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Abstract

Background: Cardiomyopathies are a leading cause of progressive heart failure and sudden cardiac death; however,
their genetic aetiology remains poorly understood. We hypothesised that variants in noncoding regulatory regions
and oligogenic inheritance mechanisms may help close the diagnostic gap.

Methods: We first analysed whole-genome sequencing data of 143 parent-offspring trios from Genomics England
100,000 Genomes Project. We used gene panel testing and a phenotype-based, variant prioritisation framework called
Exomiser to identify candidate genes in trios. To assess the contribution of noncoding DNVs to cardiomyopathies, we
intersected DNVs with open chromatin sequences from single-cell ATAC-seq data of cardiomyocytes. We also per-
formed a case—control analysis in an exome-negative cohort, including 843 probands and 19,467 controls, to assess
the association between noncoding variants in known cardiomyopathy genes and disease.

Results: In the trio analysis, a definite or probable genetic diagnosis was identified in 21 probands according to the
American College of Medical Genetics guidelines. We identified novel DNVs in diagnostic-grade genes (RYR2, TNNT2,
PTPNT1, MYH7, LZR1, NKX2-5), and five cases harbouring a combination of prioritised variants, suggesting that oligo-
genic inheritance and genetic modifiers contribute to cardiomyopathies. Phenotype-based ranking of candidate
genes identified in noncoding DNV analysis revealed JPH2 as the top candidate. Moreover, a case—control analysis
revealed an enrichment of rare noncoding variants in regulatory elements of cardiomyopathy genes (p =.035,
OR=1.43,95% Cl=1.095-1.767) versus controls. Of the 25 variants associated with disease (p< 0.5), 23 are novel
and nine are predicted to disrupt transcription factor binding motifs.

Conclusion: Our results highlight complex genetic mechanisms in cardiomyopathies and reveal novel genes for
future investigations.
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Background

The cardiomyopathies, herein divided into dilated car-
diomyopathy (DCM), hypertrophic cardiomyopathy
(HCM), arrhythmogenic right ventricular cardiomyopa-
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genetic aetiology. HCM and ARVC are largely explained
by alterations in sarcomere or desmosome proteins,
respectively. Around half of HCM cases are caused by
mutations in the genes MYH7 and MYBPC3 [2]. How-
ever, the genetic architecture of DCM is far more com-
plex. To date, more than 250 genes have been implicated
in DCM causation or risk, including genes encoding
for cytoskeletal, sarcolemmal, mitochondrial, calcium
cycling, costameric and sarcomeric proteins [3].

Although the aetiological basis of cardiomyopathy is
incomplete, recent genetic studies suggest that a large
proportion of cases may be explained by alterations in
the noncoding genome [4].

Data from the ENCODE project suggest that biochemi-
cal functionality could be assigned to 80 per cent of the
human genome, affecting regulatory and tissue-specific
expression patterns [5]. Furthermore, genome-wide asso-
ciation studies (GWAS) show that over 90% of disease-
associated SNPs are in noncoding regions of the genome,
including regulatory regions, such as promoters and
enhancers [6]. Thus, a key priority in the cardiomyopa-
thy gene discovery pipeline is the identification of regu-
latory elements controlling genes associated with these
disorders.

High-throughput epigenomic profiling methods such
as ATAC-seq and ChIP-seq have enabled profiling of
chromatin accessibility across samples in a tissue-wide
manner, providing the opportunity to identify millions
of context-specific regulatory elements. However, these
bulk measurements of chromatin accessibility limit the
precise understanding of how tissue heterogeneity and
multiple cell types in the population contribute to over-
all disease aetiology [7]. Recent advances in single-cell
‘omics technologies have enabled an unbiased identifica-
tion of cell-type populations and regulatory elements in a
heterogeneous biological sample. By mapping the chro-
matin-regulatory landscape at a single-cell resolution,
studies have demonstrated the potential to link regula-
tory elements to their target genes, and map regulatory
dynamics during complex cellular differentiation pro-
cesses [7-9].

We first performed parent—offspring trio analysis to
assess the impact of rare inherited recessive and domi-
nant variants, and of DNVs on cardiomyopathy. We
hypothesised that variants in regulatory regions that are
specifically active in the adult heart could provide an
aetiological basis for cases with unexplained genetics.
We further supported this hypothesis through systematic
examination of noncoding regulatory elements of known
disease-risk genes in a mutation-negative cardiomyopa-
thy cohort. We identified noncoding variants predicted
to disrupt cis-regulatory elements involved in cardiac
gene regulation.

Page 2 of 20

By combining inherited and DNV analysis of a clinically
well-defined cohort, this study provides novel insights
into the complex genetics of cardiomyopathy subtypes,
which may lead to improved diagnosis and therapies.

Materials and methods

Study participants

All participants were recruited to the 100,000 Genomes
Project (100KGP) (protocol version 7, 2020), with writ-
ten informed consent. The full protocol is available
online at https://doi.org/10.6084/m9.figshare.4530893.v7.
Probands of parent—offspring trios (n=143) and single-
ton offspring (n = 843) were diagnosed with either ARVC,
LVNC, HCM, DCM or DCM and conduction defects.
They were included in the study if they had a clear diag-
nosis under 40 years of age. Patients were excluded if they
had an unclear diagnosis or a history suggestive of a non-
genetic cause. The control cohort included 19,467 age-,
sex-, and ethnicity-matched participants with no known
heart disease.

The study adheres to the principles set out in the Dec-
laration of Helsinki. Patients and relatives gave written
informed consent for genetic testing. Ethical approval for
the 100KGP was granted by the East of England—Cam-
bridge South Research Ethics Committee (REC Ref 14/
EE/1112).

