
Zhou et al. Human Genomics           (2022) 16:53  
https://doi.org/10.1186/s40246-022-00425-9

RESEARCH

Integrated proteomic and metabolomic 
modules identified as biomarkers of mortality 
in the Atherosclerosis Risk in Communities 
study and the African American Study of Kidney 
Disease and Hypertension
Linda Zhou1, Aditya Surapaneni1, Eugene P. Rhee2, Bing Yu3, Eric Boerwinkle3, Josef Coresh1, 
Morgan E. Grams1,4 and Pascal Schlosser1* 

Abstract 

Background:  Proteins and metabolites are essential for many biological functions and often linked through enzy-
matic or transport reactions. Individual molecules have been associated with all-cause mortality. Many of these are 
correlated and might jointly represent pathways or endophenotypes involved in diseases.

Results:  We present an integrated analysis of proteomics and metabolomics via a local dimensionality reduction 
clustering method. We identified 224 modules of correlated proteins and metabolites in the Atherosclerosis Risk in 
Communities (ARIC) study, a general population cohort of older adults (N = 4046, mean age 75.7, mean eGFR 65). 
Many of the modules displayed strong cross-sectional associations with demographic and clinical characteristics. In 
comprehensively adjusted analyses, including fasting plasma glucose, history of cardiovascular disease, systolic blood 
pressure and kidney function among others, 60 modules were associated with mortality. We transferred the network 
structure to the African American Study of Kidney Disease and Hypertension (AASK) (N = 694, mean age 54.5, mean 
mGFR 46) and identified mortality associated modules relevant in this disease specific cohort. The four mortality mod-
ules relevant in both the general population and CKD were all a combination of proteins and metabolites and were 
related to diabetes / insulin secretion, cardiovascular disease and kidney function. Key components of these modules 
included N-terminal (NT)-pro hormone BNP (NT-proBNP), Sushi, Von Willebrand Factor Type A, EGF And Pentraxin 
(SVEP1), and several kallikrein proteases.

Conclusion:  Through integrated biomarkers of the proteome and metabolome we identified functions of (patho-) 
physiologic importance related to diabetes, cardiovascular disease and kidney function.
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Background
The metabolome and the proteome are inextricably 
linked and essential to human physiology. Proteins per-
form many different biological functions, from enzy-
matic activity to molecular transport, and metabolites are 
often intermediates or end-products of these reactions. 
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Metabolites are central to energy generation and homeo-
stasis and their concentrations are often tightly regulated 
through generation, transport across compartments, as 
well as breakdown and excretion [1–3].

Over the past decade, many publications have identi-
fied single metabolites or proteins that are associated 
with all-cause mortality [4–10]. For example, Hu et  al. 
[10] identified six serum metabolites associated with 
all-cause mortality in chronic kidney disease. In a study 
of 3523 participants from the Framingham Heart Study, 
38 of 85 preselected circulating protein biomarkers 
were associated with all-cause mortality, and the addi-
tion of proteins to a model with traditional clinical vari-
ables improved all-cause mortality prediction [4]. When 
evaluating larger read-outs of the metabolome and pro-
teome; however, many biomarkers are correlated, and an 
integrated analysis of both metabolomic and proteomic 
platforms may better elucidate pathways altered early in 
the disease process. Together, proteins and metabolites 
influence and are influenced by many externally observed 
phenotypes, representing endophenotypes that simulta-
neously highlight disease relevant physiology [11]. Simi-
larly, many diseases are characterized by de-regulated 
pathways rather than single metabolic reactions [12].

In this manuscript, we performed data-driven iden-
tification of pathways (modules) based on circulating 
proteins and metabolites in the Atherosclerosis Risk in 
Communities (ARIC) study and constructed aggregate 
measures of these modules. For this, we used Netboost, 
a network-analysis-based dimension reduction technique 
[13, 14]. In this approach, proteins and metabolites are 
clustered into modules based on Spearman correlation, 

and then module information is aggregated by a principal 
component analysis. We then characterized associated 
modules with respect to human physiology and related 
them to mortality. To study their relevance for CKD, we 
transferred the mortality-associated modules to the Afri-
can American Study of Kidney Disease and Hypertension 
(AASK) and tested the association with mortality within 
this cohort of CKD patients and found in particular insu-
lin, cardiovascular and kidney function-related modules.

