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Abstract 

Background:  Cardiomyopathies are a leading cause of progressive heart failure and sudden cardiac death; however, 
their genetic aetiology remains poorly understood. We hypothesised that variants in noncoding regulatory regions 
and oligogenic inheritance mechanisms may help close the diagnostic gap.

Methods:  We first analysed whole-genome sequencing data of 143 parent–offspring trios from Genomics England 
100,000 Genomes Project. We used gene panel testing and a phenotype-based, variant prioritisation framework called 
Exomiser to identify candidate genes in trios. To assess the contribution of noncoding DNVs to cardiomyopathies, we 
intersected DNVs with open chromatin sequences from single-cell ATAC-seq data of cardiomyocytes. We also per-
formed a case–control analysis in an exome-negative cohort, including 843 probands and 19,467 controls, to assess 
the association between noncoding variants in known cardiomyopathy genes and disease.

Results:  In the trio analysis, a definite or probable genetic diagnosis was identified in 21 probands according to the 
American College of Medical Genetics guidelines. We identified novel DNVs in diagnostic-grade genes (RYR2, TNNT2, 
PTPN11, MYH7, LZR1, NKX2-5), and five cases harbouring a combination of prioritised variants, suggesting that oligo-
genic inheritance and genetic modifiers contribute to cardiomyopathies. Phenotype-based ranking of candidate 
genes identified in noncoding DNV analysis revealed JPH2 as the top candidate. Moreover, a case–control analysis 
revealed an enrichment of rare noncoding variants in regulatory elements of cardiomyopathy genes (p = .035, 
OR = 1.43, 95% Cl = 1.095–1.767) versus controls. Of the 25 variants associated with disease          (p< 0.5), 23 are novel 
and nine are predicted to disrupt transcription factor binding motifs.

Conclusion:  Our results highlight complex genetic mechanisms in cardiomyopathies and reveal novel genes for 
future investigations.
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Background
The cardiomyopathies, herein divided into dilated car-
diomyopathy (DCM), hypertrophic cardiomyopathy 
(HCM), arrhythmogenic right ventricular cardiomyopa-
thy (ARVC) and left ventricular non-compaction cardio-
myopathy (LVNC), are leading causes of heart failure [1].

Although there is considerable overlap between dif-
ferent cardiomyopathy subtypes, each has a signature 
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genetic aetiology. HCM and ARVC are largely explained 
by alterations in sarcomere or desmosome proteins, 
respectively. Around half of HCM cases are caused by 
mutations in the genes MYH7 and MYBPC3 [2]. How-
ever, the genetic architecture of DCM is far more com-
plex. To date, more than 250 genes have been implicated 
in DCM causation or risk, including genes encoding 
for cytoskeletal, sarcolemmal, mitochondrial, calcium 
cycling, costameric and sarcomeric proteins [3].

Although the aetiological basis of cardiomyopathy is 
incomplete, recent genetic studies suggest that a large 
proportion of cases may be explained by alterations in 
the noncoding genome [4].

Data from the ENCODE project suggest that biochemi-
cal functionality could be assigned to 80 per cent of the 
human genome, affecting regulatory and tissue-specific 
expression patterns [5]. Furthermore, genome-wide asso-
ciation studies (GWAS) show that over 90% of disease-
associated SNPs are in noncoding regions of the genome, 
including regulatory regions, such as promoters and 
enhancers [6]. Thus, a key priority in the cardiomyopa-
thy gene discovery pipeline is the identification of regu-
latory elements controlling genes associated with these 
disorders.

High-throughput epigenomic profiling methods such 
as ATAC-seq and ChIP-seq have enabled profiling of 
chromatin accessibility across samples in a tissue-wide 
manner, providing the opportunity to identify millions 
of context-specific regulatory elements. However, these 
bulk measurements of chromatin accessibility limit the 
precise understanding of how tissue heterogeneity and 
multiple cell types in the population contribute to over-
all disease aetiology [7]. Recent advances in single-cell 
‘omics technologies have enabled an unbiased identifica-
tion of cell-type populations and regulatory elements in a 
heterogeneous biological sample. By mapping the chro-
matin-regulatory landscape at a single-cell resolution, 
studies have demonstrated the potential to link regula-
tory elements to their target genes, and map regulatory 
dynamics during complex cellular differentiation pro-
cesses [7–9].

We first performed parent–offspring trio analysis to 
assess the impact of rare inherited recessive and domi-
nant variants, and of DNVs on cardiomyopathy. We 
hypothesised that variants in regulatory regions that are 
specifically active in the adult heart could provide an 
aetiological basis for cases with unexplained genetics. 
We further supported this hypothesis through systematic 
examination of noncoding regulatory elements of known 
disease-risk genes in a mutation-negative cardiomyopa-
thy cohort. We identified noncoding variants predicted 
to disrupt cis-regulatory elements involved in cardiac 
gene regulation.

By combining inherited and DNV analysis of a clinically 
well-defined cohort, this study provides novel insights 
into the complex genetics of cardiomyopathy subtypes, 
which may lead to improved diagnosis and therapies.

Materials and methods
Study participants
All participants were recruited to the 100,000 Genomes 
Project (100KGP) (protocol version 7, 2020), with writ-
ten informed consent. The full protocol is available 
online at https://​doi.​org/​10.​6084/​m9.​figsh​are.​45308​93.​v7. 
Probands of parent–offspring trios (n = 143) and single-
ton offspring (n = 843) were diagnosed with either ARVC, 
LVNC, HCM, DCM or DCM and conduction defects. 
They were included in the study if they had a clear diag-
nosis under 40 years of age. Patients were excluded if they 
had an unclear diagnosis or a history suggestive of a non-
genetic cause. The control cohort included 19,467 age-, 
sex-, and ethnicity-matched participants with no known 
heart disease.

