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Abstract 

Background: Autism spectrum disorder (ASD) is often accompanied by intellectual disability (ID). Despite extensive 
studies, however, the genetic basis for this comorbidity is still not clear. In this study, we tried to develop an analyz‑
ing pipeline for de novo mutations and possible pathways related to ID phenotype in ASD. Whole‑exome sequenc‑
ing (WES) was performed to screen de novo mutations and candidate genes in 79 ASD children together with their 
parents (trios). The de novo altering genes and relative pathways which were associated with ID phenotype were 
analyzed. The connection nodes (genes) of above pathways were selected, and the diagnostic value of these selected 
genes for ID phenotype in the study population was also evaluated.

Results: We identified 89 de novo mutant genes, of which 34 genes were previously reported to be associated with 
ASD, including double hits in the EGF repeats of NOTCH1 gene (p.V999M and p.S1027L). Interestingly, of these 34 
genes, 22 may directly affect intelligence quotient (IQ). Further analyses revealed that these IQ‑related genes were 
enriched in protein synthesis, energy metabolism, and amino acid metabolism, and at least 9 genes (CACNA1A, ALG9, 
PALM2, MGAT4A, PCK2, PLEKHA1, PSME3, ADI1, and TLE3) were involved in all these three pathways. Seven patients 
who harbored these gene mutations showed a high prevalence of a low IQ score (< 70), a non‑verbal language, and 
an early diagnostic age (< 4 years). Furthermore, our panel of these 9 genes reached a 10.2% diagnostic rate (5/49) 
in early diagnostic patients with a low IQ score and also reached a 10% diagnostic yield in those with both a low IQ 
score and non‑verbal language (4/40).

Conclusion: We found some new genetic disposition for ASD accompanied with intellectual disability in this study. 
Our results may be helpful for etiologic research and early diagnoses of intellectual disability in ASD. Larger popula‑
tion studies and further mechanism studies are warranted.

Keywords: Autism spectrum disorder, Whole‑exome sequencing, De novo mutations, Pathways, Intellectual 
disability, Intelligence quotient

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Autism spectrum disorder (ASD, [DSM-5]) is a group 
of neuronal developmental disorders that are charac-
terized by defects in social interaction and verbal com-
munication, together with restricted and repetitive 
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behaviors. Other than these core symptoms, ASD may 
be companied by many other problems, such as intel-
lectual disability (ID) [1], deficits in fine motor skills, 
speech language delay [2], metabolic disturbance of 
amino acids [3] or fatty acid [4], and epilepsy [5]. In 
addition, gastrointestinal problems, epilepsy, and sleep 
disorders are common phenotypes in ASD [6].

Twin and family studies revealed that genetic factors 
compose a major contributor for ASD. Those genetic 
effects can be acquired via a “new” mutation occurring 
in probands (de novo mutation) or harmful variants 
transmitted from parents. By using large-scale genome 
sequencing, various de novo variants have been iden-
tified in a number of genes that may be associated 
with the pathogenesis of ASD. For example, de novo 
mutations affecting GABAergic neuronal circuits [7], 
cytoskeletal organization, ion transport [8], ubiquitina-
tion pathway, protein synthesis and degradation, the 
development, formation, and function of synapses [6], 
and the balance in excitation and inhibition synaptic 
input [9], have been reported to be associated with the 
occurrence of ASD, demonstrating the role of de novo 
variants in the etiology of ASD. More interestingly, 
some de novo altering genes were also indicative of 
other clinical entities [9]. For instance, genes located on 
the X chromosome have been reported to contribute to 
ASD subgroups with ID [10], while other ASD genes are 
thought to be related to speech-impairment [11]. Some 
researchers also found an etiological overlap between 
ASD and epilepsy [12]. Additionally, an ASD-associ-
ated de novo mutation found in dopamine transporter 
(DAT T356M) can alter striatal dopamine neurotrans-
mission and cause dopamine-dependent behaviors in 
mice, which is also seen in attention-deficit/hyperactiv-
ity disorder (ADHD) [13]. Therefore, tests of de novo 
mutation are thought to be contributable significantly 
to ASD research and diagnosis [14–16]. However, the 
genetic basis of these comorbidities in ASD remains 
largely unknown. Linking genetic factors to a certain 
symptom or particular sets of ASD may be more use-
ful for etiologic research and potentially for diagnosis 
purpose. Among these comorbidities, ID is particularly 
relevant due of its high prevalence, high degree of her-
itability [10], and long-term effects on quality of life, 
even after entering adulthood [1].