Results
ARIC study population characteristics
The 4027 participants in the ARIC study population 
were an average of 76.6 years old, with 53.9% women and 
17.1% African American (Table  1). In the AASK CKD 
cohort, there were 694 participants who were an average 
of 54.5  years old, with 38.5% women and 100% African 
American.

Integrated omics module formation and characterization 
in ARIC
The 4616 proteins and 474 metabolites (Fig. 1) were clus-
tered into 224 modules in the ARIC data (Fig.  2, Addi-
tional file  1: Table  S1). There were 81 proteins and 12 
metabolites that remained unassigned. The mean module 
size was 22.3 proteins and / or metabolites; 119 modules 
consisted exclusively of proteins, 61 modules consisted 
exclusively of metabolites, and 44 modules were a com-
bination of proteins and metabolites. There were 371 
principal components (PCs) used to represent the 224 
modules (Methods).

Table 1  Baseline characteristics of participants in ARIC and AASK

*  visit 5; ** estimated GFR for ARIC and measured GFR for AASK; *** Median (1st; 3rd quartile) instead of mean (SD)

ARIC*(N = 4046) AASK (N = 694)
Mean (SD) Mean (SD)

Age, years 75.7 (5.2) 54.5 (10.7)

Woman, % 2177(53.8%) 267 (38.5%)

Black, % 695 (17.2%) 694(100%)

Heart disease, % 753 (18.6%) 352 (50.7%)

Diabetes, % 1201 (29.7%) 0 (0%)

Total Cholesterol, mg/dL 179.0 (41.7) 212.0 (45.9)

High-density lipoprotein, mg/dL 51.2 (13.8) 48.2 (16.0)

Systolic blood pressure, mmHg 130.2 (18.0) 150.9 (23.8)

Body mass index, kg/m2 28.7 (5.5) 30.5 (6.4)

Glucose, mg/dL 114.0 (28.7) 94.2(15.4)

Antihypertensive medication, % 2719 (67.2%) 694 (100%)

Glomerular filtration rate**, mL/min/1.73m2 65 (18) 46 (13)

24 h urine protein levels (mg/day)*** n.a 109 (41; 561)

Albumin-to-creatinine ratio (mg/g)*** 11 (6; 23) n.a
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Metabolites (ARIC: 970, AASK: 820)

Remove xenobiotics, and remove endogenous 
metabolites with >80% missing.
Remaining ARIC: 825, AASK: 652

Remove metabolites with variance <0.01 on the log-
scale.

Remaining ARIC: 825, AASK: 652

Retain metabolites common to both cohorts:
474 metbolites

Proteins (ARIC: 5284, AASK: 7596)

Include only human proteins.
Remaining ARIC: 5056, AASK: 6793

Remove proteins with Bland Alman coefficient of 
variation greater than 0.5. Values of the log transformed 
proteins were capped at mean+/-5*SD of sample data.

Remaining ARIC: 4877, AASK: 6790

Retain proteins common to both cohorts:
4616 proteins

Fig. 1  Flowchart of metabolite and protein preprocessing

Fig. 2  Module formation using metabolomic and proteomic data. Dendrogram of the 4616 proteins and 474 metabolites in the Atherosclerosis 
Risk in Communities study (ARIC). In total, 224 modules were detected. The four modules significantly associated with mortality in ARIC and AASK 
were zoomed in in the orange box
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Module PCs were related to clinical variables, demon-
strating that many modules reflect a specific phenotype 
(Additional file  1: Table  S2). For example, > 50% of the 
variance in the first PCs of module 25, and module 211 
were explained by sex, which is consistent with many of 
the protein / metabolite components being hormonal 
regulation proteins / metabolites. The estimated glomer-
ular filtration rate (eGFR) explained 80.5% of the variance 
of PC1 of module 15 and included creatinine and cystatin 
C among other proteins/metabolites that are known bio-
markers of kidney filtration (Additional file 1:  Table S2). 
Similarly, many of the other variables were strongly 
related to modules (Module 92—glucose 41.1%; module 
116—high-density lipoprotein (HDL) 39.6%; module 9—
total cholesterol 42.5%).

