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Abstract

ability to predict clinical outcomes.

Background: Clinical classification of autistic patients based on current WHO criteria provides a valuable but simpli-
fied depiction of the true nature of the disorder. Our goal is to determine the biology of the disorder and the ASD-
associated genes that lead to differences in the severity and variability of clinical features, which can enhance the

Method: Novel Whole Exome Sequencing data from children (n = 33) with ASD were collected along with extended
cognitive and linguistic assessments. A machine learning methodology and a literature-based approach took into
consideration known effects of genetic variation on the translated proteins, linking them with specific ASD clinical
manifestations, namely non-verbal IQ, memory, attention and oral language deficits.

Results: Linear regression polygenic risk score results included the classification of severe and mild ASD samples
with a 81.81% prediction accuracy. The literature-based approach revealed 14 genes present in all sub-phenotypes
(independent of severity) and others which seem to impair individual ones, highlighting genetic profiles specific to
mild and severe ASD, which concern non-verbal IQ, memory, attention and oral language skills.

Conclusions: These genes can potentially contribute toward a diagnostic gene-set for determining ASD severity.
However, due to the limited number of patients in this study, our classification approach is mostly centered on the
prediction and verification of these genes and does not hold a diagnostic nature per se. Substantial further experi-
mentation is required to validate their role as diagnostic markers. The use of these genes as input for functional analy-
sis highlights important biological processes and bridges the gap between genotype and phenotype in ASD.
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Background

According to the Diagnostic and Statistical Manual of
Mental Disorders [1], Autism Spectrum Disorder (ASD)
is associated with abnormalities in early developmental
period in communication and social interaction and with
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restricted and repetitive patterns of behavior or inter-
ests. Cognitive skills such as intelligence, memory and
attention, as well as language skills may also be affected
in ASD. Forty-four percent of children identified with
ASD has average and above average intellectual quo-
tient (IQ>85), 25% has below average IQ (71-85) and
31% is within the range of intellectual disability (IQ <70)
[2, 3]. Since ASD is a heterogeneous disorder, research-
ers usually adopt two main classifications: one based on
the presence or absence of intellectual disability (ID) and
one based on oral language skills (i.e., verbal or minimally
verbal children).
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The most common is the one that classifies the fol-
lowing two main subgroups: those that ASD coexists
with intellectual disability and those that have average
or above average intellectual functioning, whose charac-
teristics vary in terms of linguistic, cognitive and social
skills from those with intellectual disability [4]. Another
classification for children within the autistic spectrum
is verbal and non-verbal or "minimally verbal" children,
i.e., children who have very limited use of spoken lan-
guage for communication purposes. The reception of
language might also be affected, and the autistic symp-
toms are usually severe in terms of behavior [5-8]. It
has been commonly believed that non-verbal cognitive
abilities predict expressive and receptive language [2,
3]. However, Hanson et al. [9] have shown that there are
minimally verbal children with autism who do not have
low non-verbal IQ, others with low both expressive and
receptive language skills and others that have low expres-
sive but good receptive language skills. Consequently,
categorization of subgroups in ASD is problematic.

Additionally, the association of genetic loci with spe-
cific behavioral characteristics in ASD contributes sig-
nificantly to the understanding of the influence of genetic
factors on clinical phenotype. This connection arises
from studies that in their methodology include, in addi-
tion to genetic analysis, behavioral assessment, such as
language and cognitive assessment. Recently, various
researchers have suggested that genetics provide a lot of
information on clinical phenotypes of ASD rather than
vice versa [6]. Several chromosomal copy number vari-
ants (CNVs) and single-nucleotide variants (SN'Vs) (such
as deletions and duplications at chromosomal regions
1q21, 7q11.23, 15q11-13, 16p11.2, and 22q11.2) have
been identified as genetic risk factors for ASD [7, 8] and
have shown to have predictive value for clinical pheno-
type of ASD [5]. For example, 15q11.2 duplications are
linked to ASD and Schizophrenia [10] in addition to their
connection to high rates of epilepsy [11]. Other deletions,
including 16p11.2, have been linked to cognitive deficits
such as intellectual disability [9, 12] as well as develop-
mental coordination disorder, phonological processing
disorder, expressive and receptive language disorders
[13]. Prognostication of the clinical profiles of individu-
als with ASD based on specific genes that could serve
as reliable biomarkers is important for early diagnosis
and eventually for early and effective treatment. These
findings would not be possible without contemporary
sequencing and bioinformatics methods.

The technological advancements of next-generation
sequencing (NGS), including whole genome sequencing
(WGS) and whole exome sequencing (WES), have ena-
bled researchers to perform detailed gene variation anal-
yses like genome-wide association studies (GWAS) en
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masse. This newfound accessibility to these technologies
enables not only experimental high-throughput protocols
to be undertaken but also provides clinicians with power-
ful tools for assessing disease pathogenesis, progression
and outcome. It has also enabled clinicians to provide
more gene guided counseling into matters like therapy
(through pharmacogenomics), and pre/peri-natal con-
sulting. However, there are a variety of factors that need
to be taken into account especially due to the complex
nature of various diseases and the idiosyncrasies of indi-
vidual patients regarding their genetic background. These
notions bring forward precision medicine.

In precision medicine, genetic variation screening
provides an important tool for detecting high-risk indi-
viduals of specific genetic disorders. Odds ratio analysis
employed in traditional GWAS helps ascertain disease-
variant associations by the occurrence frequency of these
high-risk variants in non-control groups. These variants
can act both protectively and as instigators of disease.
To make this determination, researchers can employ
polygenic risk score predictions by training risk models
on pools of variants highlighted in specific case—control
studies [14, 15]. Alternatively, variant annotation using
in-silico approaches like GEMINI [16] provide informa-
tion for each variant found in a study’s samples through
several genomic databases (ENCODE [17], UCSC [18],
OMIM [19], dbSNP [20], KEGG [21], and HPRD [22])
and informs on frequency (like ExAC [23] and 1000GP
[24]) and proteinic impact of changes in amino acid cod-
ing due to these variants (ClinVar [25], COSMIC [26],
CADD [27], Polyphen [28] and SIFT [29]).