The study adheres to the principles set out in the Dec-
laration of Helsinki. Patients and relatives gave written 
informed consent for genetic testing. Ethical approval for 
the 100KGP was granted by the East of England—Cam-
bridge South Research Ethics Committee (REC Ref 14/
EE/1112).

Initial data processing and gene selection
Whole-genome sequencing (WGS) were processed by 
Illumina, and sequencing data were passed through 
100KGP’s bioinformatics pipeline for alignment, annota-
tion, and variant calling. Variants were prioritised using 
prespecified virtual gene panels from PanelApp (https://​
www.​genom​icsen​gland.​co.​uk). To date, 208 genes are 
listed for the Cardiomyopathies—including child-
hood onset (v1.37) panel. Based on the Human Pheno-
type Ontology (HPO) terms entered for these patients, 
additional gene panels were applied where applicable, 
including: undiagnosed metabolic disorders (v1.95), 
mitochondrial disorders (v1.127), intellectual disabil-
ity (v3.2), and RASopathies (v1.27). Inherited variants 
were restricted to panel genes, where the allelic state was 
required to match the curated mode of inheritance.

Identification of candidate variants in coding regions
The variants were categorised according to gene anno-
tation, population allele frequency, functional predic-
tion, and clinical interpretation. The raw list of SNVs and 
indels was annotated using ANNOVAR [10].

Variants were classified based on their mutational 
characteristics, position in the genome, allele fre-
quency, and functional role in cardiomyopathy. In sil-
ico prediction of pathogenicity was performed using 
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CADD [11] and REVEL [12], and conservation of 
nucleotides was scored using GERP +  +  [13]. Popu-
lation allele frequencies were obtained from 100KGP, 
1000Genomes, and gnomAD [14].

Highest priority was given to protein truncating 
(frameshift, stop gain, stop loss, splice acceptor vari-
ant, or splice donor variant) or de novo (protein trun-
cating, missense, or splice region) variants in a gene on 
the diagnostic-grade list in the virtual gene panel for 
cardiomyopathy or any additional gene panel relevant 
to the phenotype to the patient [15].

Inherited protein-altering variants, such as missense 
and splice region variants, in diagnostic-grade genes 
were also considered. Variants were retained if they 
had a minor allele frequency (MAF) < 0.001; the allelic 
state matches the known mode of inheritance for the 
gene and disorder and segregates with disease (where 
applicable). Rare variants were ranked according to 
a REVEL score above the default threshold of 0.5, a 
CADD score greater than 20, and GERP +  + score 
greater than 2. Variants with clinical significance as 
benign or likely benign according to the ClinVar data-
set were removed.

In parallel, we used Exomiser (v12.1.0) [16], a phe-
notype-driven variant prioritisation framework. 
Exomiser uses computational filters for variant fre-
quency and predicted pathogenicity, protein inter-
action networks, patient phenotypes, cross-species 
phenotype comparisons, and pedigree information. 
A logistic regression model is used to combine the 
phenotype and variant scores to produce an overall 
Exomiser score. We considered the top three ranked 
variants that matched with our candidate-gene discov-
ery analysis.

De novo variant calling and filtering
DNVs were identified by 100KGP’s bioinformatics pipe-
line. Briefly, variants from WGS data were called using 
Platypus, and filtered for absence of the mutation in 
both parents, read depth (> 20), allele balance (> 0.3 and 
0.7), and no overlap with segmental duplications, sim-
ple repeat regions, and patch regions.

To analyse noncoding DNVs, we obtained single-cell 
ATAC and RNA data of human adult ventricle [14]. 
DNVs from 143 trios were intersected with the single-
cell ATAC-seq peak sets using default parameters of 
bedtools v2.24.0. Peak sets were tested for an enrich-
ment of DNVs in offspring as compared to a back-
ground peak set which contained peaks from all other 
cell types. We used a chi-squared test to compare the 
number of peaks with DNVs between the cardiomyo-
cyte-specific peak set and the background peak set.

HiChIP analysis
We used H3K27ac HiChIP to map active chromatin 
interactions genome wide on iPSC-derived cardiomyo-
cytes  (GSM3639703) [17]. HiChIP paired-end reads 
were aligned to GRCh38 genome using the HiC-Pro 
pipeline. Duplicate reads were removed and default HiC-
pro settings were used to assign reads to MboI restric-
tion fragments, filter for valid interactions, and generate 
binned interaction matrices. High-confidence contacts 
(FDR < 0.05) were called using the contact caller FitHi-
ChIP with default settings at 10  kb resolution. These 
high-confidence contacts were used in visualisation.

Prediction of target genes of enhancers
We used a combination of methods to predict enhancer–
gene interactions and interpret the functions of noncod-
ing DNVs.

Candidate enhancers were predicted using the recently 
developed activity-by-contact (ABC) model [18], which 
integrates H3K27ac ChIP-seq, HiChIP, and gene expres-
sion data with chromatin accessibility to predict enhanc-
ers and link them to their target genes. Using this 
method, we were able to identify sets of high-confidence 
putative enhancers for cardiomyocytes and their likely 
target genes.

In addition, publicly available Hi-C data of human 
left and right ventricle tissue (sample GSM1419085 and 
GSM2322554, respectively) [19, 20] were analysed in 
the 3D-genome Interaction Viewer (3DIV) and database 
(http://​kobic.​kr/​3div/)​20.

3DIV was run using distance-normalised interaction 
frequency ≥ 2 to define significant enhancer–promoter 
interactions. Topologically associating domains (TADs) 
were identified using TopDom [22] with a window size 
of 20. DNVs that were within enhancers predicted by 
both the ABC model and 3DIV were considered for 
downstream analysis. Finally, we used a machine learn-
ing approach called FATHMM-MKL [23] to predict 
the functional impact of noncoding SNVs. This tool 
integrates functional annotations from ENCODE with 
nucleotide-based sequence conservation measures and 
provides predictions as p values in the range 0 to 1. We 
used the default score > 0.5 to indicate putative deleteri-
ous variants.