Associations of modules with mortality
Over an average follow-up period of 6.6 years, there were 
924 deaths. There were 64 module PCs that were sig-
nificantly associated with mortality in ARIC in a com-
prehensively adjusted model (P < 0.05/371; Methods) 
representing 60 different modules (Additional file  1: 
Table S3). The most significant associations were module 
67 PC1 (HR per SD: 1.39, p-value = 1.0e−16) and module 
30 PC1 (HR per SD:0.74, p-value = 9.9e−15). The local 
network structures as two dimensional projections of 
their pairwise dissimilarities display the varying degree of 
linkage between the proteomic and metabolomics layers 
of these modules (Fig.  3). Of note, module 30 included 
the two aptamers of SVEP1 which are consistently highly 

linked. Module 67 showed that the metabolite ribitol was 
close to the six proteins in that module, whereas beta-
citrylglutamate in module 30 was more loosely linked 
to a central cluster of proteins including the two SVEP1 
aptamers and N-terminal pro BNP.

Transferability of modules to AASK
After transferring module membership and the PC 
loadings to AASK, the average Spearman correlation of 
module components (i.e., proteins and metabolites) to 
the first PC were consistent with that observed in ARIC 
(correlation of the average correlation coefficients, 0.91, 
Fig.  4). More than a third (36.2%) of the modules even 
had higher average Spearman correlation coefficients of 
proteins / metabolites with the first PC in AASK com-
pared to ARIC, despite the PC directions being fitted on 
the ARIC data. Relatively few modules displayed a notice-
able drop in correlation (Δcorrelation < − 0.1, 12.5%). 
Similarly, the regressions of module PCs on clinical traits 
were comparable between AASK and ARIC, particu-
larly sex, eGFR / measured GFR (mGFR) and urinary 
albumin-to-creatinine ratio (ACR) / 24  h urine protein 
levels displayed high agreement. Notably, age displayed 
low transferability between the general population cohort 
(ARIC) and the CKD cohort (AASK) (Fig.  5). However, 
this appeared related to the positive association of GFR 
and age in AASK, an artifact of the CKD study design. 
Once age was adjusted for eGFR, we observed consist-
ent correlations of age-module PCs between ARIC and 
AASK (Fig. 5).

Fig. 3  Local network structure of modules integrating metabolomic and proteomic components of prognostic significance. Edge thickness and 
relative distance reflect the similarity of individual components of modules
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In AASK, there were 148 deaths over 8.75 follow-up 
years. Of the 64 associations significant in ARIC 60 were 
direction consistent and four were also significant in 
AASK (P < 0.05/64; Table  2, Additional file  1: Table  S3). 
All of these were mixed modules with both proteins and 
metabolites (Modules 30, 42, 67 and 98). The hazard 
ratios in AASK were consistently more pronounced than 
the ones in ARIC and explained a considerably propor-
tion of risk with hazard ratios ranging from 0.61 to 1.49 
per standard deviation unit.

Discussion
Metabolites and proteins are intricately linked: as sub-
strates and enzymes, in allosteric interactions, and the 
assembly of protein complexes. However, few studies 
simultaneously evaluate the proteome and metabolome. 
In the present study, we integrate proteomic and metab-
olomic data into correlation-driven modules, demon-
strate face validity through cross-sectional associations 
with baseline phenotypes, clinical relevance via link-
age to mortality, and generalizability through transferal 
to a CKD cohort. We identified 60 modules of proteins 

and metabolites significantly associated with mortality 
in the general population and four of them additionally 
associated in the CKD cohort. As testament to the util-
ity of combining multiple sources of omics data, all four 
of the modules were mixed, containing both proteins and 
metabolites.