Current WHO criteria for classification and grading
of ASD provide a valuable but simplified depiction of
the true nature of the disorder. Moreover, it is often dif-
ficult to predict clinical outcome using the current grad-
ing scheme. The aim of this study is to elucidate, through
clinical assessment and bioinformatics, the differences in
the genetic background of different phenotypical mani-
festations of ASD. More specifically, it aims at investigat-
ing whether there are specific genes that can account for
differences in the clinical profiles of children with ASD
at the linguistic and cognitive level by reporting on the
analyses of a new autistic patient WES dataset (n=33).
We first extracted the sequenced genotypes (WES) of
blood samples of school-aged (6—12-year-old) chil-
dren with ASD. We then conducted clinical assessment
by administrating standardized tests of non-verbal IQ,
memory, attention and oral language skills and separated
them into mild and severe phenotypes in each of these
cognitive and linguistic categories, based on these assess-
ments. The next step was to identify common high-risk
variants in the sample dataset previously found in the lit-
erature by searching through several genomic databases
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but perhaps also to identify de novo variants, not previ-
ously reported in the literature. Finally, we used a linear
regression polygenic risk score machine learning algo-
rithm to obtain biologically significant genes with the
potential to aid in the grading of autistic samples based
on their sequenced genotypes, derive specific molecu-
lar signatures from severe and non-severe subtypes of
autistic samples and assess whether these molecular sig-
natures outline functional subclasses. At this stage we
should stress that given the limited number of patients in
the dataset used in our study, results require additional
validation using further experimentation. With this in
mind, we report eighty-four identified variants which
could be assigned to specific functional categories related
to ASD and intellectual disability, as well as other disor-
ders. Classification of our samples using these variants
was in agreement with the clinical classification for our
dataset with 81.81% prediction accuracy. The six samples
that showed a differential molecular diagnosis were fur-
ther assessed using clinical information in order to sub-
stantiate the classification provided by our risk model.

Methods

Participants

Thirty-three children with ASD that attended both main-
stream and special education schools were recruited
from private speech therapy centers. Only those children
whose parents gave written permission to participate in
the research were included in the study. All children were
diagnosed with ASD by public hospitals and public medi-
cal-pedagogical centers according to the ICD-10 (https://
apps.who.int/iris/handle/10665/37958) and DSM-V [1]
official criteria. Children were initially divided into two
groups based on their non-verbal IQ. The first included
18 children (average age: 9.5 years) with typical non-ver-
bal IQ (>80 in Raven Progressive Matrices) (ASD_MH
group) and the second included 15 children (average age:
8.5 years) with low non-verbal IQ (<60 in RPM) (ASD_L
group). We then divided them based on whether they
were verbal (acquired spoken language) or minimally
verbal (absence of spoken language) children with ASD.
The criterion was their performance (score 0) in two lan-
guage tasks that required spoken language (see below
expressive vocabulary and narration tasks). There were
19 verbal and 14 minimally verbal children. Moreover, we
divided them in two groups (severe and mild) based on
their attention and memory skills. Regarding the atten-
tion skills, the criterion for a child to fall under the severe
phenotype was performance under the 10th percentile in
both auditory and visual attention tasks and equal or over
the 10th percentile for the mild phenotype. There were 9
children in the mild and 24 in the severe phenotype con-
cerning attention skills. Regarding the memory skills, the
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criterion for a child to fall under the severe phenotype
was performance under the 10th percentile in both audi-
tory and visual memory tasks. There were 18 children in
the mild and 15 in the severe phenotype.

Participants were assessed at their school individu-
ally in one or two sessions of a total duration of 45 min.
Moreover, blood samples were obtained by experienced
microbiologists in microbiology laboratories and were
then sent to a genetic lab for Whole Exome Sequencing
analysis.

Clinical phenotype assessment

In this study, children were assessed with cognitive as
well language tasks. Standardized tests for Greek were
employed. More specifically, our assessment materials
included:

Cognitive measures
Non-verbal 1Q. Non-verbal IQ was assessed with the
Greek version of Raven Standard Progressive Matrices
[30, 31]. Both standard scores and percentiles were taken
into consideration.

Auditory and visual attention. Auditory and visual
attention was assessed using three subtests of the Test
for the Assessment of Attention and Concentration [32]
(i) Sustained auditory attention, (ii) Sustained visual
attention and (iii) Range of visual attention. The Total
Attention Score of all three auditory and visual attention
subtests was also calculated.

Verbal short-term memory, visual and auditory mem-
ory. There were totally seven measures: VSTM Sen-
tence recall [32], VSTM word recall [33], Immediate
visual memory, Delayed visual memory, Visual informa-
tion recall, Information retention factor (Story Recall
subtest of the Memory Test; see Narration below) and
Recognition.

Language measures

Expressive vocabulary. It was assessed using the Greek
version of Crichton Vocabulary Scales [31]. It contains 80
word definitions, presented orally, and arranged in order
of increasing difficulty (interruption criterion: four con-
secutive errors). Only one child from the ASD_L group
was able to name a few definitions, so for all the rest of
the children in the ASD_L group, Picture Naming and
Comprehension Subscale was administered.

Picture Comprehension. It was administered only to
the ASD_L group, because all but one were minimally
verbal. Receptive vocabulary was assessed using Picture
Comprehension Subscale (Detection of Speech and
Language Disorders Test Preschool, [DSLD Test] [34]),
in which the child was asked to point to the picture
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(among 4) that corresponded to the word presented
orally by the examiner.

Narration. Narration was assessed by using the Story
Recall subtest of the Memory Test [33]. The child would
listen to two short stories and repeat them back right
after the examiner and after a short break (scoring:
total number of elements and total number of sections
s/he remembered correctly).

Sequencing, mapping, alignment and variant calling
Exome enrichment library was prepared with the Agi-
lent SureSelectXT Human All Exon V6 kit as per the
manufacturer’s instructions. Read files (Fastq) were
generated from the sequencing platform (Illumina
Hiseq). The samples were sequenced in paired end,
2 x 100 bp mode and deep coverage was obtained with
approx. 6—7 Gb per sample (approx. 100 x av. cover-
age). Quality assessment and trimming was performed
using the FastQC version: 0.11.7 and FASTX version:
0.0.14 toolkits, respectively. The Burrows-Wheeler
Aligner (BWA) [35], version: 0.7.15 was used to map
the raw reads to the human genome (build hgl19/b37).
Duplicate reads, which are likely to be the results of
PCR bias, were marked using Picard (http://broadinsti
tute.github.io/picard/) version: 2.6.0. Samtools [36],
version: 0.1.19, was used for additional BAM/SAM file
manipulations. The Genome Analysis Tool Kit (GATK)
[37], version 3.6.0, Haplotype Caller method was used
for single-nucleotide polymorphism (SNP) and inser-
tion/deletion (indel) variant calling.

Variant annotation

Variants were annotated with gene functional data from
Ensembl version 90 using the Variant Effect Predictor
(VEP) tool, version 90.6. Known variants were labeled
using the dbSNP (Release 147) allowing for rapid iden-
tification of novel variants. Additional exploration of the
results was performed using GEMINI, version 0.20.0,
which provides a framework for analyzing, filtering and
exploring genomic variation.

Odds ratio analysis

PLINK [38] was used to perform odds ratio analysis for
obtaining variants with high disease association. PLINK
allows for the detection of variants more frequently
associated with severe than non-severe cases, which are
labeled as high-risk or pro-severe variants. In contrast
variants being more frequently associated in non-severe
than severe cases are labeled as protective or pro-non-
severe variants.
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Risk score prediction using linear logistic regression analysis
and risk model construction

Linear logistic regression fitting was performed using the
PredictABEL [39] package (available in R). Specifically
risk models were constructed using the fitLogRegModel
function, and the predRisk function was used to assess
their performance and predict risks. Additional functions
available by the package were used for the various meas-
ures to assess model performance. Commonly in genetic
risk prediction studies this includes: (i) plotting receiver
operating characteristic (ROC) curves and calculating
area under the curve (AUC) values using the plotRoc
function and (ii) the reclassification table construction,
net reclassification improvement (NRI) and integrated
discrimination improvement (IDI) calculations using the
reclassification function. The NRI and IDI are important
comparative measures that provide an assessment of how
well a new model reclassifies the data [40]. Graphical rep-
resentation of results were attained using the plotRisk-
Distribution function for plotting risk distributions, the
plotDiscriminationBox function for plotting discrimina-
tion box plots and the plotPredictivenessCurve function
for plotting predictiveness curves. Better model perfor-
mance was achieved by substituting the glm (generalized
linear model) function utilized by PredictABEL with the
bayesglm function available from the arm R package [41].

