, the results indicated that 
these RNAm-SNPs may be involved in the pathogenesis 
of obesity by changing the protein levels.

The present study has some potential limitations. First, 
most of the identified RNAm-SNPs were related to  m6A 
methylation. Information for other types of RNA modifi-
cation is lacking, so very few associations between other 
types of RNA modification and BMI have been identified. 
Second, we did not test whether the identified RNAm-
SNPs functionally affected the RNA modifications exper-
imentally. RNA modification QTL studies are scarce at 
present. We looked for a  m6A QTL for BMI-associated 
RNAm-SNPs in the literature and found that only one 
 m6A-SNP, the missense SNP rs4858871 in MAP4, was a 
 m6A QTL. This SNP was associated with the methylation 
level of the  m6A peak chr3_47916105_47916283 in mus-
cle and heart tissues[19]. Third, the relationships between 
protein molecules and BMI have not been verified exper-
imentally. However, the identification of related proteins 
was performed to find evidence to support the functional 
relevance of the identified RNAm-SNPs in obesity. This 
purpose was achieved by applying MR analysis to estab-
lish the potential causal associations between proteins 
and BMI.

Conclusions
In summary, associations between RNAm-SNPs and BMI 
were identified by mining GWAS datasets in this study. 
Our study suggested that RNAm-SNPs may affect BMI 
by altering gene expression. Gene expression levels (e.g., 
ADCY3) and circulating protein levels (e.g., DOCK9, 

Table 3 Association between circulating protein levels and BMI

The effect estimation was derived from the weighted median analysis

Proteins Estimate Standard Error P values

Weighted median IVW MR‑Egger Intercept MR‑PRESSO

ADH1B 0.0269 0.0068 8.18E−05 8.00E−02 6.22E−04 9.63E−03 5.06E−01

DOCK9 0.0478 0.0087 4.50E−08 5.44E−03 1.76E−01 5.10E−01 4.98E−02

MICB -0.0161 0.0039 3.15E−05 4.38E−05 1.18E−02 8.43E−01 1.28E−02

PRDM1 0.0182 0.0034 1.15E−07 4.30E−02 8.09E−02 3.17E−01 3.32E−02

STOM 0.0307 0.0046 3.10E−11 3.87E−06 1.45E−06 5.00E−02 9.89E−03

TMPRSS11D 0.0280 0.0044 2.64E−10 3.27E−02 6.11E−06 2.30E−03 2.48E−02

TXNDC12 −0.0115 0.0029 9.26E−05 3.59E−02 3.57E−01 4.98E−01 8.07E−02
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MICB, PRDM1 and STOM) affected by the RNAm-SNPs 
were associated with BMI. Therefore, RNA modification 
of these genes may be an important regulatory mecha-
nism of BMI. This is the first attempt to clarify the rela-
tionship between RNAm-SNPs, gene expression and 
BMI.
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