We can discern specific pathological patterns associ-
ated with  the four modules. For example, module 67 can 
be placed in the context of insulin secretion and diabe-
tes, with many of its components associated with diabe-
tes risk. Chiro-inositol is a secondary messenger in the 
insulin signaling pathway. It modulates insulin secretion, 
the mitochondrial respiratory chain, and glycogen stor-
age [15]. Ribitol has been associated with diabetic retin-
opathy stage and was closely correlated to the module 
proteins in our study (Fig. 3) [16]. The protein TSP2 has 
been associated with levels of plasma glucose (P < 0.001), 
insulin (P < 0.01) and homeostasis model assessment of 
insulin resistance (HOMA-IR) (P < 0.001) by Morikawa 
et  al. [17]. ApoA1, ApoB, and the ApoB/A1 ratio have 
been suggested as early indicators for predicting type II 
diabetes [18]. In fact, each of the module components 

Fig. 4  Modules from a general population cohort (ARIC) display consistent within-module correlations when transferred to a cohort of patients 
with CKD (AASK). Scatterplot showing transferability of the module correlation, as expressed by the correlation of components with the first module 
principal component, from ARIC to AASK. The overall Spearman correlation coefficient is 0.91. The four modules significantly associated with 
mortality in both cohorts are labeled. The diagonal and ± 0.1 offset lines are shown
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has been implicated with insulin, risk of diabetes or both 
in some manner (ADAM17 [19], ATL2 [20], MGP [21], 
SPLC2 [22], N-methylproline [23], 3-methylhistidine 
[24]). Taken together, this nominates new connections 
between the module components and proposes module 
67 as a biomarker of diabetes.

Module 30 relates to cardiovascular disease, with sev-
eral of the individual components associated with hyper-
tension and heart disease. A missense variant of the 
sushi, von Willebrand factor type A, EGF and pentraxin 
domain containing SVEP1 has been associated with 
coronary artery disease [25] . N-terminal pro BNP and 
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Fig. 5  Cross-sectional associations of modules in a general population cohort (ARIC) and a cohort of patients with CKD (AASK) show many stable 
and strong molecular characteristics of clinical phenotypes. Graphs display the effect estimates (95% confidence interval whiskers) of linear 
regressions of module PCs on sex, ACR/ 24 h urine protein levels, eGFR, glucose, systolic blood pressure, history of cardiovascular disease, HDL, BMI, 
total cholesterol, smoking, age, and age residualized by eGFR

Table 2  Mortality associations of the four modules associated in both the Atherosclerosis Risk in Communities study (ARIC) general 
population cohort and the African American Study of Kidney Disease and Hypertension (AASK) cohort of patients with chronic kidney 
disease

Hazard ratios are in ARIC SD units

Biomarker ARIC AASK Module components

Module (PC) HR (95% CI) P-value HR (95% CI) P-value Proteins | Metabolites 
bold: corARIC(module PC) >  = 0
non-bold: corARIC(module PC) < 0

67 (pc1) 1.39 [1.28,1.50] 1.92E−16 1.49 [1.23,1.82] 6.60E−05 ADAM 17, Apo A-I, ATL2, MGP, SPLC2, TSP2 | chiro-inositol, N-methylpro-
line, ribitol, 3-methylhistidine

30 (pc1) 0.74 [0.68,0.80] 7.93E−15 0.61 [0.50,0.76] 4.25E−06 kallikrein 10, kallikrein 13, N-terminal pro-BNP, SPB13, SVEP1, TPSB2 | Beta-
citrylglutamate

98 (pc2) 1.26 [1.17,1.36] 3.05E−9 1.49 [1.22,1.82] 1.14E−-4 ANGL3, ENPP5, GDF-11/8, SIA10 | guanidinoacetate, kynurete, xanthurenate