Initial data processing and gene selection

Whole-genome sequencing (WGS) were processed by
Ilumina, and sequencing data were passed through
100KGP’s bioinformatics pipeline for alignment, annota-
tion, and variant calling. Variants were prioritised using
prespecified virtual gene panels from PanelApp (https://
www.genomicsengland.co.uk). To date, 208 genes are
listed for the Cardiomyopathies—including child-
hood onset (v1.37) panel. Based on the Human Pheno-
type Ontology (HPO) terms entered for these patients,
additional gene panels were applied where applicable,
including: undiagnosed metabolic disorders (v1.95),
mitochondrial disorders (v1.127), intellectual disabil-
ity (v3.2), and RASopathies (v1.27). Inherited variants
were restricted to panel genes, where the allelic state was
required to match the curated mode of inheritance.

Identification of candidate variants in coding regions

The variants were categorised according to gene anno-
tation, population allele frequency, functional predic-
tion, and clinical interpretation. The raw list of SN'Vs and
indels was annotated using ANNOVAR [10].

Variants were classified based on their mutational
characteristics, position in the genome, allele fre-
quency, and functional role in cardiomyopathy. In sil-
ico prediction of pathogenicity was performed using
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CADD [11] and REVEL [12], and conservation of
nucleotides was scored using GERP + + [13]. Popu-
lation allele frequencies were obtained from 100KGP,
1000Genomes, and gnomAD [14].

Highest priority was given to protein truncating
(frameshift, stop gain, stop loss, splice acceptor vari-
ant, or splice donor variant) or de novo (protein trun-
cating, missense, or splice region) variants in a gene on
the diagnostic-grade list in the virtual gene panel for
cardiomyopathy or any additional gene panel relevant
to the phenotype to the patient [15].

Inherited protein-altering variants, such as missense
and splice region variants, in diagnostic-grade genes
were also considered. Variants were retained if they
had a minor allele frequency (MAF) <0.001; the allelic
state matches the known mode of inheritance for the
gene and disorder and segregates with disease (where
applicable). Rare variants were ranked according to
a REVEL score above the default threshold of 0.5, a
CADD score greater than 20, and GERP+ +score
greater than 2. Variants with clinical significance as
benign or likely benign according to the ClinVar data-
set were removed.

In parallel, we used Exomiser (v12.1.0) [16], a phe-
notype-driven variant prioritisation framework.
Exomiser uses computational filters for variant fre-
quency and predicted pathogenicity, protein inter-
action networks, patient phenotypes, cross-species
phenotype comparisons, and pedigree information.
A logistic regression model is used to combine the
phenotype and variant scores to produce an overall
Exomiser score. We considered the top three ranked
variants that matched with our candidate-gene discov-
ery analysis.

De novo variant calling and filtering

DNVs were identified by 100KGP’s bioinformatics pipe-
line. Briefly, variants from WGS data were called using
Platypus, and filtered for absence of the mutation in
both parents, read depth (> 20), allele balance (> 0.3 and
0.7), and no overlap with segmental duplications, sim-
ple repeat regions, and patch regions.

To analyse noncoding DNVs, we obtained single-cell
ATAC and RNA data of human adult ventricle [14].
DNVs from 143 trios were intersected with the single-
cell ATAC-seq peak sets using default parameters of
bedtools v2.24.0. Peak sets were tested for an enrich-
ment of DNVs in offspring as compared to a back-
ground peak set which contained peaks from all other
cell types. We used a chi-squared test to compare the
number of peaks with DNVs between the cardiomyo-
cyte-specific peak set and the background peak set.
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HiChlIP analysis

We used H3K27ac HiChIP to map active chromatin
interactions genome wide on iPSC-derived cardiomyo-
cytes (GSM3639703) [17]. HiChIP paired-end reads
were aligned to GRCh38 genome using the HiC-Pro
pipeline. Duplicate reads were removed and default HiC-
pro settings were used to assign reads to Mbol restric-
tion fragments, filter for valid interactions, and generate
binned interaction matrices. High-confidence contacts
(FDR<0.05) were called using the contact caller FitHi-
ChIP with default settings at 10 kb resolution. These
high-confidence contacts were used in visualisation.

Prediction of target genes of enhancers

We used a combination of methods to predict enhancer—
gene interactions and interpret the functions of noncod-
ing DN'Vs.

Candidate enhancers were predicted using the recently
developed activity-by-contact (ABC) model [18], which
integrates H3K27ac ChIP-seq, HiChIP, and gene expres-
sion data with chromatin accessibility to predict enhanc-
ers and link them to their target genes. Using this
method, we were able to identify sets of high-confidence
putative enhancers for cardiomyocytes and their likely
target genes.

In addition, publicly available Hi-C data of human
left and right ventricle tissue (sample GSM1419085 and
GSM2322554, respectively) [19, 20] were analysed in
the 3D-genome Interaction Viewer (3DIV) and database
(http://kobic.kr/3div/)20.

3DIV was run using distance-normalised interaction
frequency>2 to define significant enhancer—promoter
interactions. Topologically associating domains (TADs)
were identified using TopDom [22] with a window size
of 20. DNVs that were within enhancers predicted by
both the ABC model and 3DIV were considered for
downstream analysis. Finally, we used a machine learn-
ing approach called FATHMM-MKL [23] to predict
the functional impact of noncoding SNVs. This tool
integrates functional annotations from ENCODE with
nucleotide-based sequence conservation measures and
provides predictions as p values in the range 0 to 1. We
used the default score>0.5 to indicate putative deleteri-
ous variants.