Machine learning data analysis

The samples obtained were separated into 2 classes
based on their non-verbal IQ representing severe autism
(n=15) and non-severe autism (n=18) and concur-
rently used as input for training the linear regression
model classifier described above. Assessment of classifier
performance was achieved using a leave-one-out cross-
validation (LOOCYV) procedure. During each round of
cross-validation, each sample was removed recursively
and feature selection was performed on the remaining
samples in the dataset, the model was then trained and
utilized to classify the left-out sample. For the feature
selection (variants), PLINK was used. To find the opti-
mal set of variants, the leave-one-out cross-validation
method was performed by testing initially the top six
variants and sequentially increasing the number of vari-
ants for each run until classification accuracy reached a
saturation point with no further improvement. LOOCV
performance was assessed using prediction accuracy,
sensitivity, specificity, and Matthew’s correlation coeffi-
cient (MCC). MCC is defined as a balanced measurement
of the classification quality which takes into account true
and false positives and negatives. MCC returns values
within the range of [—1, 1]. The flowchart of the classifi-
cation procedure is shown in Fig. 1.
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Fig. 1 Flowchart of the classification process suing a linear regression classifier and PLINK as the feature (variants) selection tools. Step 1—Describes
the dataset with 2 classes of patients with Severe and Non-severe autism. Step 2—Denotes the selection of a set of variants to be used during the

to perform odds ratio analysis on the remaining samples (this avoids overfitting). X number of variants top significant variants are used for the

ated by extracting one sample from the dataset. Step 4—PLINK is used

tures for the specific iteration. Step 6—the LOOCV process (Steps 3-5) is
2-5 are repeated for every value of X

Literature-based genomics approach

To complement our de novo classification approach,
which predicts if a sample fits into the two main autism
measurements under investigation (mild and severe),
we utilized a novel pipeline for the identification of
genes which characterize the IQ, verbal, memory and
attention measurements based on current scientific
knowledge. This pipeline consists of several distinct
steps:

Creating a subgroup of the variants in each of our
samples which exhibit homozygosity to the alternate
allele of our reference.

From the previous subgroup discarding any vari-
ant which isn’t flagged simultaneously in the SIFT [29]
(database as “deleterious” or “deleterious_low_confi-
dence” and in the Polyphen [28] database as “possi-
bly_damaging” or “probably_damaging” The remaining
genes were deemed “important” (IGs).

Keeping only the above variants for each sample, divide
the samples into sub-phenotype groups based on our
original phenotypical assessment measurements.

Running all samples of a sub-phenotypical group
through R’s SuperExactTest [42] package to identify
genes common among at least n-2 samples (where n is
the total number of samples in each category).

Finally, comparing the genes in each sample grouping
via VENNY [43] to identify genes which characterize a
group but also genes which are common among them
and describe a more generic autism genetic signature.
This approach is visualized in Fig. 2.

Validation gene dataset

To validate our results versus genes that are already
known in literature in connection to autism, we cre-
ated a gene dataset by extracting all autism-related
genes from 5 databases (AutismKB [44], SFARI [45],
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HuVarBase [46], DisGeNET [47] and OpenTargets
[48]), on which, using Venn Diagrams, we super-
imposed the results of our 2 approaches. This also
allowed to identify genes that were found de novo as
being implicated in autism by our study.

Functional analysis

To better understand the pathways and mechanisms
involved in Severe-Mild autism classification and sub-
phenotyping, we performed a variety of functional
analyses on our gene data from both approaches.
REACTOME [49] was used for the first pass identi-
fying genes involved in various pathways. The genes
not found in REACTOME were manually researched
in literature and other sources like GeneCards [50],
STRING [51], Uniprot [52], Mammalian phenotype
Ontology [53] and Gene Ontology [54] for their func-
tional associations.

Results

Results of the performance of the two groups according
to our clinical measures on the experimental tasks are
presented in Table 3 as well as between group compari-
sons. For the different tasks (all except picture compre-
hension), non-parametric tests (Mann—Whitney test)
were conducted to compare performances of ASD_MH
and ASD_L groups.

Phenotypic results

Cognitive measures

As expected by the inclusion criteria of the groups, in
non-verbal IQ ASD_L group had worse performance
(Mann—Whitney U=0, p<0.001). The same holds for
attention total score, auditory attention, visual atten-
tion and visual range attention (Mann—Whitney U=13,
24, 7 and 20.50, respectively, p<0.001). In VSTM sen-
tence and word recall the difference between the two
groups was also significant (Mann—Whitney U=11.50
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and 4 respectively, p<0.001), as well as in immediate and
delayed visual memory, visual information recall, infor-
mation retention factor and recognition (Mann—Whitney
U=13.50, 24, 32, 32 and 10 respectively, p <0.001).

Language measures
In expressive vocabulary, the difference between the
two clinical groups was significant as expected (Mann—
Whitney =0, p<0.001). In narration, the difference in
groups’ performance was also significant in both total
elements and total sections (Mann—Whitney U =25.50
and 32, respectively, p <0.001).

In sum, in all measures, both cognitive and language,
the ASD_MH group outperformed the ASD_L group.

Machine learning data analysis

Machine learning was performed by utilizing the severe
autism (n=15) and non-severe autism (# = 18) samples
to train the linear regression model classifier described
in the Material and Methods. As detailed in Fig. 1, a
leave-one-out cross-validation (LOOCV) procedure
was used for to assess the classifier performance. Fea-
ture, or variant selection was coupled to the LOOCV
procedure to ensure an optimum set of best classifier
variants is obtained. The optimum set was determined
to be the top 26 variants for every LOOCYV iteration
and therefore these variants were selected for down-
stream functional analysis. To assess the performance
of each feature selection run, the accuracy, specific-
ity, sensitivity and Matthew’s correlation coefficient
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(MCC) were calculated. Results are summarized in
Fig. 3. Comparison of the optimum results attained
by the molecular subtype classification defined by our
risk model, with prior clinical grading, showed that
they were in agreement with 81.81% (27/33 samples)
prediction accuracy. Sensitivity, specificity and MCC
achieved values of 73.33%, 88.89% and 0.634, respec-
tively. Plotting receiver operating characteristic (ROC)
curves resulted in area under the curve (AUC) with
value 0.83. Visualization of risk model outputs for all
samples using clustering algorithms (including anno-
tation with clinical metadata) is shown in Fig. 4. The
top 26 variants obtained from every LOOCYV iteration
were pooled together to obtain a total of 84 unique
variants. Table 4 shows a list of these variants as well
as their genes and full annotation including the fre-
quency of occurrence according to the 1000 genome
project (aaf_lkg_all). Full annotation for these vari-
ants including levels of heterozygosity and homozygo-
sity and annotation in clinical database such as ClinVar.
Notable molecular significant variants from the list are
known to be implicated in the genetic predisposition of
certain diseases and disorders including: certain cardi-
omayopathies (rs12063382), hypertension (rs1061157),
afibrinogenemia  (rs2070018), ciliary  dyskinesia
(rs3752042), congenital cataract (rs4682801), pros-
tate cancer (rs1328285, rs9890913), infantile epilepsy
and Parkinson’s (rs56260729), mental disability and
schinzel-giedion syndrome (rs12922670, rs11082414),
cerebellar hypoplasia (rs77247739), kabuki syndrome

and finally Matthews correlation is shown (yellow line)