We therefore implemented whole-exome sequenc-
ing (WES) of ASD samples in an attempt to establish 
a genetic architecture of ASD patients who are accom-
panied by certain clinical entities such as ID. To this 
end, we developed an analyzing pipeline to search for 
de novo mutation and pathways that could be related to 
ID phenotype in ASD.

Results
Clinical characteristics of subjects
In total, 79 ASD families including siblings without 
ASD and both healthy parents were collected in this 
study. Among these, 77 families were trios, while other 
two were quarters. As for probands, there were 72 boys 
and 7 girls, with mean age of 3.18 ± 1.24  years. Clini-
cal information of patients was collected during diag-
nostic and follow-up visits. A considerable proportion 
of patients were found to have low developmental quo-
tient (DQ) or intelligence quotient (IQ) (< 60, ~ 46.5%), 
non-verbal language (~ 61.0%), walking age equal with 
or later than 12  months (~ 84.9%), metabolic distur-
bance in plasma of short-median-chain acylcarnitines 
(~ 73.3%), thyroid hormones (~ 24.7%), and long-chain 
acylcarnitines (~ 17.3%); and as for plasma amino 
acid, the prevalence of aberrant hydroxyproline was 
common (~ 41.3%). The abovementioned phenotypes 
were further analyzed. We found that patients who 
were diagnosed at < 3  years of age (Fisher’s exact test, 
P = 6.15 ×  10–7, odds ratio [OR] = 13.96), or DQ/IQ < 60 
(Fisher’s exact test, P = 0.038, OR = 2.77) tended to 
have worse language ability, but no significant associa-
tion was observed between diagnosed age and walking 
age (Fisher’s exact test, P = 0.12, OR = 2.81).

Identification of de novo mutations
All subjects in this study were tested by whole-exome 
sequencing. On average, we produced 16.2  GB of raw 
reads for each sample, and 96.6% of them were mapped to 
the human reference genome (hg19 version) by Burrows–
Wheeler Aligner (BWA). The coverage of the targeted 
sequences per sample ranged from 98 × to 171 × (average 
119 ×), and the coverage of targeted sequences that cov-
ered at least 10 times of each sample ranged from 92.9 
to 95.8% (average 94.8%, Additional file 1: Table S1). All 
the data showed that the sequencing data quality was rel-
atively good for de novo mutation detection. Moreover, 
no exceedance of Mendelian errors was found in our data 
(Additional file 1: Figure S1), and all these 79 ASD fami-
lies had identification of de novo mutations performed.

After validated by Sanger sequencing, we con-
firmed 82 de novo coding single nucleotide variants 
(SNVs) and 7 de novo coding insertions and deletions 
(INDELs) (Additional file  2: Table  S2). Among these 
mutations, one missense and one stop-loss mutation 
occurred in unaffected siblings (the last two mutations 
in Additional file 2: Table S2). Considering the limited 
mutation number in siblings, totally 87 de novo events, 
including 57 missense mutations, 19 silent SNVs, and 
4 stop gains, and 7 INDELs in probands were further 
analyzed. None of these abovementioned mutations 
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were found in our in-house exome sequencing database 
including 2000 Han Chinese.

Additionally, we performed splicing site prediction 
to detect potential splice sites (detailed in Methods), 3 
silent and 4 missense mutations passed our threshold, 
and were marked as silent-splicing and missense-splic-
ing, separately. Meanwhile, we analyzed inherited SNVs 
and INDELs possibly related to ASD and found 39 
homozygous mutations, 3025 compound heterozygous 
mutations, and X-linked mutations (data not shown). 
We have analyzed these inherited mutations; however, 
no common characteristics in pathways between the 
inherited and de novo mutations were found in this 
study. Therefore, these inherited mutations will be ana-
lyzed in reports to follow.