42 (pc2) 1.2 [1.11,1.29] 1.59E−06 1.46 [1.20,1.78] 1.40E−04 ARY1, MICB, ITI heavy chain H1, NRP1, MOTI, NRP1| anthranilate, cysteine 
s-sulfate, N-formylanthranilic acid, phenylacetate, phenylacetylcarnitine, 
phenylacetylglutamate
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galectin-3 are prognostic biomarkers of acute heart fail-
ure [26]. Kallikrein is active in multiple proteolytic reac-
tions, including that of the kallikrein-kinin system and the 
renin-angiotensin system, and thus helps regulate blood 
pressure. It has been suggested that kallikrein inhibitors 
may have utility in the treatment of cardiovascular disease 
[27]. Interestingly, reduced urinary kallikrein levels have 
been associated with the development of high blood pres-
sure, which is one of the major risk factors in the develop-
ment of cardiac hypertrophy, ischemic heart disease, and 
cardiac failure [28]. Finally, the sole metabolite in module 
30, beta-citrylglutamate has been associated with the sin-
gle nucleotide polymorphism (SNP) rs10911021 on chro-
mosome 1q25 and this SNP is associated with coronary 
heart disease in patients with type 2 diabetes [29]. Inter-
estingly, in a recent review while some other serpins have 
been associated with cardiovascular pathologies SPB13 
had no known pathophysiological links [30].

Module 98 and its components are related to kidney 
function. PC1 of module 98 showed a high correlation 
with GFR (corARIC = 0.52, corAASK = 0.44; Additional 
file  1: Table  S2). The mortality-associated PC2 of mod-
ule 98 showed correlations with both sex (corARIC = 0.4, 
corAASK = 0.38) and GFR (corARIC = 0.25, corAASK = 0.26). 
Of its components high plasma guanidinoacetate-to-
homoarginine ratio is associated with high all-cause 
mortality rate in adult renal transplant recipients with a 
hazard ratio of 1.35 [95% CI 1.19–1.53]) [31] Moreover, 
guanidinoacetate is very closely correlated to the pro-
teins in the module (Additional file  1: Fig. S1). Lower 
kidney clearances of kynurete, a highly protein-bound 
solute, were associated with significantly greater risks 
of CKD progression [32] and has been reported to be in 
close association with xanthurenate [33]. ANGL3 plays a 
critical role in nephrotic syndrome, among several other 
diseases [34]. Considering the comprehensive adjust-
ment of our mortality analyses, including sex and GFR, 
the module illustrates the data-driven pathway effect that 
goes beyond GFR-related mortality but still might reflect 
some form of kidney function. Notably, to our knowledge 
ENPP5 and GDF-11/8, the most central components of 
the module (Additional file 1: Table S1 and Fig. S1) have 
not been well studied in relation to kidney physiology.

Lastly, for module 42 we did not observe a clear pat-
tern across all twelve components (six proteins, six 
metabolites). While some of the metabolites are involved 
in the tryptophan pathway and/or relate to kidney func-
tion (N-formylanthranilic acid, phenylacetylglutamate, 
anthranilate) [35], the first PC was only moderately 
associated with GFR (corARIC = 0.35, corAASK = 0.30) and 
other components were associated with rare disorders of 
sulfur amino acid metabolism (cysteine s-sulfate) [36] or 
immune response (NRP1) [37].

A major strength of this study is the use of network meth-
ods to integrate proteins and metabolites in well-designed 
cohorts with large sample sizes of population and events, 
long follow-up, extensive metabolomics and proteom-
ics panels, and the demonstration of transferability to an 
external population very different from the initial cohort. 
Through the unsupervised rank-based design of the network 
abstraction, we were able to identify data-driven pathways 
across the two omics domains and simultaneously structure 
our data and reduce the multiple testing burden. Literature 
review underlined the consistency of the identified modules 
in the endpoint associations and provided initial hypotheses 
with respect to their potentially shared biological pathways.

Limitations included that Netboost, similar to other 
correlation-based approaches, does not infer causal rela-
tions and module membership in some instances might be 
confounded by external influences, i.e., module members 
might be downstream of a common cause. Second, biologi-
cal networks as reflected in proteomics and metabolomics 
data are complex and different network methodologies 
might identify different aspects of the underlying physiol-
ogy. Hence, the modules inferred in our analyses should not 
be viewed as absolute but rather as one representation and 
other approaches might highlight further aspects relevant to 
mortality. Third, this is the first application of Netboost to 
proteomics data. While the approach has not been validated 
for this datatype, proteomics shares many of the distribu-
tional properties of metabolomics. Finally, the two cohorts 
are quite distinct and thus only a subset of the ARIC mor-
tality associations was reproducible in the younger AASK 
CKD cohort. Whether this relates to the underlying biol-
ogy or limited sample size remains to be determined. While 
the small sample size did limit power for the evaluation of 
the associations with mortality, those that do appear were 
among the strongest in the ARIC general population cohort 
and are well supported in their generalizability.