Fig. 3 Results of the Classification process described above showing statistics for each LOOCV run across different values of top significant variants
selected for validation. Statistics are recorded in the form LOOCV prediction accuracy (blue bars) of sensitivity (orange bars) specificity (gray bars)




Talli et al. Human Genomics (2022) 16:39 Page 8 of 18

0.6009294
0.3004647

|

0
Risk ©
language
memory
attention
ICD.11
verbal

[}

4 .
& R!Sk Severe *<=0.5 Non-Severe, >=0.5 Severe
Risk Non-Severe

1Q, memory, attention, verbal

8574 1 § I:- 1-2  *1=mild/moderate, 2=severe disorder
language

I:- 13 *1=mild, 2=moderate, 3=severe disorder

4 31 ICD.11
8574 I:- 1-6 *1=mild - 6=severe disorder
8574
8574
8574
8574
8574

4
8574
8574
8574
8574
8574
8574
8574
8574
8574
8574
8574
8574
8574
8574 |
8574 [ [ 1 [
Fig. 4 Visualization of risk model results for 33 ASD patients (18 non-severe and 15 severe) using the 26 variants selected during LOOCV. The
dendrogram was obtained by performing hierarchical clustering (using Euclidean distance and average linkage algorithm) of model prediction
outputs. The clustering represents the molecular subtypes obtained by the trained model for all ASD patients. The two molecular subtypes as
predicated by the risk models are color-coded as pink for the most severe cases (high-risk individuals), light green for least severe cases (low-risk
individuals). Moreover, the continuous spectrum of risk prediction scores is shown in the red-green gradient traversing the dendrogram. Patients
are further sorted by severity in descending order. Clinical experimental data is also viewed in parallel to the results obtained from the machine
learning algorithm and are shown as columns with dark and light gray boxes. The boxes denote the different level of severity for the six different
clinical data available for this study. The molecular classification of samples 8574_9, 8574_14,8574_7 and 8574_23 appears to differ from the clinical
classification. These samples cluster separately from the rest of the samples with similar severe clinical phenotypes. Similarly, based on theory
molecular classification, samples 8574 _13 and 8574_18 also appear to cluster away from samples of similar non-severe clinical classification

W W =] oo
E= [0 ==}

of )
piet

(50

J|
O

22 PN [P PN

{e] BN

W

o] 188 (8] ot (W) [ B8) o B B 2 IR

Table 1 Validation of the IGs highlighted by our machine learning approach with the help of the 5 autism-related databases
(AutismKB, SFARI, HuVarBase, DisGeNET and OpenTargets)

Severity Novel Known (5 database validation set)

Mild n=9 n=3
FYCOT, MROH2B, ZNF131, KIAA1456, CCDC171, ZFC3H1, CCDC38, COG3, TIP1 COLT1A1, FGA NCOA6

Severe n=36 n=12
AGRN, Clorf222, LRRC71, ACTN2, AGXT, AC104809.3, PRSS50, TNK2, NMUR2, MRPL22, ARHGEF 11, BMPR2, NGEF, SSPO, NAT2, MMP16,
C60rf229, HISTTHIA, IQCE, NPCIL1, OR2A12, OR2A2, ANKRD18B, C90rf84, NDORI, CDH15, ASIC2, SETBP1, NLGN4X, NROB1,

OR6M1, TTC6, ANXA2, SLX4, ACSMT, TSEN54, ENGASE, CCDC40, MED16, ZNF431, USF2, KDMG6A
CCDC114, ZNF813, BPIFB6, BPIFB4, ZBP1, XG
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(rs5952285, rs5952682), autism (rs7049300) and even
response to drug administration such as ezetimibe
(rs10264715).

In addition to the variant biological insights, the same
thought process can be applied on the genes them-
selves. In total this method highlighted 60 genes, 12
related to mild and 48 to severe autism. Out of those 3
related to mild autism and 12 related to severe autism
are already known and can be found in the validation
dataset created from 5 databases which is described in
our methodology. These results can be found in Table 1.
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Literature-based approach—IGs

Using the approach previously described in our meth-
odology, 1005 unique genes were evaluated as being
homozygous to the reference alternate allele and marked
in the SIFT and Polyphen databases as IGs in all our sam-
ples. Before focusing on sub-phenotypes we just pooled
the IGs from children with mild and severe autism,
respectively, together and validated this IGs dataset ver-
sus the 5 databases (See Methodology). In total 96 1Gs
of mild autism and 98 1Gs of severe autism were found
in the validation dataset. Out of those 70 were common
between them.

COLOR MAP
Common Autism signature of novel genes
Genes shared only b all Mild sub-ph yp
Genes shared only b all Severe sub-ph yp
Genes common between 1Qand Attention Mild sub-phenotypes
Primarily Severe genes that exist in Mild sub-phenotypes