Promoters

Promoters were defined as 2 kb upstream or 1 kb down-
stream of transcription start sites (TSSs) and determined
based on the basic gene annotation file of release 33 from
GENCODE [24]. Further, to detect distal promoter-
interacting loci we used promoter capture Hi-C data
generated from three different human cell/tissue-types,
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including cardiomyocytes (GSM2297135, GSM2297136,
GSM2297137, GSM2297138, GSM2297139), left ventricle
(GSM2297192, GSM2297193, GSM2297194, GSM2297195,
GSM2297196, GSM2297197, GSM2297198, GSM2297199,
GSM2297200, GSM3067218, GSM3067219), and right
ventricle (GSM2297289, GSM2297290, GSM2297291,
GSM2297292, GSM2297293, GSM2297294, GSM2297295,
GSM2297296, GSM2297297) [21].

Network analysis

For noncoding DNVs, a functional enrichment analysis
of the candidate genes was performed using the VarElect
[25]. This tool uses the deep LifeMap Knowledgebase to
infer the “direct” or “indirect” association of biological
function between genes and the queried phenotype—i.e.
“cardiomyopathy” A direct association is determined if
studies indicate that the gene in question directly affects
disease development. An indirect association is based on
factors such as shared pathways, protein—protein interac-
tion networks, and mutual publications.

Case-control analysis

Independent to the trio analysis, we analysed 843
probands and 19,467 unrelated controls to identify high-
risk noncoding variants in regulatory elements of 12 car-
diomyopathy genes with definitive (BAG3, DES, FLNC,
LMNA, MYH?7, PLN, RBM20, SCN5A, TNNC1, TNNT2,
TTN) or strong (DSP) evidence [26]. We focused on
regulatory elements of diagnostic genes rather than the
entire genome to avoid false-positive results related to
genes with an unclear association with the disease. Regu-
latory elements for each gene were determined using the
ABC model (described above).

The functional impact of rare regulatory variants was
assessed based on several tools, including RegulomeDB
(https://regulomedb.org/), = FunMotif  (http://bioinf.
icm.uu.se:3838/funmotifs/), and FATHMM-MKL. We
mapped SNVs to these active regulatory regions of car-
diomyopathy genes and defined them as high-risk if they
were rare (MAF <0.0001 in 100KGP and gnomAD popu-
lation controls), predicted to alter transcription factor
(TF) binding, and were enriched in cases versus controls
(p<0.05).

Statistical analysis

To compare variant burden between cases and unrelated
controls for high-risk regulatory variants of cardiomyo-
pathy genes, variant calls were required to have an MAF
of <0.0001 in 100KGP controls and gnomAD. Controls
were proportionally matched for age, sex and ethnicity. y*
test, odds ratios (OR), and 95% confidence intervals (95%
CIs) were calculated for regulatory regions of all genes by
comparing the burden of rare variants.
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To evaluate the association between individual non-
coding variants and the risk of cardiomyopathy, we per-
formed a Fisher’s exact test as expected value were<5.
Statistical significance was considered at the 5% level
(two-tailed). Statistical analyses were undertaken using R
4.2.0 and RStudio 2022.02.2.

Results

Demographics and phenotype data of probands

In the trio analysis, 143 probands (85 males, 58 females),
with severe or syndromic disease, together with their
parents, were analysed. They were of different reported
ethnicities across England (Fig. 1A).

The age distribution of participants is shown in Fig. 1B.
Participants recruited for HCM were more frequent in
the 20 to 29 age group, and DCM between ages 20 to 39.
LVNC was more common in younger people at enrol-
ment. Of note, participants were enrolled in the 100KGP
in their 40 s and 50 s as they still lacked a molecular
diagnosis, despite all participants having an age of onset
before 40 years of age.

Figure 1C shows the top 20 HPO terms in all partici-
pants recruited, including intellectual disability, joint
hypermobility, and skeletal myopathy, suggesting syndro-
mic causes.

After parent—offspring trio analysis and application of
our stringent filtering criteria, each proband had an average
of 69.7 DN Vs (Fig. 2). Genetic findings and genotype—phe-
notype correlations are described in Tables 1, 2 and 3. We
used Exomiser to help narrow down candidate variants.

In addition, 843 exome-negative cardiomyopathy
probands and 19,467 controls were incorporated into
our case-control study from the 100KGP. The cases are
singleton offspring whose parental WGS data were una-
vailable. Using the PanelApp software, which contains
a crowd-sourced curation of genes with diagnostic-
grade evidence, only cases lacking a molecular diagnosis
were recruited in the case—control analysis. These cases
included 61.8% HCM, 26.0% DCM, 8.5% ARVC, and
3.6% LVNC subtypes. Most participants were of Euro-
pean ancestry (70%), and 64% were male.

De novo variants in diagnostic-grade genes.

Using the American College of Medical Genetics
(ACMG) guidelines, we identified deleterious DNVs
in 11/143 trios (7.7%). These class 4 and 5 variants are
defined as likely pathogenic or pathogenic, and are
reported as consistent with or confirming a diagnosis,
respectively (Table 1). Exomiser ranked the correct diag-
nosed variants as the top candidate in all these cases, and
no parents were affected. Several novel DNVs were iden-
tified in syndromic and non-syndromic cases.
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In Fam659, the proband had a novel missense DNV
c.568C>A (p.Argl90Ser) in the NKX2-5 gene. NKX2-
5 (NK2 homeobox 5) encodes for a transcription factor
that is important for the development of the myocardium
[27]. Mutations in this gene are known to cause congeni-
tal heart disease, particularly atrial septal defect (with or
without atrioventricular conduction defects), and ven-
tricular septal defect. Consistent with this, the patient
was diagnosed with LVNC, including atrial septal defect,
atrioventricular block, and abnormal ventricular septum
morphology.

In the proband of Fam208, a novel missense DNV
¢.590 T>C (p.Leul97Pro) was identified in the LMNA
gene (lamin A/C). LMNA encodes the A-type lamin pro-
teins, lamin A and C, which are the major components
of the nuclear membrane in mammals. Mutations in
LMNA have been reported to cause a variety of clinical
phenotypes, collectively known as laminopathies. These
include cardiac disorders, premature ageing syndromes,

and neuropathies [28]. In addition to DCM, the proband
had a range of musculoskeletal-related abnormalities
(Table 1).