Promoters
Promoters were defined as 2  kb upstream or 1  kb down-
stream of transcription start sites (TSSs) and determined 
based on the basic gene annotation file of release 33 from 
GENCODE [24]. Further, to detect distal promoter-
interacting loci we used promoter capture Hi-C data 
generated from three different human cell/tissue-types, 
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including cardiomyocytes (GSM2297135, GSM2297136, 
GSM2297137, GSM2297138, GSM2297139), left ventricle 
(GSM2297192, GSM2297193, GSM2297194, GSM2297195, 
GSM2297196, GSM2297197, GSM2297198, GSM2297199, 
GSM2297200, GSM3067218, GSM3067219), and right 
ventricle (GSM2297289, GSM2297290, GSM2297291, 
GSM2297292, GSM2297293, GSM2297294, GSM2297295, 
GSM2297296, GSM2297297) [21].

Network analysis
For noncoding DNVs, a functional enrichment analysis 
of the candidate genes was performed using the VarElect 
[25]. This tool uses the deep LifeMap Knowledgebase to 
infer the “direct” or “indirect” association of biological 
function between genes and the queried phenotype—i.e. 
“cardiomyopathy”. A direct association is determined if 
studies indicate that the gene in question directly affects 
disease development. An indirect association is based on 
factors such as shared pathways, protein–protein interac-
tion networks, and mutual publications.

Case‑control analysis
Independent to the trio analysis, we analysed 843 
probands and 19,467 unrelated controls to identify high-
risk noncoding variants in regulatory elements of 12 car-
diomyopathy genes with definitive (BAG3, DES, FLNC, 
LMNA, MYH7, PLN, RBM20, SCN5A, TNNC1, TNNT2, 
TTN) or strong (DSP) evidence [26]. We focused on 
regulatory elements of diagnostic genes rather than the 
entire genome to avoid false-positive results related to 
genes with an unclear association with the disease. Regu-
latory elements for each gene were determined using the 
ABC model (described above).

The functional impact of rare regulatory variants was 
assessed based on several tools, including RegulomeDB 
(https://​regul​omedb.​org/), FunMotif (http://​bioinf.​
icm.​uu.​se:​3838/​funmo​tifs/), and FATHMM-MKL. We 
mapped SNVs to these active regulatory regions of car-
diomyopathy genes and defined them as high-risk if they 
were rare (MAF < 0.0001 in 100KGP and gnomAD popu-
lation controls), predicted to alter transcription factor 
(TF) binding, and were enriched in cases versus controls 
(p < 0.05).

Statistical analysis
To compare variant burden between cases and unrelated 
controls for high-risk regulatory variants of cardiomyo-
pathy genes, variant calls were required to have an MAF 
of ≤ 0.0001 in 100KGP controls and gnomAD. Controls 
were proportionally matched for age, sex and ethnicity. χ2 
test, odds ratios (OR), and 95% confidence intervals (95% 
CIs) were calculated for regulatory regions of all genes by 
comparing the burden of rare variants.

To evaluate the association between individual non-
coding variants and the risk of cardiomyopathy, we per-
formed a Fisher’s exact test as expected value were < 5. 
Statistical significance was considered at the 5% level 
(two-tailed). Statistical analyses were undertaken using R 
4.2.0 and RStudio 2022.02.2.

Results
Demographics and phenotype data of probands
In the trio analysis, 143 probands (85 males, 58 females), 
with severe or syndromic disease, together with their 
parents, were analysed. They were of different reported 
ethnicities across England (Fig. 1A).

The age distribution of participants is shown in Fig. 1B. 
Participants recruited for HCM were more frequent in 
the 20 to 29 age group, and DCM between ages 20 to 39. 
LVNC was more common in younger people at enrol-
ment. Of note, participants were enrolled in the 100KGP 
in their 40  s and 50  s as they still lacked a molecular 
diagnosis, despite all participants having an age of onset 
before 40 years of age.

Figure 1C shows the top 20 HPO terms in all partici-
pants recruited, including intellectual disability, joint 
hypermobility, and skeletal myopathy, suggesting syndro-
mic causes.

After parent–offspring trio analysis and application of 
our stringent filtering criteria, each proband had an average 
of 69.7 DNVs (Fig. 2). Genetic findings and genotype–phe-
notype correlations are described in Tables 1, 2 and 3. We 
used Exomiser to help narrow down candidate variants.

In addition, 843 exome-negative cardiomyopathy 
probands and 19,467 controls were incorporated into 
our case-control study from the 100KGP. The cases are 
singleton offspring whose parental WGS data were una-
vailable. Using the PanelApp software, which contains 
a crowd-sourced curation of genes with diagnostic-
grade evidence, only cases lacking a molecular diagnosis 
were recruited in the case–control analysis. These cases 
included 61.8% HCM, 26.0% DCM, 8.5% ARVC, and 
3.6% LVNC subtypes. Most participants were of Euro-
pean ancestry (70%), and 64% were male.

De novo variants in diagnostic-grade genes.
Using the American College of Medical Genetics 

(ACMG) guidelines, we identified deleterious DNVs 
in 11/143 trios (7.7%). These class 4 and 5 variants are 
defined as likely pathogenic or pathogenic, and are 
reported as consistent with or confirming a diagnosis, 
respectively (Table 1). Exomiser ranked the correct diag-
nosed variants as the top candidate in all these cases, and 
no parents were affected. Several novel DNVs were iden-
tified in syndromic and non-syndromic cases.

https://regulomedb.org/
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In Fam659, the proband had a novel missense DNV 
c.568C > A (p.Arg190Ser) in the NKX2-5 gene. NKX2-
5 (NK2 homeobox  5) encodes for a transcription factor 
that is important for the development of the myocardium 
[27]. Mutations in this gene are known to cause congeni-
tal heart disease, particularly atrial septal defect (with or 
without atrioventricular conduction defects), and ven-
tricular septal defect. Consistent with this, the patient 
was diagnosed with LVNC, including atrial septal defect, 
atrioventricular block, and abnormal ventricular septum 
morphology.