Genes common between Memory and Verbal Severe sub-phenotypes

Genes that distinguish only the attention mild sub-phenotype

IQMILD MEMORY MILD VERBAL MILD ATTENTION MILD
BIN3 BIN3 BIN3 BIN3
CTNS CTNS CTNS CTNS

ERV3-1 ERV3-1 ERV3-1 ERV3-1

FOXN3 FOXN3 FOXN3 FOXN3

HEATRSA HEATRSA HEATRSA HEATRSA
ITGB2 ITGB2 ITGB2 ITGB2

KRTAP10-1  KRTAP10-1 KRTAP10-1 KRTAP10-1

MAGEC3 MAGEC3 MAGEC3 MAGEC3
MCF2 MCF2 MCF2 MCF2
NEMF NEMF NEMF NEMF

OR1L6 OR1L6 OR1L6 OR1L6
SSX5 SSX5 SSX5 SSX5

ZNF221 ZNF221 INF221 INF221
HPS4 HPS4 HPS4 HPS4

CcDCP2 CDCP2 CDCP2 CDCP2

CELSR1 CELSR1 CELSR1 CELSR1

OR2L8 OR2L8 OR2L8 OR2L8

OR11L1 OR11L1

ZNF534 INF534
DNAH14
FBXWS

GALNTLS
NIPA1
TPD52L3
Cllorf35
DCLRE1A
IGSF10
LRRC56
MS4A14
OR56B1
OR5AU1
LAMA2
NEB
OR2W3
OR52W1
SVOPL
INF19
ZNF493

IQ SEVEREEMORY SEVEI VERBAL SEVERE ~ATTENTION SEVERE

BIN3 BIN3 BIN3 BIN3
CTNS CTNS CTNS CTNS
ERV3-1 ERV3-1 ERV3-1 ERV3-1
FOXN3 FOXN3 FOXN3 FOXN3
HEATRSA  HEATRS5A HEATRS5A HEATRSA
ITGB2 ITGB2 ITGB2 ITGB2
KRTAP10-1 KRTAP10-1 KRTAP10-1 KRTAP10-1
MAGEC3  MAGEC3 MAGEC3 MAGEC3
MCF2 MCF2 MCF2 MCF2
NEMF NEMF NEMF NEMF
OR1L6 OR1L6 OR1L6 OR1L6
SSX5 SSX5 SSX5 SSX5
ZNF221 ZNF221 ZNF221 ZNF221

HPS4 HPS4 HPS4

PTPRQ PTPRQ PTPRQ PTPRQ
C30rf18  C3orf18 C3orf18
KRTAP10-1: KRTAP10-11 ~ KRTAP10-11

ZNF534  ZNF534 INF534
DNAH14  DNAH14 DNAH14
FBXWS FBXWS FBXW8
NIPAL NIPAL NIPAL
TPD52L3  TPD52L3 TPD52L3
OR6C65 OR6C65

SALL3 SALL3

Fig. 5 Common and distinct selected Genes harboring variants (candidate mutations) with possible contribution to ASD risk, based on severity

across distinct ASD subgroups (phenotypes)
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Investigation of the sub-phenotypical sample clus-
ters of IQ, Memory, Attention, and Verbal, based on the
clinical observations, led to identifying 14 IGs which
were present in all sub-phenotypes regardless of sever-
ity (Fig. 5 in yellow background).

In samples from children with mild autism, the “IQ
mild” sub-phenotype had 18 IGs common in all sam-
ples of the group, the “Memory mild” 18 IGs, the “Ver-
bal mild” 17 IGs and the “Attention mild” 38 IGs. Also 3
I1Gs (CDCP2, CELSRI, OR2L8) were common between
all mild sub-phenotypes. The “IQ mild’, “Memory mild”
and “Verbal mild” sub-phenotypes were almost iden-
tical, with the exception of OR1ILI for “IQ mild” and
ZNF534 for “Memory mild” being highlighted as IGs.
ORI11L1 was missing as IG for “Memory mild” and
“Verbal mild” but was highlighted in “Attention mild”
There is also a group of 7 genes (CI11orf35, DCLREIA,
IGSF10, LRRC56, MS4A14, OR56B1, OR5AUI) which
were highlighted as IGs only in “Attention mild”

Samples from children with severe autism when stud-
ied per sub-phenotype highlighted 22 IGs for the “IQ
severe group’, 24 1Gs for “Memory severe’, 24 1Gs for
“Verbal severe” and 14 IGs for “Attention severe” The
IG PTPRQ was found in all our severe autism samples.
The “Memory severe’ and “Verbal severe” sub-pheno-
type IGs were identical. In addition, the IGs OR6C65
and SALL3 were only found in these 2 sub-phenotypes.
1Gs KRTAPI10-11, ZNF534, DNAH14, FBXWS8, NIPA1,
TPD52L3 were common in all severe sub-phenotypes
with the exception of “Attention severe”, whereas
C3o0rfl8 was found as IG only in “IQ severe’, “Mem-
ory severe” and “Verbal severe”. Finally, the “Attention
severe” group was the only one lacking the HPS4 sever-
ity-independent IG.
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Another round of validation versus the 5 database
dataset was performed for these sub-phenotype IGs
(Table 2). In total 10 IGs exist in both our data and the
validation dataset. Their breakdown per sub-phenotype
is: NEMF was highlighted for all sub-phenotypes regard-
less of severity. NIPAI was highlighted in all severe sub-
phenotypes except for “Attention severe” in which it was
found in 87% of samples, and all samples of “Attention
mild” CELSRI was validated for all mild sub-phenotypes.
MS4A14 was validated only in “Attention mild” Finally,
“Attention mild” was the only sub-phenotype with
GALNTLS.

Functional analysis

As discussed in our methodology section, the genes
highlighted by our two approaches were investigated
regarding their functional role and their participa-
tion in biological processes. The results were grouped
according to their function into 15 distinct categories:
Developmental Biology, Nervous System Development,
Synapses—Neurotransmission, Morphogenesis  And
Structure, Trafficking And Transport, Sensory, Cell Sign-
aling, Cell Migration/Motility, Differentiation, Cell Cycle,
Programmed Cell Death, Epigenetics, Metabolism, Post-
Translational Modifications and Immunosystem.

For the genes highlighted by our machine learning
approach, Fig. 6 showcases the Autism Mechanisms
(AMs) implicated in severe and mild autism respectively.
In total for the category Developmental Biology 7 genes
in severe and only 1 in mild autism are involved. For
the Nervous System Development 7 genes are involved
in severe autism and 3 in mild. For Synapses—Neuro-
transmission 4 genes involved in severe and 1 in mild
autism. For Morphogenesis and Structure 10 genes are

Table 2 Validation of the IGs highlighted by our literature-based approach with the help of the 5 autism-related databases (AutismKB,
SFARI, HuVarBase, DisGeNET and OpenTargets). Results highlighted in Bold were found in SFARI

INTERSECTION OF SUBPHENOTYPES AND 5 DATABASES

SEVERITY ~ SUBPHENOTYPE® 1Q MEMORY VERBAL ATTENTION LANGUAGE
INDEPENDENT SEVERITY NEMF NEMF NEMF NEMF
SEVERE NIPA1 NIPAT NIPA1 NIPA1
MILD NIPA1
CELSR1 CELSR1 CELSR1 CELSR1
GALNTLS
MS4A14 MS4A14
LRP2
NAALADL2
MucCi2
MCPH1

EPN3
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Fig. 6 Functional analysis of the genes discovered by our Machine Learning approach for Severe and Mild autism. Figure shows individual gene
participation in specific Autism Mechanisms (AMs)

involved in severe and 6 in mild. There are 3 genes for
severe autism and 2 for mild involved in Trafficking And
Transport, 5 genes for severe and 3 for mild in Sensory,
20 for severe and 5 for mild autism in Cell Signaling,

Cell Migration/Motility, Differentiation, Cell Cycle, Pro-
grammed Cell Death, Epigenetics, Metabolism, Post-
Translational Modifications and Immunosystem.
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Fig. 7 Functional analysis of the genes discovered by our literature-based approach for Severe and Mild autism broken down by specific clinical
sub-phenotypes. Figure shows individual gene participation in specific Autism Mechanisms (AMs)

Breaking down the AMs brought to the foreground
using our literature-based method (Fig. 7), there are 69
severity-independent AMs which span over all our cat-
egories except Epigenetics and Metabolism which appear
to be severity-associated. In the severe autism group the
AMs associated with IGs of “Language severe” and “IQ
severe” are identical with the exception of the “Gene
silencing” AM found only in the “IQ severe” due to the
IG C30rf18 and in total have 36 common AMs. Children
in these groups also don’t appear to have AMs related to
neurotransmission and cell cycle events. Likewise, the
“Verbal severe” and “Memory severe” sample group-
ings are identical regarding their 51AMs (which is to be
expected since they share the same IGs). There are no
AMs associated with neurotransmission and cell cycle
processes in these 2 groups, The “Attention severe” AMs
are all related to the PTPRQ IG which is the only severity-
dependent IG in the group. PTPRQ is linked with devel-
opmental, morphogenic, sensory and signaling processes.