In the proband of Fam520, a missense DNV
¢.360C>A (p.His120Gln) was found in the LZTRI
gene. Mutations in LZTRI (leucine-zipper-like tran-
scriptional regulator 1) are associated with Noonan
syndrome phenotypes and schwannomatosis [29]. As
well as obstructive HCM, the proband had combined
disorders of mitral, aortic and tricuspid valves, con-
gestive heart failure, thyrotoxicosis with diffuse goi-
tre, postprocedural hypothyroidism, and rheumatoid
arthritis. According to the ACMG guidelines, the vari-
ant is classified as a variant of uncertain significance.
It is predicated to be deleterious according to in silico
algorithms and was not identified in public databases,
including gnomAD and 1000G. We require further
clinical information to determine a phenotype consist-
ent with Noonan spectrum disorders. Dominant and
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Cardiomyopathies
143 Trios
DCM ARVC LVNC HCM
A 4
46 Trios 18 Trios 16 Trios 63 Trios
Total | 3212 DNVs 1122 DNVs 1092 DNVs 4542 DNVs
. 38 Trios 15 Trios 14 Trios 52 Trios
Overlap with ATAC-seq 90 DNVs 33 DNVs 35 DNVs 130 DNVs
. 35 Trios 14 Trios 12 Trios 44 Trios
Overlap with ChIP-seq 57 DNVs 25 DNVs 27 DNVs 89 DNVs
Enhancer and 25 Trios 9 Trios 5 Trios 13 Trios
promoter prediction 26 DNVs 13 DNVs 6 DNVs 14 DNVs
8 3
Gene and variant 6 Trios 2 Trios 3 Trios 8 Trios
Fig. 2 Noncoding de novo variant filtering criteria. DCM = dilated cardiomyopathy; ARVC = arrhythmogenic right ventricular cardiomyopathy;
LVNC =left ventricular non-compaction cardiomyopathy; and HCM = hypertrophic cardiomyopathy

recessive Noonan syndrome-causing mutations have
been described near this variant, all of which within the
highly conserved kelch domains [30, 31].

A novel frameshift DNV of high-impact c.6183del
(p.Leu2062TrpfsTer25) in the ANKRDII gene was
observed in the proband of Fam451. Mutations in
ANKRD11 (ankyrin repeat domain 11) are reported to be
associated with KBG syndrome and intellectual disabil-
ity [32]. The patient presented with LVNC and a variety
of other phenotypes, including abnormal vena cava mor-
phology, bicuspid aortic valve, abnormality of the face,
delayed fine motor development, intellectual disability,
and proportionate short stature (Table 1).

In the proband of Fam478, a known pathogenic mis-
sense DNV ¢.782C>T (p.Pro261Leu) was found in
the RAFI gene. Diseases associated with RAFI (Rafl
proto-oncogene, serine/threonine kinase) include Noo-
nan and Leopard syndromes. These developmental
disorders have overlapping features, including cardiac
abnormalities, short stature, and facial dysmorphia
[33]. The proband was diagnosed with HCM and had
other phenotypes, including congenital malformation
of cardiac septum, palpitations, anxiety disorder, and
depression. This DNV has previously been reported
in an individual affected with Noonan syndrome,

including other individuals with clinical features of
this disease [33—35]. Moreover, functional studies have
shown that p.Pro261Leu leads to increased activity of
the RAF1 protein [36].

In the proband of Fam828, we found a missense DNV
¢.836A > G (p.Tyr279Cys) in the PTPNI11 gene (protein
tyrosine phosphatase non-receptor type 11). Mutations
in PTPN11 are well characterised in children with Noo-
nan syndrome and juvenile myelomonocytic leukae-
mia [37]. In addition to HCM, the proband had other
phenotypes, including intellectual disability, failure to
thrive, right ventricular cardiomyopathy, and LVNC.

Other known pathogenic DNVs were found con-
sistent with a diagnosis of non-syndromic cardio-
myopathy. Three participants with HCM had known
missense variants in MYH7. Two variants (c.2156G > A
(p-Arg719Gln) and c.1358G>A (p.Arg453His)) are
reported as pathogenic on ClinVar, whereas variant
€.2420G > C (p.Arg807Pro) is reported as likely patho-
genic. The proband harbouring the latter MYH?7 variant
also had congenital malformations of the heart, conges-
tive heart failure, arrhythmia, and died as an infant with
sudden cardiac arrest. Pathogenic variants were found
in other known genes, including DES, RYR2, TTN and
TNNT2 (Table 1).
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De novo variants in other disease-risk genes

We also looked at DNVs in genes not included in Pane-
1App. In 27/143 probands (18.9%), 30 rare de novo coding
variants were identified, which were considered delete-
rious based on in silico prediction tools (see methods).
Using Exomiser, a phenotype-based prioritisation pipe-
line, 11 DNVs were ranked in the top three as the most
likely cause. These include TUBA1B, KIRRELI1, DAAM],
DOCKI11, and KDMS35B (Table 2). It is possible that some
of the putative genes identified herein could be novel
gene candidates or genetic modifiers.

Interestingly, the proband of Fam231 harbouring a mis-
sense DNV ¢.49 T >C (p.Cys17Arg) in the DAAMI gene
also had a known pathogenic variant in TNNT?2 (Table 1).
Studies show that DAAMI is required for cardiomyo-
cyte maturation [38], and deletion of the gene is associ-
ated with congenital heart anomalies [39]. Multiple gene
mutations occurring in cardiomyopathy families may
result in a more severe clinical phenotype because of a
compounding effect. Other examples of oligogenic inher-
itance are described below.