Conclusions
This study identifies integrated biomarkers of the pro-
teome and metabolome that relate to physiological and 
pathological changes important in human health and 
disease. We used a novel clustering technique to begin to 
unravel how correlated proteins and metabolites together 
contribute to adverse health outcomes in addition to 
established risk factors. Future studies are needed to 
explore the co-regulation of proteins and metabolites in a 
functional manner and to apply the findings on mortality 
risk with prevention and treatment in mind.

Methods
Study population
The ARIC study is a prospective community-based 
cohort of 15,792 individuals who were recruited and 
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enrolled between 1987 and 1989 from four US commu-
nities (Forsyth County, NC; Jackson, MS; Minneapolis 
suburbs, MN; Washington County, MD). Details on the 
ARIC study design and methods have been previously 
published [38]. During the fifth study visit between 
2011 and 2013 blood samples were collected for quan-
tification of plasma protein and serum metabolite lev-
els. Institutional review boards at each field center have 
approved of the study and written informed consent 
has been obtained from participants at baseline and fol-
low-up visits. All 4046 participants with available pro-
teomic and metabolomic profiling at visit 5 (61.6% of 
study visit participants) were included. The censoring 
date for follow-up was December 31st, 2018.

The AASK study was a trial of 1094 adult African 
Americans aged 18–70 years with hypertensive chronic 
kidney disease (mGFR 20–65  ml/min per 1.73 m2) 
recruited from 21 clinical centers in the United States. 
AASK trial enrollment occurred between February 
1995 and September 1998, and the trial phase ended 
in September 2001. All 694 participants with available 
proteomic and metabolomic profiling at baseline in the 
trial phase were included in our analysis [39].

Proteomic and metabolomic profiling
ARIC has a uniform blood collection protocol (https://​
sites.​cscc.​unc.​edu/​aric/​Cohort_​Manua​ls/​Blood_​Colle​
ction_​And_​Proce​ssing_7.​PDF) for serum separate tubes 
(SST) and EDTA tubes across all 4 sites. EDTA tubes 
were spun (3000 g for 10 min at 4  °C) and plasma fro-
zen. Similarly, AASK has a routine blood collection pro-
tocol for SSTs (https://​repos​itory.​niddk.​nih.​gov/​studi​
es/​aask-​trial/​MOOP/). In ARIC, 5282 plasma proteins 
were quantified in ARIC participants using a Slow Off-
rate Modified Aptamer–based capture array and plasma 
collected at visit 5, using the SomaScan® platform v4. 
Similar procedures, using the expanded SomaScan® 
v4.1 platform, were applied to serum samples from the 
baseline visit in AASK, resulting in quantification of 
7596 serum proteins in the AASK study [39]. For both 
studies, proteins were log2-transformed to account for 
skewed raw value distributions, and values outside of 5 
SDs on the log2-scale were winsorized. In addition, we 
excluded proteins if the Bland Altman coefficient of var-
iation among blind duplicate samples was greater than 
0.5 (Fig. 1). The final analysis included only human pro-
teins that were quantified in both cohorts (N = 4616).

Serum metabolite profiling was performed using untar-
geted mass spectrometry following standard protocols at 
Metabolon, Inc. (Morrisville, NC) using the SST samples 
in both studies (HD4 Platform). There were 970 and 820 
metabolites of known identity quantified in the ARIC 

and AASK study, respectively [40]. Xenobiotics were 
excluded during preprocessing. Endogenous metabolites 
with > 80% missing was excluded. All metabolites were 
scaled to a median of 1 and log2-transformed, and metab-
olites with variance < 0.01 on log2-scales were removed. 
The final analysis included only metabolites that were 
quantified in both cohorts (N = 474). Missing data were 
imputed with minimum values (0.71% of the combined 
protein and metabolite analysis dataset) and capped at 5 
standard deviations above or below the mean (Fig. 1).