In our mild autism sub-phenotypical groupings only
the “Memory mild” and “Verbal mild” are completely
alike. These include 23 AMs in total which are associated
with general and nervous system development, neuro-
transmission and morphogenesis. The “IQ mild” IGs are
involved in 25 AMs which do not include any associated
with trafficking and transport, cell cycle, epigenetic, met-
abolic or immunological processes. The “Attention mild”

IGs are involved in 41 AMs from all our categories but
do not include any epigenetic modifications. Finally, the
“Language mild” AMs are the most complex category
spanning across 77 AMs from all our categories including
the epigenetic histone phosphorylation.

In general, for both approaches many variants found
in individual genes, like AGRN (which is involved in 9
functional modules in severe ASD), ARHGEFI11, NROBI,
NGEF, FOXN3, ITGF2 and MCF2, appear to be con-
nected to a multitude of biological processes. There-
fore, perturbations in any of these crucial genes, which
have multiple functional involvements, may trigger the
advent of disorders related to the structures and func-
tion of the CNS. It is also revealed that some genes like
HEATRSA, ITGF2, KRTAP10-1 and MCF2 are involved
in a single process like the morphogenesis and structure
of synapses. Furthermore, we found mutational events
in various proteins involved in sensory pathways which
could explain the broad range of sensory abnormalities
regularly observed in individuals across the autistic spec-
trum. Several of our findings highlighted perturbations
in sensory and perceptual pathways which may explain
impairments of attention, IQ, verbal ability and memory.
For example, in all our severe autism samples (and none
from the mild autism grouping) a common affected gene
(PTPRQ) is found in all four clinical sub-phenotypes
which is linked in literature to auditory impairment [55].
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This gene can potentially serve as a biomarker of autism
severity.

Deleterious/damaging variants in genes which encode
signaling proteins can significantly alter the course of
brain development, synaptic structure/ function and
morphogenesis. For instance, the NLGN protein, found
as significant in our results, plays an important role in
synapsis and has been implicated by previous works in
ASD [56]. In general, gene-encoding protein signaling is
fundamental in neurodevelopment and post neurodevel-
opment processes such as synapse organization (AGRN,
TJPI), cell migration (ACTN2, TJPI), axon guidance
(ACTN2, AGRN, TNK2, ARHGEF11, NGEF, FGA) and
dendrite development (AGRN), and any perturbation
in processes like these may trigger the rise of disorders
related to the structures and functions of the CNS. Also,
BMPs, whose signaling has been shown to be dysregu-
lated in ASD, constitute the largest subdivision of the
TGF-$ superfamily and are critical in the development of
the CNS.

Discussion

Autism is a neurodevelopmental disorder with heteroge-
neous genomic and phenotypical characteristics. There is
also a high hereditary factor involved in its presentation
but also a discrepancy regarding the sex of patients with
a known 4 to 1 male to female ratio which is also present
in the current study [57]. Our design assesses rare genetic
risk variations in ASD to predict symptom severity based
on genetic variation but also studies the perturbed gene
effects on autism-related clinical observations linking
the phenotypical to the genetic variation of ASD. This
link of heterogeneity could involve many types of vari-
ables. Our observations distinguish clinical severity on
a variety of characteristics like IQ, memory, attention,
and verbal ability with the IQ range having the highest
impact. These observations are strong candidate sources
of etiologic differences and were carried out in a real-life
setting, enabling us to determine baseline information for
the bioinformatics approaches. The latter include both
a machine learning and a literature-based technique, in
order to validate and substantially extend current knowl-
edge on ASD phenotypical severity but also individual
characteristics.

Current criteria for clinical classification of ASD indi-
viduals provide a valuable behavioral depiction of the dis-
order but often fall short when grading them into severe
vs. non-severe target groups. In this study, we use a WES
dataset of 33 children with ASD. Given the small sample
size of our dataset we focus more on the potential of these
methodologies for disorder classification and the novelty
of some of the identified genes. Using a machine-learning
algorithm, based on linear regression polygenic risk score
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assessment, we select informative genes with the poten-
tial to contribute toward the grading of ASD. We obtain
specific molecular signatures from severe and non-severe
subtypes of autistic samples and show that these molecu-
lar signatures have the potential to define prognostic sub-
classes. Further experimentation is required before the
role of the genes and variants can be deemed diagnostic.
These subclasses involve in total 48 genes linked to severe
ASD out of which only 12 have been previously identified
and 12 genes linked to mild ASD with only 3 represented
in current databases. We further show that 28/84 identi-
fied variants were found to underline specific functional
classes related to autism and intellectual disability, as well
as other disorders. Polygene risk score grading of samples
using top variants is in agreement to prior clinical grad-
ing for our dataset with 81.81% prediction accuracy; thus,
showing that our model is capable of recapitulating the
clinical diagnostic methodology employed for this small
number of children. However, we further show that six
samples were particularly challenging to diagnose molec-
ularly. This can be attributed to a variety of reasons,
including methodological or biological factors which can
always contribute to variation during experiments. More-
over, as seen in Fig. 5 we observe that there is a specific
genetic profile that extends to all children with ASD in
the severe subtype for IQ, memory and verbal skills (and
in the vast majority of children for attention skills) as well
as to all children in the mild subtype for attention. These
results are in line with our phenotypical data for visual
and auditory attention skills and in accordance with the
literature, where both visual and auditory attention disor-
ders have been found for mild and severe phenotypes in
ASD [58-60]. These results also suggest that a high per-
centage of children present Attention Deficit Hyperactiv-
ity Disorder (ADHD) symptoms which might be due to
either comorbidity or due to a common underlying factor
[61].

In addition, this work employs a linear regression
machine-learning model grading of these samples
into molecular subtypes. Our approach allows for the
extraction of genomic signatures from the bipartite
(severe vs. non-severe) autistic classification scheme
used to train our risk model. These signatures show
differences in prognosis when compared to clinical
grading showing valuable additive information that is
impossible to obtain form clinical diagnosis alone. We
envision that the identification of the novel set of vari-
ants and genes underlying these molecular signatures
will enable autistic diagnosis to progress toward a more
quantitative realm, where individuals with ASD are
viewed within an autistic spectrum rather than the cat-
egorical grouping into distinct subtypes. We emphasize
that the interpretation of classification results based on
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genomic data must be accompanied by clinical annota-
tion on as many levels as possible. Only by the integra-
tion of such work with expert clinical and pathological
annotation, can we maximize the value of genotypic
data, increase our understanding of autistic pathology,
and further develop current diagnostic and therapeutic
approaches.