In the proband of Fam208, a novel missense DNV 
c.590  T > C (p.Leu197Pro) was identified in the LMNA 
gene (lamin A/C). LMNA encodes the A-type lamin pro-
teins, lamin A and C, which are the major components 
of the nuclear membrane in mammals. Mutations in 
LMNA have been reported to cause a variety of clinical 
phenotypes, collectively known as laminopathies. These 
include cardiac disorders, premature ageing syndromes, 

and neuropathies [28]. In addition to DCM, the proband 
had a range of musculoskeletal-related abnormalities 
(Table 1).

In the proband of Fam520, a missense DNV 
c.360C > A (p.His120Gln) was found in the LZTR1 
gene. Mutations in LZTR1 (leucine-zipper-like tran-
scriptional regulator 1) are associated with Noonan 
syndrome phenotypes and schwannomatosis [29]. As 
well as obstructive HCM, the proband had combined 
disorders of mitral, aortic and tricuspid valves, con-
gestive heart failure, thyrotoxicosis with diffuse goi-
tre, postprocedural hypothyroidism, and rheumatoid 
arthritis. According to the ACMG guidelines, the vari-
ant is classified as a variant of uncertain significance. 
It is predicated to be deleterious according to in silico 
algorithms and was not identified in public databases, 
including gnomAD and 1000G. We require further 
clinical information to determine a phenotype consist-
ent with Noonan spectrum disorders. Dominant and 

Fig. 1  Proband demographics and phenotype in trio analysis. A Ethnicities recorded of participants. B, Age distribution of participants at present 
time and type of diagnosis made. B Top 20 Human Phenotype Ontology (HPO) terms for participants recruited
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recessive Noonan syndrome-causing mutations have 
been described near this variant, all of which within the 
highly conserved kelch domains [30, 31].

A novel frameshift DNV of high-impact c.6183del 
(p.Leu2062TrpfsTer25) in the ANKRD11 gene was 
observed in the proband of Fam451. Mutations in 
ANKRD11 (ankyrin repeat domain 11) are reported to be 
associated with KBG syndrome and intellectual disabil-
ity [32]. The patient presented with LVNC and a variety 
of other phenotypes, including abnormal vena cava mor-
phology, bicuspid aortic valve, abnormality of the face, 
delayed fine motor development, intellectual disability, 
and proportionate short stature (Table 1).

In the proband of Fam478, a known pathogenic mis-
sense DNV c.782C > T (p.Pro261Leu) was found in 
the RAF1 gene. Diseases associated with RAF1 (Raf1 
proto-oncogene, serine/threonine kinase) include Noo-
nan and Leopard syndromes. These developmental 
disorders have overlapping features, including cardiac 
abnormalities, short stature, and facial dysmorphia 
[33]. The proband was diagnosed with HCM and had 
other phenotypes, including congenital malformation 
of cardiac septum, palpitations, anxiety disorder, and 
depression. This DNV has previously been reported 
in an individual affected with Noonan syndrome, 

including other individuals with clinical features of 
this disease [33–35]. Moreover, functional studies have 
shown that p.Pro261Leu leads to increased activity of 
the RAF1 protein [36].

In the proband of Fam828, we found a missense DNV 
c.836A > G (p.Tyr279Cys) in the PTPN11 gene (protein 
tyrosine phosphatase non-receptor type 11). Mutations 
in PTPN11 are well characterised in children with Noo-
nan syndrome and juvenile myelomonocytic leukae-
mia [37]. In addition to HCM, the proband had other 
phenotypes, including intellectual disability, failure to 
thrive, right ventricular cardiomyopathy, and LVNC.

Other known pathogenic DNVs were found con-
sistent with a diagnosis of non-syndromic cardio-
myopathy. Three participants with HCM had known 
missense variants in MYH7. Two variants (c.2156G > A 
(p.Arg719Gln) and c.1358G > A (p.Arg453His)) are 
reported as pathogenic on ClinVar, whereas variant 
c.2420G > C (p.Arg807Pro) is reported as likely patho-
genic. The proband harbouring the latter MYH7 variant 
also had congenital malformations of the heart, conges-
tive heart failure, arrhythmia, and died as an infant with 
sudden cardiac arrest. Pathogenic variants were found 
in other known genes, including DES, RYR2, TTN and 
TNNT2 (Table 1).

Fig. 2  Noncoding de novo variant filtering criteria. DCM = dilated cardiomyopathy; ARVC = arrhythmogenic right ventricular cardiomyopathy; 
LVNC = left ventricular non-compaction cardiomyopathy; and HCM = hypertrophic cardiomyopathy
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De novo variants in other disease‑risk genes
We also looked at DNVs in genes not included in Pane-
lApp. In 27/143 probands (18.9%), 30 rare de novo coding 
variants were identified, which were considered delete-
rious based on in silico prediction tools (see methods). 
Using Exomiser, a phenotype-based prioritisation pipe-
line, 11 DNVs were ranked in the top three as the most 
likely cause. These include TUBA1B, KIRREL1, DAAM1, 
DOCK11, and KDM5B (Table 2). It is possible that some 
of the putative genes identified herein could be novel 
gene candidates or genetic modifiers.

Interestingly, the proband of Fam231 harbouring a mis-
sense DNV c.49 T > C (p.Cys17Arg) in the DAAM1 gene 
also had a known pathogenic variant in TNNT2 (Table 1). 
Studies show that DAAM1 is required for cardiomyo-
cyte maturation [38], and deletion of the gene is associ-
ated with congenital heart anomalies [39]. Multiple gene 
mutations occurring in cardiomyopathy families may 
result in a more severe clinical phenotype because of a 
compounding effect. Other examples of oligogenic inher-
itance are described below.

Inherited variants in diagnostic‑grade genes
In 10/143 trios (7.0%), 14 rare inherited variants of poten-
tial clinical significance were identified in probands and 
their affected family members based on gene panel test-
ing. These include variants with recessive, dominant, and 
compound heterozygous segregation patterns (Table 3).