There were about 65% of children (51/79) carrying at 
least one de novo SNV or INDEL. The number of each 
family (1.01 for each individual, on average) followed a 
Poisson distribution (Additional file 1: Figure S2), which 
suggested that there was no obvious system bias in the 
process of sequencing and de novo mutation detection. 
The average number and rate of de novo SNV/INDEL 
were 1.01 /0.089 and 1.51 ×  10–8/1.32 ×  10–9, respec-
tively (Additional file 1: Table S3).

Compared with general mutations, the de novo muta-
tions found in ASD children are more inclined to have 
a prominently higher ratio between non-synonymous 
(including missense, stop gain, canonical and pre-
dicted splicing sites) and synonymous de novo SNVs 
(NS:S = 4.0), which exceeds the expected value under a 
random model (NS:S = 2.85 ×  10–3) [9], and private inher-
ited mutations (NS:S = 1.87, P = 2.89 ×  10–3) (Additional 
file  1: Table  S4). Simultaneously, the rate of LoF muta-
tions (loss of function mutations, including stop gain, 
canonical and predicted splicing sites, and frameshift 
INEDL, which result in the gene product having less or 
no function) of de novo mutations found in our data are 
observed to be much higher than that of private inherited 
mutations (P = 1.60 ×  10–7), and that of de novo muta-
tions found in the reported control [9] (P = 2.89 ×  10–3) 
(Additional file 1: Table S4).

Consistent with previous ASD studies [17], we found 
NOTCH1 gene recurrently mutated in 2 families, 
p.V999M and p.S1027L located in EGF repeats (EGF_CA 
domain, cd00054, Fig.  1). This gene plays an important 
role in NOTCH signaling pathway and is essential for 
neural development [18]. Besides, five other genes known 
to be associated with the occurrence of ASD (CACNA1A 
[19], CHRM3 [20], CNOT3 [21], EPHA6 [22], and CDH2 

Fig. 1 Schematic diagram and potential roles of de novo mutations in NOTCH1 genes in neurodevelopmental diseases. A. Schematic 
diagram of NOTCH1 gene, and de novo mutations (p.V999M and p.S1027L) found in this study. B. The potential roles of NOTCH1 signaling in 
neurodevelopmental diseases. This figure was adapted from Sanchez‑Martin and Ferrando [24] and Arumugam et al. [25]
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[23]) were detected. We also found 16 genes associated 
with ASD, as shown in Table  1. Because the etiology of 
ASD and ID overlaps genetically [10], these abovemen-
tioned 22 genes might directly affect patients’ DQ/IQ.

Additionally, there were other eight de novo altering 
genes reported in mental diseases (KCNJ13, H2AFX, 
ZYX, MAST2, MARK2, ADI1, PLEKHA1, and PCK2) 
[61–64], and four ones associated with developmental 
diseases (PDE3B, PIEZO1, HEYL, and CELSR1) [65–67].

We then further compared de novo mutations in 
diverse sub-population based on the clinical informa-
tion, such as diagnosed early (< 3  years), walking later 
(> 12 months), DQ/IQ (< 60), language impairment, and 
abnormal plasma levels of short-median-chain/long-
chain acylcarnitine, hydroxyproline, and thyroid func-
tion shown as Additional file 1: Table S5. Compared with 
other patients, LoF mutations were more likely to occur 
in those with abnormal plasma thyroid function levels 
(Fisher’s test, P = 4.27 ×  10–3, OR = 11.10).

De novo disruptions of genes and pathways in subgroups in 
ASDs
Eighty-six de novo altering genes were annotated by GO 
(http:// www. geneo tology. org) and KEGG pathway data-
base (http:// www. genome. jp/ kegg/ pathw ay. html) and 
were grouped into five combined pathways, which were 
related to protein synthesis, pressure, energy metabolism, 
development, and amino acid metabolism, respectively 
(Additional file 2: Table S6).