Inherited variants in diagnostic-grade genes

In 10/143 trios (7.0%), 14 rare inherited variants of poten-
tial clinical significance were identified in probands and
their affected family members based on gene panel test-
ing. These include variants with recessive, dominant, and
compound heterozygous segregation patterns (Table 3).

Two participants with HCM had missense variants
in MYBPC3. In Fam599, the proband harbouring the
c.1504C>T (p.Arg502Trp) variant presented with a
range of diagnoses, including abnormal thumb, eye and
oral morphology, intellectual disability, and mild micro-
cephaly. The mother, also harbouring the variant, was
diagnosed with atrial septal defect, short thumb, polycys-
tic ovaries, and Raynaud syndrome. It is not clear why the
proband presented with a more severe phenotype.

In Fam411, the proband inherited the MYBPC3 splice
donor variant ¢.254+1G>A from the affected mother.
In addition to HCM, the mother presented with hypo-
thyroidism, prolonged QT syndrome, severe depression,
anxiety, and schizoid personality disorder.

In Fam484, the proband inherited an autosomal domi-
nant mutation ¢.2254 T > A in SAMD?9 from the affected
father. The proband was diagnosed with LVNC, ventricu-
lar septal defect, intellectual disability, joint hypermobil-
ity, and Wolff—-Parkinson—White syndrome. Although
the affected father and sibling carrying this variant pre-
sented with LVNC, neither had the comorbidities pre-
sent in the proband. The father, however, presented with
gastrointestinal haemorrhage, and diverticular disease of
large intestine (without perforation or abscess). Muta-
tions in SAMD9 have been described in patients with
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MIRAGE syndrome, a severe multisystem disorder [40].
This includes prominent gastrointestinal symptoms and
intellectual disability.

In the proband and affected mother of Fam957, a
missense variant ¢.372C>G (p.lle124Met) was identi-
fied in the ACTCI gene. Mutations in ACTCI (actin
alpha cardiac muscle 1) are associated with atrial septal
defect, DCM, and HCM [41, 42]. In addition to DCM,
the proband had partial anomalous pulmonary venous
return, dyspnoea, myocardial fibrosis, and oligospermia.
The mother was diagnosed with DCM, secundum atrial
septal defect, and bipolar affective disorder.

Multilocus inheritance may explain the relatively low
diagnostic yield for cardiomyopathy cases, or apparent
phenotypic expansion. We found evidence for compound
heterozygosity, digenic, and oligogenic inheritance in
several families (described below). This highlights the
importance of screening for additional genes even after a
single mutation has been identified.

We observed evidence for oligogenic inheritance
in Fam919. The proband, born in 2018 and reported
to be deceased, had a recessive mutation in POLR3A
(c.1787C>T (p.Thr596Met)) and a compound heterozy-
gous TTN mutation (c.92176C>T (p.Pro30726Ser)).
Mutations in POLR3A are associated with a wide array
of pathological phenotypes, some of which were present
in the proband. In addition to DCM and congestive heart
failure, the proband had multiple congenital anoma-
lies, including microcephaly, endocardial fibroelastosis,
hydrops fetalis, polymicrogyria, cortical dysplasia, and
pedal oedema.

The proband of Fam539 inherited five compound
heterozygous TTN variants, one of which from the
mother passed our filtering criteria for deleteriousness
(c.20335A > T, p.Ser6779Cys) (see methods). The proband
also inherited autosomal dominant variants of incom-
plete penetrance in COL6AI and LZTRI. The LZTRI
stop gained variant c.1311G > A (p.Trp437Ter) was inher-
ited from the mother, and the COL6AI missense variant
¢.1712A > C (p.Lys571Thr) was inherited from the father.
The proband was diagnosed with HCM, skeletal myopa-
thy, and increased nuchal translucency. One out of two
siblings are also affected with HCM; however, detailed
medical notes or WGS data are not available. Although
considered unaffected for cardiomyopathy, both parents
were diagnosed with primary (essential) hypertension.
In addition, the father has a family history of ischaemic
heart disease, arrhythmia, syncope and collapse, and
other ill-defined heart diseases.

In the proband of Fam992, compound heterozy-
gous mutations c.852_855del (p.Asn284LysfsTer4) and
¢.1038_1040del (p.Lys346del) in the DSG2 gene were
identified. The mother of the proband had the frameshift
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Fig. 3 Chromatin interaction map of chr20:44,116,250 locus. A One-to-all interaction plots are shown for the lead variant chr20:44,116,250 A>G
shown in blue as bait. Y-axes on the left and the right measure bias-removed interaction frequency (blue bar graph) and distance-normalised
interaction frequency (magenta dots), respectively. The arc representation of significant interactions for distance-normalised interaction
frequencies > 2 is displayed relative to the Refseg-annotated genes in the locus. The DNV physically interacts with the JPH2 enhancer by long-range
chromatin interaction. B Close-up of region containing JPH2. The ABC model independently predicted the DNV (red triangle) is within the JPH2
enhancer. CM = cardiomyocyte

variant ¢.852_855del, whereas the father had the inframe
deletion ¢.1038_1040del. In addition to ARVC, the
proband was diagnosed with disorders of magnesium
metabolism, hypokalaemia, and congenital malforma-
tions of cardiac chambers and connections. Of note, a
DNV in the enhancer of gene TUSC3 was also identified.
TUSC3 constitutes a major component in cellular mag-
nesium transport and homeostasis, and its function in
regulation of embryonic development in vertebrates has
been suggested [43, 44]. This may explain the disorders of
magnesium metabolism and hypokalaemia as a second-
ary cause in the proband [45].

In Fam180, the proband and mother with HCM har-
bour a variant of unknown significance (class 3) in the
MYH?7 gene. In addition, two families with HCM had
mutations in mitochondrial genes MT-CO1 and MT-ND6
(Table 3); both previously implicated in heart disease,

although heteroplasmy proportions are yet to be deter-
mined in multiple tissue samples.