Two participants with HCM had missense variants 
in MYBPC3. In Fam599, the proband harbouring the 
c.1504C > T (p.Arg502Trp) variant presented with a 
range of diagnoses, including abnormal thumb, eye and 
oral morphology, intellectual disability, and mild micro-
cephaly. The mother, also harbouring the variant, was 
diagnosed with atrial septal defect, short thumb, polycys-
tic ovaries, and Raynaud syndrome. It is not clear why the 
proband presented with a more severe phenotype.

In Fam411, the proband inherited the MYBPC3 splice 
donor variant c.25 + 1G > A from the affected mother. 
In addition to HCM, the mother presented with hypo-
thyroidism, prolonged QT syndrome, severe depression, 
anxiety, and schizoid personality disorder.

In Fam484, the proband inherited an autosomal domi-
nant mutation c.2254 T > A in SAMD9 from the affected 
father. The proband was diagnosed with LVNC, ventricu-
lar septal defect, intellectual disability, joint hypermobil-
ity, and Wolff–Parkinson–White syndrome. Although 
the affected father and sibling carrying this variant pre-
sented with LVNC, neither had the comorbidities pre-
sent in the proband. The father, however, presented with 
gastrointestinal haemorrhage, and diverticular disease of 
large intestine (without perforation or abscess). Muta-
tions in SAMD9 have been described in patients with 

MIRAGE syndrome, a severe multisystem disorder [40]. 
This includes prominent gastrointestinal symptoms and 
intellectual disability.

In the proband and affected mother of Fam957, a 
missense variant c.372C > G (p.Ile124Met) was identi-
fied in the ACTC1 gene. Mutations in ACTC1 (actin 
alpha cardiac muscle 1) are associated with atrial septal 
defect, DCM, and HCM [41, 42]. In addition to DCM, 
the proband had partial anomalous pulmonary venous 
return, dyspnoea, myocardial fibrosis, and oligospermia. 
The mother was diagnosed with DCM, secundum atrial 
septal defect, and bipolar affective disorder.

Multilocus inheritance may explain the relatively low 
diagnostic yield for cardiomyopathy cases, or apparent 
phenotypic expansion. We found evidence for compound 
heterozygosity, digenic, and oligogenic inheritance in 
several families (described below). This highlights the 
importance of screening for additional genes even after a 
single mutation has been identified.

We observed evidence for oligogenic inheritance 
in Fam919. The proband, born in 2018 and reported 
to be deceased, had a recessive mutation in POLR3A 
(c.1787C > T (p.Thr596Met)) and a compound heterozy-
gous TTN mutation (c.92176C > T (p.Pro30726Ser)). 
Mutations in POLR3A are associated with a wide array 
of pathological phenotypes, some of which were present 
in the proband. In addition to DCM and congestive heart 
failure, the proband had multiple congenital anoma-
lies, including microcephaly, endocardial fibroelastosis, 
hydrops fetalis, polymicrogyria, cortical dysplasia, and 
pedal oedema.

The proband of Fam539 inherited five compound 
heterozygous TTN variants, one of which from the 
mother passed our filtering criteria for deleteriousness 
(c.20335A > T, p.Ser6779Cys) (see methods). The proband 
also inherited autosomal dominant variants of incom-
plete penetrance in COL6A1 and LZTR1. The LZTR1 
stop gained variant c.1311G > A (p.Trp437Ter) was inher-
ited from the mother, and the COL6A1 missense variant 
c.1712A > C (p.Lys571Thr) was inherited from the father. 
The proband was diagnosed with HCM, skeletal myopa-
thy, and increased nuchal translucency. One out of two 
siblings are also affected with HCM; however, detailed 
medical notes or WGS data are not available. Although 
considered unaffected for cardiomyopathy, both parents 
were diagnosed with primary (essential) hypertension. 
In addition, the father has a family history of ischaemic 
heart disease, arrhythmia, syncope and collapse, and 
other ill-defined heart diseases.

In the proband of Fam992, compound heterozy-
gous mutations c.852_855del (p.Asn284LysfsTer4) and 
c.1038_1040del (p.Lys346del) in the DSG2 gene were 
identified. The mother of the proband had the frameshift 
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variant c.852_855del, whereas the father had the inframe 
deletion c.1038_1040del. In addition to ARVC, the 
proband was diagnosed with disorders of magnesium 
metabolism, hypokalaemia, and congenital malforma-
tions of cardiac chambers and connections. Of note, a 
DNV in the enhancer of gene TUSC3 was also identified. 
TUSC3 constitutes a major component in cellular mag-
nesium transport and homeostasis, and its function in 
regulation of embryonic development in vertebrates has 
been suggested [43, 44]. This may explain the disorders of 
magnesium metabolism and hypokalaemia as a second-
ary cause in the proband [45].

In Fam180, the proband and mother with HCM har-
bour a variant of unknown significance (class 3) in the 
MYH7 gene. In addition, two families with HCM had 
mutations in mitochondrial genes MT-CO1 and MT-ND6 
(Table  3); both previously implicated in heart disease, 

although heteroplasmy proportions are yet to be deter-
mined in multiple tissue samples.

These examples demonstrate that non-Mendelian 
inheritance may be an important factor in the cardiomy-
opathy cause-discovery pipeline. Other possibilities exist 
to help close the diagnostic gap, including noncoding 
mutations that affect regulatory elements.

Singe‑cell chromatin state profiling
We hypothesised that DNVs in human heart regulatory 
regions are more likely to perturb expression levels of 
genes that are essential for cardiac function.