Module formation
Netboost is an unsupervised three-step dimension reduc-
tion technique developed in the context of DNA methyla-
tion and gene expression data [13]. In brief, first, unrelated 
variable pairs are filtered such that a sparse correlation-
based network can be constructed on the strongest net-
work edges. Second, variables are hierarchically clustered 
into modules based on the sparse network. Modules form 
a data-driven partition of all metabolites and proteins 
included in the analysis. The background module consists 
of 81 proteins and 12 metabolites that were left without 
closely related components. Third, module-aggregated 
measures are quantified using the PCs of each module 
except the background module. In this study, we used 
Netboost to characterize modules using combined prot-
eomic and metabolomic data similar to previous appli-
cations to mass spectrometry data [41, 42]. The minimal 
module size was set to two, distance measures were based 
on Spearman coefficients, and robust PCs were used [13]. 
Highly correlated preface modules (i.e., modules with cor-
relation of the first PCs greater than 0.9) were merged to 
further reduce the dimensionality. Three PCs of the mod-
ules were exported, or fewer if they already accounted for 
at least 50% of the module variance.

Characterization of modules and association 
with mortality
After identifying modules of proteins and metabolites 
using Netboost in ARIC, to characterize modules we 
regressed module PCs on clinical traits. Clinical traits 
included age, sex, eGFR, ACR, HDL, body mass index 
(BMI), fasting plasma glucose, total cholesterol, systolic 
blood pressure, history of cardiovascular disease (CVD), 
and history of smoking. eGFR was defined using the CKD 
Epi 2009 equation using creatinine and cystatin C.

Next, we evaluated the associations between the mod-
ule PCs and mortality using Cox proportional hazards 
models. Analyses were adjusted for age, sex, race-center, 
eGFR [43], CVD, history of smoking, diabetes, fasting 
plasma glucose, log 2 transformed ACR, systolic blood 

https://sites.cscc.unc.edu/aric/Cohort_Manuals/Blood_Collection_And_Processing_7.PDF
https://sites.cscc.unc.edu/aric/Cohort_Manuals/Blood_Collection_And_Processing_7.PDF
https://sites.cscc.unc.edu/aric/Cohort_Manuals/Blood_Collection_And_Processing_7.PDF
https://repository.niddk.nih.gov/studies/aask-trial/MOOP/
https://repository.niddk.nih.gov/studies/aask-trial/MOOP/
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pressure, antihypertensive medications, HDL, total cho-
lesterol, and BMI. Adjustment for total cholesterol and 
BMI used linear splines with knots at 200  mg/dL and 
25 kg/m2, respectively [44, 45].

Transferability of modules and relevance in a cohort 
with CKD
We next evaluated whether module membership trans-
ferred to a separate cohort with CKD patients. To do this, 
module memberships and PC loadings developed from 
the ARIC cohort were applied to the AASK cohort. Cross 
sectional regression models with the same clinical traits 
were used to characterize the modules and compared 
with those done in ARIC. To account for the AASK study 
design where participants were selected based on mGFR 
20–65  ml/min per 1.73  m2, we additionally calculated 
correlations with age residuals from a regression on GFR.

As in ARIC, a Cox proportional hazards model was 
used to test for associations between the module PCs and 
mortality. Only those modules that had a statistically sig-
nificant association with mortality in ARIC were tested 
in AASK. In AASK, model covariates included age, sex, 
mGFR, CVD, history of smoking, fasting plasma glucose, 
log 2 transformed 24 h urine protein levels, systolic blood 
pressure, HDL, total cholesterol, and BMI. Again, adjust-
ment for total cholesterol and BMI used linear splines 
with knots at 200 mg/dL and 25 kg/m2, respectively [44, 
45].

Both ARIC and AASK study analyses accounted for 
multiple testing by a Bonferroni adjustment for the num-
ber of analyses (P-value < 0.05/371 and P-value < 0.05/64, 
respectively).
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