These examples demonstrate that non-Mendelian
inheritance may be an important factor in the cardiomy-
opathy cause-discovery pipeline. Other possibilities exist
to help close the diagnostic gap, including noncoding
mutations that affect regulatory elements.

Singe-cell chromatin state profiling

We hypothesised that DNVs in human heart regulatory
regions are more likely to perturb expression levels of
genes that are essential for cardiac function.

Annotation of ventricular cardiomyocyte peak set in
genomic features shows enrichment in intronic and dis-
tal intergenic regions and in the flanking regions of TSSs,
suggesting an enrichment of gene regulatory elements,
such as enhancers. We intersected single-cell ATAC-seq
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peaks with publicly available H3K27ac ChIP-seq data
(a marker for active enhancers) of eight healthy adult
donors [46] and found significant overlap with our peaks
(Permutation test, one-sided, p <0.001).

Identification of de novo variants in noncoding regulatory
regions

To determine selective vulnerabilities across diverse
cell types of the human heart, we intersected cell-type-
specific ATAC-seq peaks with DNVs identified from
parent—offspring trio analysis (see methods). Cardiomy-
ocyte-specific peak sets were not significantly enriched
for DNVs in offspring compared to a merged background
peak set.

A total of 288 DNVs from 143 trios intersected with
a peak signal from ventricular cardiomyocytes. After
filtering for parental affected status, H3K27ac over-
lap, and mapping regulatory regions to genes, 15 DNVs
were within promoter regions, and 12 within predicted
enhancers linked to their target genes. We used the tool
FATHMM-MKL to predict the functional effects of non-
coding variants. Additional file 1: Table S1 shows pri-
oritised variants within ventricular cardiomyocyte open
chromatin regions.

Predicting the target genes of enhancers

Using the ABC model [18], we predicted likely enhanc-
ers by integrating H3K27ac ChIP-seq, HiChIP, and gene
expression data with chromatin accessibility. We identi-
fied sets of high-confidence putative enhancers for ven-
tricular cardiomyocytes and their likely target genes.

As a complementary approach, histone ChIP-seq
experiments on Hi-C samples were analysed to pro-
vide epigenetic features using 3DIV. Annotation of
enhancer/super-enhancers and histone ChIP-seq signals
were provided for the following: H3K27ac, H3K27me3,
H3K36me3, H3K4mel, H3K4me3. Genes with distance-
normalised interaction frequency>2 were retained. In
addition, we used promoter capture Hi-C data to detect
interactions with gene promoters. These data are sum-
marised in Additional file 1: Table S1.

Network analysis

We applied another strategy to further prioritise the
effect of DNVs on human cardiac regulome. We analysed
the 62 genes associated with enhancers and promoters
containing prioritised DNVs using VarElect to corre-
late their functions with different aspects of the clinical
phenotype. Results suggest that 20 targets were directly
related to cardiomyopathy, whereas 41 were indirectly
related (Additional file 2: Table S2). One gene (MIR3143)
was unrelated and therefore excluded from the analysis.

Page 15 of 20

Among the unified results, the top five genes with the
highest score of correlation were JPH2, UTRN, HI-2,
RHOD, and SAP30B. This score is an indication of the
strength of the connection between the gene and the
queried phenotypes. The score helps to rank and priori-
tise the list of queried genes by relevance to the disease.
Interestingly, many of the top scoring genes were associ-
ated with the same DNV.

Noncoding de novo variants are associated

with cardiomyopathy-risk genes

In the proband of Fam499, we identified a DNV within an
enhancer of JPH2 (Fig. 3). This gene exhibited the high-
est phenotype association (VarElect score 36.89) (Addi-
tional file 2: Table S2). The proband, female and of British
ethnicity, was diagnosed with HCM and reported to have
died due to sudden cardiac arrest in the year 2020, at the
age of 19. Both parents and natural sibling recruited in
the study were unaffected.

The junctophilin-2 gene (JPH2) is the major structural
protein in cardiomyocytes for coupling of transverse
tubule-associated L-type Ca®* channels and type-2 ryan-
odine receptors on the sarcoplasmic reticulum within
junctional membrane complexes (JMC) [47]. Signalling
between these two Ca®" channels is required for normal
cardiac contractility. Disruption of the JMC is a common
finding in failing hearts. Downregulation of /PH2 gene
has been associated with heart failure, and mutations in
this gene are associated with HCM [47, 48].

JPH2 was the only high-evidence gene found in our
noncoding DNV analysis. We recognise that caution be
exercised in the interpretation of variants in cardiomyo-
pathy genes lacking robust evidence; however, the follow-
ing preliminary results may help to explain the complex
genetic architecture of cardiomyopathy.

The proband of Fam126 was diagnosed with DCM and
harbours a DNV within an enhancer region that regulates
the genes UTRN, STX11, and SF3BS. Diseases associ-
ated with UTRN (utrophin) include muscular dystrophy,
endothelial dysfunction, and DCM [49, 50].

The proband of Fam313 was diagnosed with DCM,
including dysplastic tricuspid valve, right ventricular car-
diomyopathy, tricuspid regurgitation, dyspnea, pulmonic
stenosis, café au lait spot, and congenital heart disease.
Although no DNVs were identified in enhancer regions,
a deleterious coding DNV was identified in ADGRVI
(Table 2). In addition, we used pcHi-C to detect distal
promoter-interacting regions and found that a DNV in
this proband is associated with a large cluster of histone
genes on human chromosome 6.