Annotation of ventricular cardiomyocyte peak set in 
genomic features shows enrichment in intronic and dis-
tal intergenic regions and in the flanking regions of TSSs, 
suggesting an enrichment of gene regulatory elements, 
such as enhancers. We intersected single-cell ATAC-seq 

Fig. 3  Chromatin interaction map of chr20:44,116,250 locus. A One-to-all interaction plots are shown for the lead variant chr20:44,116,250 A > G 
shown in blue as bait. Y-axes on the left and the right measure bias-removed interaction frequency (blue bar graph) and distance-normalised 
interaction frequency (magenta dots), respectively. The arc representation of significant interactions for distance-normalised interaction 
frequencies ≥ 2 is displayed relative to the Refseq-annotated genes in the locus. The DNV physically interacts with the JPH2 enhancer by long-range 
chromatin interaction. B Close-up of region containing JPH2. The ABC model independently predicted the DNV (red triangle) is within the JPH2 
enhancer. CM = cardiomyocyte
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peaks with publicly available H3K27ac ChIP-seq data 
(a marker for active enhancers) of eight healthy adult 
donors [46] and found significant overlap with our peaks 
(Permutation test, one-sided, p < 0.001).

Identification of de novo variants in noncoding regulatory 
regions
To determine selective vulnerabilities across diverse 
cell types of the human heart, we intersected cell-type-
specific ATAC-seq peaks with DNVs identified from 
parent–offspring trio analysis (see methods). Cardiomy-
ocyte-specific peak sets were not significantly enriched 
for DNVs in offspring compared to a merged background 
peak set.

A total of 288 DNVs from 143 trios intersected with 
a peak signal from ventricular cardiomyocytes. After 
filtering for parental affected status, H3K27ac over-
lap, and mapping regulatory regions to genes, 15 DNVs 
were within promoter regions, and 12 within predicted 
enhancers linked to their target genes. We used the tool 
FATHMM-MKL to predict the functional effects of non-
coding variants. Additional file  1: Table  S1 shows pri-
oritised variants within ventricular cardiomyocyte open 
chromatin regions.

Predicting the target genes of enhancers
Using the ABC model [18], we predicted likely enhanc-
ers by integrating H3K27ac ChIP-seq, HiChIP, and gene 
expression data with chromatin accessibility. We identi-
fied sets of high-confidence putative enhancers for ven-
tricular cardiomyocytes and their likely target genes.

As a complementary approach, histone ChIP-seq 
experiments on Hi-C samples were analysed to pro-
vide epigenetic features using 3DIV. Annotation of 
enhancer/super-enhancers and histone ChIP-seq signals 
were provided for the following: H3K27ac, H3K27me3, 
H3K36me3, H3K4me1, H3K4me3. Genes with distance-
normalised interaction frequency > 2 were retained. In 
addition, we used promoter capture Hi-C data to detect 
interactions with gene promoters. These data are sum-
marised in Additional file 1: Table S1.

Network analysis
We applied another strategy to further prioritise the 
effect of DNVs on human cardiac regulome. We analysed 
the 62 genes associated with enhancers and promoters 
containing prioritised DNVs using VarElect to corre-
late their functions with different aspects of the clinical 
phenotype. Results suggest that 20 targets were directly 
related to cardiomyopathy, whereas 41 were indirectly 
related (Additional file 2: Table S2). One gene (MIR3143) 
was unrelated and therefore excluded from the analysis. 

Among the unified results, the top five genes with the 
highest score of correlation were JPH2, UTRN, H1-2, 
RHOD, and SAP30B. This score is an indication of the 
strength of the connection between the gene and the 
queried phenotypes. The score helps to rank and priori-
tise the list of queried genes by relevance to the disease. 
Interestingly, many of the top scoring genes were associ-
ated with the same DNV.

Noncoding de novo variants are associated 
with cardiomyopathy‑risk genes
In the proband of Fam499, we identified a DNV within an 
enhancer of JPH2 (Fig. 3). This gene exhibited the high-
est phenotype association (VarElect score 36.89) (Addi-
tional file 2: Table S2). The proband, female and of British 
ethnicity, was diagnosed with HCM and reported to have 
died due to sudden cardiac arrest in the year 2020, at the 
age of 19. Both parents and natural sibling recruited in 
the study were unaffected.

The junctophilin-2 gene (JPH2) is the major structural 
protein in cardiomyocytes for coupling of transverse 
tubule-associated L-type Ca2+ channels and type-2 ryan-
odine receptors on the sarcoplasmic reticulum within 
junctional membrane complexes (JMC) [47]. Signalling 
between these two Ca2+ channels is required for normal 
cardiac contractility. Disruption of the JMC is a common 
finding in failing hearts. Downregulation of JPH2 gene 
has been associated with heart failure, and mutations in 
this gene are associated with HCM [47, 48].

JPH2 was the only high-evidence gene found in our 
noncoding DNV analysis. We recognise that caution be 
exercised in the interpretation of variants in cardiomyo-
pathy genes lacking robust evidence; however, the follow-
ing preliminary results may help to explain the complex 
genetic architecture of cardiomyopathy.

The proband of Fam126 was diagnosed with DCM and 
harbours a DNV within an enhancer region that regulates 
the genes UTRN, STX11, and SF3B5. Diseases associ-
ated with UTRN (utrophin) include muscular dystrophy, 
endothelial dysfunction, and DCM [49, 50].

The proband of Fam313 was diagnosed with DCM, 
including dysplastic tricuspid valve, right ventricular car-
diomyopathy, tricuspid regurgitation, dyspnea, pulmonic 
stenosis, café au lait spot, and congenital heart disease. 
Although no DNVs were identified in enhancer regions, 
a deleterious coding DNV was identified in ADGRV1 
(Table  2). In addition, we used pcHi-C to detect distal 
promoter-interacting regions and found that a DNV in 
this proband is associated with a large cluster of histone 
genes on human chromosome 6.

Studies have shown that histone acetylation/deacetyla-
tion regulates cardiac morphogenesis, growth, and con-
tractility [51]. Gene expression profiles of DCM patients 
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have also shown that several histone family members are 
downregulated [52]. We hypothesise that the downregu-
lation of these genes, which are responsible for higher 
order chromatin structure, may contribute to the clinical 
presentation in this proband via nucleosome formation 
blockade [53].