To further extend this last point, we employed a liter-
ature-based approach taking into consideration known
effects of genetic variations on the translated proteins.
This highlighted 14 (13 novel and 1 known) autism-
related genes, independent of phenotypical severity,
which contain various severe protein changes. We believe
that these genes constitute a genetic background which
has the potential to characterize children with ASD.
Clusters of novel genes carrying “deleterious/damaging”
variants are found to signify different degrees of severity.
Furthermore, a plethora of genes have been linked to spe-
cific disorder manifestations (sub-phenotypes) namely
IQ, memory, attention and verbal impairments and can
help elucidate the symptomatology of ASD’s severity.
These genes have also allowed for ascertaining specific
groupings of sub-phenotypes based on their common
genetic signatures, like the memory and verbal traits
which seem to have identical IGs in their severe state.

Both previously described bioinformatics approaches
have allowed further function dissection and highlighting
of important biological processes which bridge the gap
between genotype and phenotype in autism. By analyz-
ing the molecular profile based on the clinical severity of
ASD as a whole and its individual core features, we iden-
tified several potential molecular signatures of disorder
and symptom severity. Despite the complex architecture
of mutational events associated with autism, the vari-
ous proteins involved, appear to converge on common
processes such as synaptic function, brain development,
chromatin remodelers (epigenetics processes), cell life
processes, morphology/structures and function, sensory
and signaling pathways. The autism-related core features
which arise from underlying vulnerabilities are related to
pleiotropic genes which associate with important molec-
ular mechanisms.

Several observations regarding gene participation in
specific and multiple biological processes were made,
covering a wide range of functions.

Macroscopically, there is a high diversity of path-
way groupings in our results. It is important to under-
line that there are considerably more genes perturbed
in biological processes which relate to the CNS and
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neurodevelopment when examining the severe side of
autism. There is also strong indication of higher variant
occurrence in severe ASD where we observe that in CNS
development there are 8 genes (ACTN2, AGRN, TNK2,
ARHGEFI11, NGEF, KDM6A, AGRN, NROBI) highlighted
in severe cases and only 4 (TJP1, ZNF131, NCOA6, FGA)
in mild, in synapsis and neurotransmission 4 (AGRN,
ACTN2, NLGN4X, NAT?2) in severe versus only 1 (T/P1)
in mild among other examples. Our findings also support
the idea that ASD-associated genes may contribute not
only to core characteristics of ASD but also potentially
enhance vulnerability to other systemic problems includ-
ing metabolic conditions, immune system dysfunction
etc. something that is also previously described in litera-
ture [62].

We hereby acknowledge that our study has some limi-
tations. The sample is small and thus our classification
approach is mostly centered on the prediction and veri-
fication of these genes and does not hold a diagnostic
nature per se. Moreover, the genes identified should be
treated with caution again due to the limited sample size
of our dataset.

Conclusions

In conclusion, this study utilizes machine learning clas-
sification tools to obtain novel genes implicated in mild/
moderate or severe ASD symptoms by constructing SNP-
based classification models with 82% prediction. Our de
novo implicated ASD risk genes appear to provide a sub-
stantial extension of previously reported genes, enrich-
ing current ASD-gene and variant databases. These risk
genes can potentially be used to distinguish children
with different degrees of ASD symptom severity, how-
ever substantial further experimentation is required to
fully validate their diagnostic capacity. We also provide
further clarification of the relationship between ASD risk
mutations and intellectual disability [low on intelligence
quotient—(IQ)], and impairment in memory, verbal dis-
turbances and attention deficits. We believe that this
study will help bridge the genotype-to-phenotype gap
in ASD, illuminating how genetic variation can drive the
severity of the disorder and/or specific pathological traits
exhibited by individuals with ASD. By predicting the
disorder’s severity genetically, children with ASD could
receive more targeted care.

Appendix
See Tables 3 and 4.



Talli et al. Human Genomics (2022) 16:39 Page 150f 18

Table 3 Groups' performance on IQ, vocabulary, memory and attention tasks

Variables ASD_MH ASD L n U p g
Mean SD Mean sD

Non-verbal IQ: RPM Standard Score 9861 1513 40.66 12.23 33 0.00%** <0.001 417
Expressive Vocabulary: CVS Standard Score 76.11 1243 333 12.91 33 0.00%** <0.001 5.75
Picture comprehension: DSLD Test Preschool - - 2.57 2.95 15 - - -
Attention (total score): TAAC Test Percentile 6.33 1032 0.07 0.26 33 13.00%** <0.001 82
Auditory Attention: TAAC Test Percentile 16.66 2621 0.14 0.35 33 24.00%%* <0.001 85
Visual Attention: TAAC Test Percentile 10.94 1847 0.13 0.35 33 7.00%** <0.001 79
Visual Attention Range: TAAC Test Percentile 17.67 23.84 0.33 1.29 33 20.50%** <0.001 98
VSTM Sentence recall: TAAC Test Percentile 14.28 14.63 0.67 0.26 33 11.50%** <0.001 1.26
VSTM Word Recall: Memory Test 20.39 7.09 1.07 413 33 4.00%%* <0.001 3.25
Immediate Visual Memory: Memory Test 2444 9.80 4.07 523 33 13.50%* <0.001 253
Delayed Visual Memory: Memory Test 4.05 234 0.53 1.12 33 24.00%** <0.001 1.86
Visual Information Recall: Memory Test 6.05 4.64 047 0.83 33 32.00%** <0.001 1.60
Narration Total Elements: Memory Test 5.50 5.54 0.07 0.26 33 25.50%** <0.001 1.32
Narration Total Sections: Memory Test 4.94 4.99 0.07 0.26 33 32.00%** <0.001 1.32
Information Retention Factor: Memory Test 5.28 6.06 0.40 1.55 33 32.00%** <0.001 1.06
Recognition: Memory Test 19.67 6.68 1.00 3.87 33 10.00%** <0.001 334

RPM Raven Progressive Matrices, CV/S Crichton Vocabulary Scale, DSLD Test Preschool Detection of Speech and Language Disorders Test Preschool, TAAC Test for the
Assessment of Attention and Concentration in Primary School

" p<0.01,**p<0.001; Hedges' g: 0.2 = small effect size, 0.5 = medium effect size, 0.8 = large effect size