Studies have shown that histone acetylation/deacetyla-
tion regulates cardiac morphogenesis, growth, and con-
tractility [51]. Gene expression profiles of DCM patients
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Table 4 Rare noncoding variants identified in regulatory elements of definitive cardiomyopathy genes in the case-control analysis

Proband ID Disease Genomic position (GRCh38) Gene MAF Controls pvalue FATHMM-MKL Motifs
score

PO1 HCM chr1:156,106,052 G>T LMNA 0O 0.0415 0.08434

P02 HCM chr1:156,106,161 T>C LMNA 0O 0.0415  0.05647

P03 DCM chr1:156,106,287 T>G LMNA 0O 0.0415  0.39668 Bcl6, EHF, ELF1, ELF3, ELF4,
ELF5, STAT1, STAT3, Stat4,
Stat5a:Stat5b

P04 DCM chr1:156,106,347 T>G LMNA 0O 0.0415 031391

P05 DCM chr1:156,106457 C>T LMNA 0 0.0415 054018

P06 HCM chr1:201,377,783 C>A TNNT2 0 0.0415  0.22864 PLAG1

PO7; PO8 HCM; HCM  chr1:201,377,789 G>A TNNT2  2.57E-05 0.005 0.19213 PLAGT, RREBT, ZNF263

P09 HCM chr1:201,377,790 A>G TNNT2 0 0.0415 0.15782 RREB1

P10, P11 HCM; HCM  chr10:110,637,018 C>A RBM20 7.71E-05 0.0158 056143

P12 HCM chr10:119,651,128 G>C BAG3 0 0.0415  0.65553

P13 LVNC chr10:119,651,207 G>C BAG3 0 0.0415  0.66491 HINFP

P14 HCM chr10:119,651,329T>C BAG3 0 00415  0.54331 EGR3, EGR4, SP2

P15 HCM chr10:119,651,409T>C BAG3 0 0.0415  0.98892

P16 HCM chr2:219,419,925 C>T DES 0 0.0415  0.89101

P17 ARVC chr2:219,419,965 C>G DES 0 0.0415  0.26643

P18 HCM chr3:52,452,725T>G TNNCT 0 0.0415  0.89566 CTCF, Hic1, HIC2, Myod1, SNAI2

P19 HCM chr6:7,541,668 G>C DSP 0 00415 036401

P20 HCM chr6:7,542,061 C>T DSP 0 0.0415  0.20036

P21 HCM chr6:7,542,062 C>G DSP 0 0.0415 038808

P22 HCM chr6:7,542,072T>C DSP 0 0.0415  0.90083

P23 ARVC chr6:7,542,155 G>C DSP 0 0.0415 0.1913

P24 HCM chr6:7,542,266 G>C DSP 0 0.0415 0.19228

P25 HCM chré:118,537,675 A>C PLN 0 0.0415  0.89431 Nr1h3:Rxra

P26 HCM chré:118,537,684T>C PLN 0 0.0415 090162 Nr1h3:Rxra

p27 HCM chré:118,537,778 A>G PLN 0 0.0415  0.22901

P values are calculated using the Fisher’s exact test. Motifs column indicate functional motifs present according to the funMotifs framework. The FATHMM-MKL score
indicates the pathogenic impact of individual SNVs. Predictions are given as p values in the range 0 to 1; values>0.5 are predicted to be deleterious

have also shown that several histone family members are
downregulated [52]. We hypothesise that the downregu-
lation of these genes, which are responsible for higher
order chromatin structure, may contribute to the clinical
presentation in this proband via nucleosome formation
blockade [53].

The proband of Fam334 was initially diagnosed with
DCM, and later suspected to have aortopathy and early
hypertension. Other diagnoses include lethargy, torsion
of testis, headaches, and palpitations. The proband died
in the accident and emergency department in the year
2018, at the age of 21. Neither parent or three natural sib-
lings were affected. The DNV identified in this proband
is (1) within the enhancer region of genes UNCI3D,
WBP2, SAP30BP and TRIM®65; (2) overlapping the pro-
moter regions of genes H3-3B, MIR4738 and UNK; and
(3) interacting with distil gene promoters of TRIM56 and
TMEMO94. Diseases associated with TMEM94 include
cardiac defects [54].

In Fam791, the proband was diagnosed with ARVC and
DCM, in addition to arrhythmia, varicose veins of lower
extremities with ulcer and inflammation, atherosclerotic
heart disease, renal failure, gastrointestinal haemor-
rhage, and anal polyp. A DNV was identified within the
enhancer region of genes GRK2 and RHOD, and overlap-
ping the promoter region of RAD9A.

G protein-coupled receptor kinase-2 (GRK2) regulates
many cellular and physiological processes, including car-
diac contractility, cell proliferation, cell cycle regulation,
angiogenesis and vasodilatation. Inhibiting GRK2 can
enhance cardiac contractility and protect from adverse
heart remodelling in disorders related to cardiac dysfunc-
tion [55], suggesting its inhibition as a therapeutic strat-
egy for heart failure. We hypothesise that this DNV may
elevate levels and activity of this kinase, thus promoting
cardiovascular disease. Moreover, phenome-wide asso-
ciated loci in the proximity of RHOD is a likely causal
gene for cardiomegaly and hematemesis [56], the latter of
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regulatory variants in cardiomyopathy cases

MPRAs in cardiomyocytes
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Fig.4 An integrative genomics approach for prioritising noncoding variants. A We performed a rare-variant association study in
cardiomyocyte-specific regulatory regions of genes associated with cardiomyopathy. These variants should be tested for deleteriousness or
transcriptional activity, and, by inference, for causality. B MPRAs allow for thousands of short DNA sequences to be assayed simultaneously by first
synthesising DNA oligos on an array, integrating them into plasmids and inserting into cells. Both input DNA and RNA libraries are sequenced to
assess the tag counts associated with the test sequences. Barcode abundance thus scales quantitatively with the regulatory activity of a given
tested sequence (figure adapted from Ajore et al. [63]). This technique can be used in future studies to screen all prioritised cardiomyocyte-specific

which may explain the gastrointestinal bleeding observed
in this patient.