The proband of Fam334 was initially diagnosed with 
DCM, and later suspected to have aortopathy and early 
hypertension. Other diagnoses include lethargy, torsion 
of testis, headaches, and palpitations. The proband died 
in the accident and emergency department in the year 
2018, at the age of 21. Neither parent or three natural sib-
lings were affected. The DNV identified in this proband 
is (1) within the enhancer region of genes UNC13D, 
WBP2, SAP30BP and TRIM65; (2) overlapping the pro-
moter regions of genes H3-3B, MIR4738 and UNK; and 
(3) interacting with distil gene promoters of TRIM56 and 
TMEM94. Diseases associated with TMEM94 include 
cardiac defects [54].

In Fam791, the proband was diagnosed with ARVC and 
DCM, in addition to arrhythmia, varicose veins of lower 
extremities with ulcer and inflammation, atherosclerotic 
heart disease, renal failure, gastrointestinal haemor-
rhage, and anal polyp. A DNV was identified within the 
enhancer region of genes GRK2 and RHOD, and overlap-
ping the promoter region of RAD9A.

G protein-coupled receptor kinase-2 (GRK2) regulates 
many cellular and physiological processes, including car-
diac contractility, cell proliferation, cell cycle regulation, 
angiogenesis and vasodilatation. Inhibiting GRK2 can 
enhance cardiac contractility and protect from adverse 
heart remodelling in disorders related to cardiac dysfunc-
tion [55], suggesting its inhibition as a therapeutic strat-
egy for heart failure. We hypothesise that this DNV may 
elevate levels and activity of this kinase, thus promoting 
cardiovascular disease. Moreover, phenome-wide asso-
ciated loci in the proximity of RHOD is a likely causal 
gene for cardiomegaly and hematemesis [56], the latter of 

Table 4  Rare noncoding variants identified in regulatory elements of definitive cardiomyopathy genes in the case-control analysis

P values are calculated using the Fisher’s exact test. Motifs column indicate functional motifs present according to the funMotifs framework. The FATHMM-MKL score 
indicates the pathogenic impact of individual SNVs. Predictions are given as p values in the range 0 to 1; values > 0.5 are predicted to be deleterious

Proband ID Disease Genomic position (GRCh38) Gene MAF Controls p value FATHMM-MKL 
score

Motifs

P01 HCM chr1:156,106,052 G > T LMNA 0 0.0415 0.08434

P02 HCM chr1:156,106,161 T > C LMNA 0 0.0415 0.05647

P03 DCM chr1:156,106,287 T > G LMNA 0 0.0415 0.39668 Bcl6, EHF, ELF1, ELF3, ELF4, 
ELF5, STAT1, STAT3, Stat4, 
Stat5a::Stat5b

P04 DCM chr1:156,106,347 T > G LMNA 0 0.0415 0.31391

P05 DCM chr1:156,106,457 C > T LMNA 0 0.0415 0.54018

P06 HCM chr1:201,377,783 C > A TNNT2 0 0.0415 0.22864 PLAG1

P07; P08 HCM; HCM chr1:201,377,789 G > A TNNT2 2.57E-05 0.005 0.19213 PLAG1, RREB1, ZNF263

P09 HCM chr1:201,377,790 A > G TNNT2 0 0.0415 0.15782 RREB1

P10, P11 HCM; HCM chr10:110,637,018 C > A RBM20 7.71E-05 0.0158 0.56143

P12 HCM chr10:119,651,128 G > C BAG3 0 0.0415 0.65553

P13 LVNC chr10:119,651,207 G > C BAG3 0 0.0415 0.66491 HINFP

P14 HCM chr10:119,651,329 T > C BAG3 0 0.0415 0.54331 EGR3, EGR4, SP2

P15 HCM chr10:119,651,409 T > C BAG3 0 0.0415 0.98892

P16 HCM chr2:219,419,925 C > T DES 0 0.0415 0.89101

P17 ARVC chr2:219,419,965 C > G DES 0 0.0415 0.26643

P18 HCM chr3:52,452,725 T > G TNNC1 0 0.0415 0.89566 CTCF, Hic1, HIC2, Myod1, SNAI2

P19 HCM chr6:7,541,668 G > C DSP 0 0.0415 0.36401

P20 HCM chr6:7,542,061 C > T DSP 0 0.0415 0.20036

P21 HCM chr6:7,542,062 C > G DSP 0 0.0415 0.38808

P22 HCM chr6:7,542,072 T > C DSP 0 0.0415 0.90083

P23 ARVC chr6:7,542,155 G > C DSP 0 0.0415 0.1913

P24 HCM chr6:7,542,266 G > C DSP 0 0.0415 0.19228

P25 HCM chr6:118,537,675 A > C PLN 0 0.0415 0.89431 Nr1h3::Rxra

P26 HCM chr6:118,537,684 T > C PLN 0 0.0415 0.90162 Nr1h3::Rxra

P27 HCM chr6:118,537,778 A > G PLN 0 0.0415 0.22901
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which may explain the gastrointestinal bleeding observed 
in this patient.

Case‑control analysis reveals high‑risk noncoding variants 
in disease‑risk genes
The contribution of disease-causing rare variants in non-
coding regulatory regions remains elusive. The identifica-
tion of candidate noncoding DNVs in our trio analysis led 
us to investigate high-risk regulatory variants associated 
with cardiomyopathy genes in a large cohort lacking a 
pathogenic mutation in gene panel testing.

Overall, combining data from all genes, there was a sig-
nificant difference in the proportion of cardiomyopathy 
cases and controls carrying one or more rare variant in 
regulatory elements of strong or definitive disease-risk 
genes (p = 0.035, OR = 1.43, 95% Cl = 1.095–1.767).