We performed association analyses between the above 
pathways and the ID phenotype (DQ/IQ < 60). And we 
found that the pathways related to protein synthesis, 
energy metabolism, and amino acid metabolism were 
significantly associated with the DQ/IQ levels (P values 
0.019, 0.008, and 0.034, respectively) (Table 2).

Protein–protein interaction networks and mutations 
on key networks
For all genes with potential harmful de novo mutations, 
protein–protein interaction networks were predicted 
by DAPPLE (Disease Association Protein–Protein Link 
Evaluator) and STRING (http:// string- db. org). There 
were more than 40 nodes in the protein–protein inter-
action networks (Fig. 2). Most of these nodes (genes) are 
relative to ASD, mental, or developmental diseases.

Interestingly, nine genes in these networks (CAC-
NA1A, ALG9, PALM2, MGAT4A, PCK2, PLEKHA1, 
PSME3, ADI1, and TLE3) are concurrently involved 
in all above important pathways (protein synthesis, 
energy metabolism, and amino acid metabolism). All 
of these 9 genes were reported to be related to brain 
development. For example, 4 of them are relevant to 
ASD (CACNA1A, ALG9, PALM2, and TLE3). And the 

other 4 genes have been associated with schizophre-
nia (MGAT4A [56]), Leigh syndrome (ADI1, OMIM: 
256,000), congenital hypomyelinating neuropathy 
(PLEKHA1, OMIM: 605,253), and ID (PCK2 [64]), 
respectively. Additionally, another gene PSME3 is also 
involved in the brain development, which is an e-QTR 
loci for the expression on hippocampus, basal ganglia, 
frontal cortex, cerebellum, and anterior cingulate cor-
tex, and so on [56].

Moreover, cases that carried these mutations were 
all males and showed a high prevalence of DQ/IQ < 70 
(6/7), non-verbal language (5/7), and an early diagnostic 
age (< 4  years, 7/7) (Table  3). Combined with the above 
results, it implies that the metabolism pathways of amino 
acid/protein/energy are relative with the etiology of intel-
lectual disability in ASD.

Furthermore, our panel of these 9 altering genes 
reached a 10.2% diagnostic rate (5/49) in early diagnostic 
patients with a low DQ/IQ value and also reached a 10% 
diagnostic yield (4/40) in patients with both a low DQ/IQ 
score and a non-verbal language. Our results suggested 
a diagnostic value of De novo mutations within metabo-
lism networks of amino acid/protein/energy in ASD/ID 
comorbidity.

The expression patterns of major disrupted pathway genes 
in different brain tissues
We investigated the expression level of all de novo genes 
based on BrainSpan (http:// www. brain span. org/ static/ 
downl oad. html) and BrainStars (http:// brain stars. org/). 
The expressed genes in specific brain regions (includ-
ing CB, CBC, HIP, STR, AMY, and PIT) were defined 
by RPKM > 5 (BrainSpan: CB, CBC, HIP, STR, AMY) or 
top 25% expression (BrainStars: PIT). We found that the 
genes involved in protein synthesis, such as YWHAQ, 
H2AFX, CDH2, and KIF1A/KIF5C, were highly expressed 
in different brain regions at all periods (Additional file 1: 
Figure S3). As for the genes were involved in energy 
metabolism, such as PSMES, SEC31A, and WDTC1, their 
expressions were not significantly varied in different 
brain regions at various periods (Additional file  1: Fig-
ure S4). Neither the genes involved in pressure (H2AFX, 
CDH2, KIF5C, PSMES, and PTPRM, Additional file  1: 
Figure S5), nor those involved in amino acid metabolism 
(PTPRM, Additional file  1: Figure S6), or development 
(YWHAQ, CDH2, and KIF1A/KIF5C, Additional file  1: 
Figure S7). Totally, the highly expressing genes in brain 
were constantly expressed across different brain regions 
during various development periods (YWHAQ, CDH2, 
and KIF1A/KIF5C, Additional file 1: Figure S8). It implied 
that many periods during brain development are pivotal 
for the etiology for ASD.