Case-control analysis reveals high-risk noncoding variants
in disease-risk genes

The contribution of disease-causing rare variants in non-
coding regulatory regions remains elusive. The identifica-
tion of candidate noncoding DNVs in our trio analysis led
us to investigate high-risk regulatory variants associated
with cardiomyopathy genes in a large cohort lacking a
pathogenic mutation in gene panel testing.

Overall, combining data from all genes, there was a sig-
nificant difference in the proportion of cardiomyopathy
cases and controls carrying one or more rare variant in
regulatory elements of strong or definitive disease-risk
genes (p=0.035, OR=1.43, 95% Cl=1.095-1.767).

Of the 843 probands lacking a molecular diagnosis,
we performed variant-level analysis and identified 25
noncoding variants that were significantly associated in
cases (p< 0.05). Of these, 9 predicted to effect TF bind-
ing motifs. Eight of the 12 genes investigated had one or
more rare variant in regulatory regions, including DSB
RBM?20, LMNA, TNNTI, TNNT2, BAG3, DES, and PLN.
The highest-ranking regulatory elements for each gene
are listed in Additional file 3: Table S3.

Most of the significant variants (n=23; 92%) were “pri-
vate” to a single proband, with only two variants occur-
ring in two unrelated probands, albeit with the same
cardiomyopathy subtype. The private variants were not
identified in control populations. Most variants (76%)
occurred in HCM, 12% occurred in DCM, 8% occurred
in ARVC, and 4% were observed in LVNC cases. These
data are summarised in Table 4.

Discussion

The pathogenesis of cardiomyopathy is largely unknown,
and the diagnosis is challenging due to its clinical het-
erogeneity, involving incomplete penetrance and vari-
able expression. The analysis of DNVs in clinically
well-defined phenotypes is a powerful approach to delin-
eate the aetiological basis of disease as it focuses on a
relatively small number of variants that provide strong
evidence of pathogenicity [57].

DNVs are responsible for the relatively high prevalence
of complex disorders. The estimated rate for human ger-
mline de novo SNVs is (1.0 to 2.4) x 10~ per base per
generation [58, 59]. This translates to an average of 32 to
76.8 variants in the human genome, with one or two in
exonic regions. We had an average of 69.7 DNVs per trio
analysis, giving a mutation rate of 2.2 x 1078 per base per
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generation. This is consistent with previous studies, thus
showing the high quality of our data.

We combined gene panel testing with Exomiser, a
phenotype-based algorithmic framework, to priori-
tise inherited and DNVs. A definite or probable genetic
diagnosis was identified in 21 probands according to the
ACMG guidelines. Additional DNVs of potential clini-
cal significance were identified in 30 genes, 11 of which
were within the top three ranked by Exomiser, including
TUBAIB, KIRREL1, DAAM1, DOCK11, and KDMS5B.

In addition, we integrated WGS and single-cell epi-
genomics to examine the role of regulatory DNVs in
cardiomyopathies. Despite the genetic heterogeneity of
cardiomyopathy, which stifles efforts to unequivocally
demonstrate a causal role for individual noncoding vari-
ants, our results provide multiple lines of evidence to
indicate the aetiological basis of functional regulatory
variants in the human heart regulome. Notably, a DNV
was identified within an enhancer of JPH2, a gene associ-
ated with HCM and the highest scored in our analysis.

Interestingly, we found that more than one rare variant in
different cardiomyopathy genes may be relevant for disease
causation. Other studies have shown that cardiomyopathy
can arise from co-inheritance of rare genetic variants that
are benign on their own but harmful in combination [60].
The assumption that all or most patients will receive a sin-
gle-gene diagnosis is now relegated to the margins. Investi-
gating additional affected families does not necessarily lead
to novel gene discovery, thus necessitating the exploration
of non-Mendelian contributors to causation or risk.

To further add weight to the hypothesis that noncoding
variants are associated with cardiomyopathy, we performed
a case-control analysis in a mutation-negative cohort and
found an enrichment of high-impact regulatory SNVs in
cases compared to controls. A variant-level association test
showed that 25 SN'Vs were significantly associated with dis-
ease, of which 23 were not identified in control populations
and nine are predicted to alter TF motifs.

There were several limitations in this study. It is pos-
sible that probands in the trio analysis inherited variants
within noncoding loci associated with disease, or inher-
ited coding variants in genes beyond those listed in the
applied panels. Moreover, in the case—control analysis,
we only focused on genes that are strongly associated
with cardiomyopathy. We also did not analyse structural
variants, such as CNVs, inversions, balanced transloca-
tions, or complex rearrangements.

Indeed, functional validation of the novel variants
reported herein is warranted, a lack of which is acknowl-
edged as a further limitation. Novel variants should not
be considered causal merely because they are rare and
predicted to be deleterious in silico [61]. Many of the
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disease-associated variants identified in this study are
noncoding, which are in less-well understood regions
of the genome. High-throughput assays with functional
readout for putative regulatory elements would enable
the identification of functional variants and the biologi-
cal contexts in which they act. Massively parallel reporter
assays (MPRAs) permit the high-throughput functional
characterisation of noncoding genetic variation [62]. In
Fig. 4, we offer a workflow to identify candidate non-
coding variants associated with disease, and to assess
the molecular consequences of their disruption experi-
mentally. Adapting MPRAs for use in cardiomyocytes
will be critical towards understanding cell-type-specific
models of regulatory logic in contexts of greater clinical
relevance.

Our work brings together multiple ‘omics datasets
to elucidate the role of pathogenic variants in coding
and noncoding loci. This study should prompt exten-
sive genetic analyses and variant-specific experimental
modelling to elucidate the complex genetic mechanisms
underlying cardiomyopathies.
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