Of the 843 probands lacking a molecular diagnosis, 
we performed variant-level analysis and identified 25 
noncoding variants that were significantly associated in 
cases (p< 0.05). Of these, 9 predicted to effect TF bind-
ing motifs. Eight of the 12 genes investigated had one or 
more rare variant in regulatory regions, including DSP, 
RBM20, LMNA, TNNT1, TNNT2, BAG3, DES, and PLN. 
The highest-ranking regulatory elements for each gene 
are listed in Additional file 3: Table S3.

Most of the significant variants (n = 23; 92%) were “pri-
vate” to a single proband, with only two variants occur-
ring in two unrelated probands, albeit with the same 
cardiomyopathy subtype. The private variants were not 
identified in control populations. Most variants (76%) 
occurred in HCM, 12% occurred in DCM, 8% occurred 
in ARVC, and 4% were observed in LVNC cases. These 
data are summarised in Table 4.

Discussion
The pathogenesis of cardiomyopathy is largely unknown, 
and the diagnosis is challenging due to its clinical het-
erogeneity, involving incomplete penetrance and vari-
able expression. The analysis of DNVs in clinically 
well-defined phenotypes is a powerful approach to delin-
eate the aetiological basis of disease as it focuses on a 
relatively small number of variants that provide strong 
evidence of pathogenicity [57].

DNVs are responsible for the relatively high prevalence 
of complex disorders. The estimated rate for human ger-
mline de novo SNVs is (1.0 to 2.4) × 10−8 per base per 
generation [58, 59]. This translates to an average of 32 to 
76.8 variants in the human genome, with one or two in 
exonic regions. We had an average of 69.7 DNVs per trio 
analysis, giving a mutation rate of 2.2 × 10−8 per base per 

Fig. 4  An integrative genomics approach for prioritising noncoding variants. A We performed a rare-variant association study in 
cardiomyocyte-specific regulatory regions of genes associated with cardiomyopathy. These variants should be tested for deleteriousness or 
transcriptional activity, and, by inference, for causality. B MPRAs allow for thousands of short DNA sequences to be assayed simultaneously by first 
synthesising DNA oligos on an array, integrating them into plasmids and inserting into cells. Both input DNA and RNA libraries are sequenced to 
assess the tag counts associated with the test sequences. Barcode abundance thus scales quantitatively with the regulatory activity of a given 
tested sequence (figure adapted from Ajore et al. [63]). This technique can be used in future studies to screen all prioritised cardiomyocyte-specific 
regulatory variants in cardiomyopathy cases
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generation. This is consistent with previous studies, thus 
showing the high quality of our data.

We combined gene panel testing with Exomiser, a 
phenotype-based algorithmic framework, to priori-
tise inherited and DNVs. A definite or probable genetic 
diagnosis was identified in 21 probands according to the 
ACMG guidelines. Additional DNVs of potential clini-
cal significance were identified in 30 genes, 11 of which 
were within the top three ranked by Exomiser, including 
TUBA1B, KIRREL1, DAAM1, DOCK11, and KDM5B.

In addition, we integrated WGS and single-cell epi-
genomics to examine the role of regulatory DNVs in 
cardiomyopathies. Despite the genetic heterogeneity of 
cardiomyopathy, which stifles efforts to unequivocally 
demonstrate a causal role for individual noncoding vari-
ants, our results provide multiple lines of evidence to 
indicate the aetiological basis of functional regulatory 
variants in the human heart regulome. Notably, a DNV 
was identified within an enhancer of JPH2, a gene associ-
ated with HCM and the highest scored in our analysis.

Interestingly, we found that more than one rare variant in 
different cardiomyopathy genes may be relevant for disease 
causation. Other studies have shown that cardiomyopathy 
can arise from co-inheritance of rare genetic variants that 
are benign on their own but harmful in combination [60]. 
The assumption that all or most patients will receive a sin-
gle-gene diagnosis is now relegated to the margins. Investi-
gating additional affected families does not necessarily lead 
to novel gene discovery, thus necessitating the exploration 
of non-Mendelian contributors to causation or risk.

To further add weight to the hypothesis that noncoding 
variants are associated with cardiomyopathy, we performed 
a case-control analysis in a mutation-negative cohort and 
found an enrichment of high-impact regulatory SNVs in 
cases compared to controls. A variant-level association test 
showed that 25 SNVs were significantly associated with dis-
ease, of which 23 were not identified in control populations 
and nine are predicted to alter TF motifs.

There were several limitations in this study. It is pos-
sible that probands in the trio analysis inherited variants 
within noncoding loci associated with disease, or inher-
ited coding variants in genes beyond those listed in the 
applied panels. Moreover, in the case–control analysis, 
we only focused on genes that are strongly associated 
with cardiomyopathy. We also did not analyse structural 
variants, such as CNVs, inversions, balanced transloca-
tions, or complex rearrangements.

Indeed, functional validation of the novel variants 
reported herein is warranted, a lack of which is acknowl-
edged as a further limitation. Novel variants should not 
be considered causal merely because they are rare and 
predicted to be deleterious in silico [61]. Many of the 

disease-associated variants identified in this study are 
noncoding, which are in less-well understood regions 
of the genome. High-throughput assays with functional 
readout for putative regulatory elements would enable 
the identification of functional variants and the biologi-
cal contexts in which they act. Massively parallel reporter 
assays (MPRAs) permit the high-throughput functional 
characterisation of noncoding genetic variation [62]. In 
Fig.  4, we offer a workflow to identify candidate non-
coding variants associated with disease, and to assess 
the molecular consequences of their disruption experi-
mentally. Adapting MPRAs for use in cardiomyocytes 
will be critical towards understanding cell-type-specific 
models of regulatory logic in contexts of greater clinical 
relevance.

Our work brings together multiple ‘omics datasets 
to elucidate the role of pathogenic variants in coding 
and noncoding loci. This study should prompt exten-
sive genetic analyses and variant-specific experimental 
modelling to elucidate the complex genetic mechanisms 
underlying cardiomyopathies.
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