Table 4 Total of 84 unique top variants for severe vs non-severe molecular classification selected from LOOCVY

rs_ids gene chrom start end aa_change impact aaf_1kg_all
1s76264143 AGRN chrl 982843 982844 intron variant 0.04
152748972 Clorf222 chrl 1891476 1891477 S/P missense variant 0.13
1s1763347 COLTIAT chri 103354427 103354428 G synonymous variant 0.62
rs12119908 LRRC71 chrl 156902221 156902222 R/H missense variant 0.20
1s822431 LRRC71 chrl 156902280 156902281 S/A missense variant 0.28
rs4570419 ARHGEF11 chrl 156907030 156907031 intron variant 0.22
rs2275199 ARHGEFT11 chrl 156909694 156909695 N synonymous variant 0.19
1s2275206 ARHGEFT11 chrl 156939066 156939067 splice region variant 0.18
rs12063382 ACTN2 chrl 236925843 236925844 S synonymous variant 0.20
rs1061157 BMPR2 chr2 203421198 203421199 R synonymous variant 0.12
rs2921705 NGEF chr2 233792564 233792565 intron variant 0.17
rs34116584 AGXT chr2 241808313 241808314 P/L missense variant 0.08
rs66494441 AGXT chr2 241808462 241808463 intron variant -1.00
1534726174 AC104809.3 chr2 241871846 241871847 G/R missense variant 0.13
rs4683158 FYCO1 chr3 46010076 46010077 R/Q missense variant 0.93
rs4682801 FYCOT1 chr3 46021217 46021218 R synonymous variant 0.76
rs12492868 PRSS50 chr3 46755936 46755937 T synonymous variant 0.38
rs34788938 PRSS50 chr3 46759009 46759010 Q/P missense variant 0.31
156260729 TNK2 chr3 195594949 195594950 P/L missense variant 012
rs2070018 FGA chr4 155508626 155508627 intron variant 0.89
152271704 MROH2B chrs 41008779 41008780 L/P missense variant 0.78
rs316408 ZNF131 chr5 43066773 43066774 upstream gene variant 0.67
1s3749787 NMUR2 chrs 151784182 151784183 L synonymous variant 0.23
1s7965 MRPL22 chr5 154346324 154346325 K synonymous variant 0.06

rs2251702 Cé6orf229 chré 24797646 24797647 H synonymous variant 0.52
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rs_ids gene chrom start end aa_change impact aaf_1kg_all
rs62000984 HISTTHTA chré 26017674 26017675 L synonymous variant 0.09
rs2969042 IQCE chr7 2612293 2612294 intron variant 0.26
rs2969043 IQCE chr7 2612294 2612295 intron variant 0.26
rs10264715 NPCILT chr7 44555405 44555406 Y synonymous variant 0.08
1534947817 OR2A12 chr7 143792990 143792991 S/N missense variant 0.1
rs10230228 OR2A2 chr7 143806687 143806688 Q/K missense variant 0.16
rs10252253 OR2A2 chr7 143807303 143807304 L/P missense variant 0.16
157791767 SSPO chr7 149513151 149513152 non coding transcript exon variant 0.21
rs10250401 SSPO chr7 149515102 149515103 non coding transcript exon variant 0.20
15622106 KIAAT1456 chr8 12878676 12878677 A synonymous variant 0.71
rs3739310 KIAA1456 chr8 12878806 12878807 /G missense variant 0.65
rs503550 KIAA1456 chr8 12879061 12879062 L synonymous variant 0.71
rs608909 KIAAT456 chr8 12879333 12879334 \% synonymous variant 0.71
rs608052 KIAAT456 chr8 12879538 12879539 R/G missense variant 0.70
157826836 KIAAT1456 chr8 12888907 12888908 S/A missense variant 0.67
rs1799931 NAT2 chr8 18258369 18258370 G/E missense variant 0.08
1s16892543 MMP16 chr8 89340161 89340162 P synonymous variant 0.21
rs1328285 CcbCizi chr9 15922136 15922137 intron variant 0.88
rs62559879 ANKRD18B chr9 33566233 33566234 A synonymous variant 0.16
rs11791445 Corf84 chr9 114476747 114476748 M/L missense variant 0.14
rs12352352 C9orf84 chr9 114484782 114484783 P synonymous variant 0.14
rs10512411 C9orf84 chr9 114490228 114490229 A synonymous variant 0.14
rs73563696 NDOR1 chr9 140108856 140108857 S synonymous variant 0.14
rs76301014 OR6M1 chr11 123676387 123676388 R/C missense variant 0.12
rs1298463 ZFC3H1 chr12 72013831 72013832 A synonymous variant 0.51
rs6538681 CCDC38 chr12 96284649 96284650 A synonymous variant 0.75
1s2985989 CoG3 chr13 46108853 46108854 L synonymous variant 0.81
1512586727 TTC6 chri4 38218342 38218343 IV missense variant 0.21
rs2229518 TJP1 chr15 30008888 30008889 A synonymous variant 0.79
rs12904906 ANXA2 chr15 60689994 60689995 intron variant 0.11
rs714181 SLX4 chr16 3640273 3640274 P/L missense variant 0.24
rs3743690 ACSM1 chrié 20635417 20635418 K splice region variant 0.18
rs2301672 ACSMT chr1i6 20636813 20636814 S synonymous variant 0.18
rs12922670 CDHI15 chr16 89234947 89234948 upstream gene variant 0.06
rs9890913 ASIC2 chr17 31618550 31618551 L synonymous variant 0.13
1577247739 TSEN54 chr17 73518327 73518328 Q/P missense variant 0.07
rs3744183 ENGASE chr17 77075666 77075667 I synonymous variant 042
153744184 ENGASE chr17 77075669 77075670 P synonymous variant 041
1s3744185 ENGASE chr17 77075672 77075673 P synonymous variant 042
rs3744186 ENGASE chr17 77076439 77076440 S synonymous variant 0.39
rs3752042 CCDC40 chr17 78010412 78010413 upstream gene variant 0.12
rs11082414 SETBP1 chr18 42529995 42529996 V/L missense variant 0.16
rs78047294 MEDI16 chr19 871986 871987 T synonymous variant 0.17
rs17445374 ZNF431 chr19 21326357 21326358 D/G missense variant 0.14
152280746 USF2 chr19 35770055 35770056 V/I missense variant 0.20
rs12104393 CcbC114 chr19 48801217 48801218 intron variant 0.15
152242463 CCDC114 chr19 48806976 48806977 D synonymous variant 0.15
rs28582401 CCDC114 chr19 48807366 48807367 L synonymous variant 0.15
152617667 ZNF813 chr19 53993669 53993670 AT missense variant 0.30
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rs_ids gene chrom start end aa_change impact aaf_1kg_all
rs17373408 BPIFB6 chr20 31624299 31624300 S synonymous variant 0.07
rs2070326 BPIFB4 chr20 31678533 31678534 L synonymous variant 0.22
rs3787220 NCOA6 chr20 33337750 33337751 P synonymous variant 0.80
rs6060043 NCOA6 chr20 33364583 33364584 intron variant 0381
rs4811888 ZBP1 chr20 56182182 56182183 Q/E missense variant 0.13
rs5939319 XG chrX 2700156 2700157 D/N missense variant 0.04
rs7049300 NLGN4X chrX 5821785 5821786 T synonymous variant 0.12
rs6150 NROB1 chrX 30327366 30327367 C synonymous variant 0.10
rs5952285 KDMG6A chrX 44913051 44913052 intron variant 0.24
1s5952682 KDMO6A chrX 44966794 44966795 intron variant 0.24
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