http://www.geneotology.org
http://www.genome.jp/kegg/pathway.html
http://string-db.org
http://www.brainspan.org/static/download.html
http://www.brainspan.org/static/download.html
http://brainstars.org/
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Discussion
In this study, we explored the genotype–phenotype 
relationships in ASD, to facilitate ongoing efforts to 
explain the molecular mechanisms of their endo-phe-
notypes. We found that pathways related to protein 
synthesis, energy metabolism, and amino acid metabo-
lism were significantly associated with DQ/IQ levels 
in ASD. Those that carried the mutations in their con-
nection node (CACNA1A, ALG9, PALM2, MGAT4A, 

PCK2, PLEKHA1, PSME3, ADI1, and TLE3) obviously 
exhibited low DQ/IQ and language impairment.

In this study, we found that de novo mutations in 
probands occurred in 86 genes, including 22 related 
to ASD, and 26 associated with mental/developmen-
tal diseases. Because genes related to mental and 
developmental diseases are also potentially associ-
ated with ASD [68, 69], the 56% de novo altering genes 
(48/86) in this study are likely biologically related to 

Table 2 Association of mutations in selective pathways with clinical phenotypes

IQ intelligence quotient. DQ developmental quotient

Phenotypes Protein synthesis Pressure Energy metabolism Development AA metabolism

Related Unrelated Related Unrelated Related Unrelated Related Unrelated Related Unrelated

Total genes 47 24 23 48 15 56 37 34 12 59

IQ/DQ

 < 60 16 17 7 26 2 31 18 15 2 31

 ≥ 60 22 6 11 17 10 18 15 13 8 20

P 0.019 0.162 0.008 1.00 0.034

OR 0.26 0.42 0.12 1.04 0.17

Fig. 2 Protein–protein interaction for all de novo altering genes



Page 8 of 14Chen et al. Human Genomics           (2022) 16:52 

Ta
bl

e 
3 

C
lin

ic
al

 p
he

no
ty

pe
s 

in
 c

ar
rie

s 
w

ith
 th

e 
m

ut
at

io
ns

 in
 g

en
es

 in
vo

lv
in

g 
th

e 
th

re
e 

im
po

rt
an

t p
at

hw
ay

s

* T
he

 a
ge

 w
he

n 
pr

ob
an

d 
at

 b
irt

h

N
V 

no
n-

ve
rb

al
. N

A 
no

n-
an

al
yz

ed
. F

T3
 fr

ee
 tr

iio
do

th
yr

on
in

e

Ca
se

G
en

e
Se

x
D

ia
gn

os
ed

 
ag

e
Fa

th
er

 a
ge

(y
)*

M
ot

he
r 

ag
e 

(y
)*

D
Q

/IQ
La

ng
ua

ge
W

al
ki

ng
 

ag
e 

(m
)

H
yd

ro
xy

pr
ol

in
e

Th
yr

oi
d 

fu
nc

tio
n

C1
3-

C1
8

C0
-C

6

K2
AL

G
9 

PA
LM

2
M

2.
3

33
31

68
N

V
13

N
or

m
al

N
or

m
al

N
or

m
al

C
2\

C
5 

in
cr

ea
se

d

A
L4

M
G

AT
4A

M
3

33
34

55
N

V
13

N
A

N
or

m
al

N
or

m
al

C
2 

in
cr

ea
se

d

D
3

PC
K2

 C
AC

N
A1

A
M

2.
8

–
–

N
A

N
V

15
D

ec
re

as
ed

N
or

m
al

N
or

m
al

N
or

m
al

A
M

5
PL

EK
H

A1
M

3.
2

28
26

61
N

V
11

N
or

m
al

N
or

m
al

N
or

m
al

C
3 

in
cr

ea
se

d

A
G

7
PS

M
E3

M
3.

4
34

33
60

V
16

N
A

FT
3 

in
cr

ea
se

d
N

or
m

al
C

6 
de

cr
ea

se
d

V3
A

AD
I1

M
1.

9
25

23
68

N
V

15
N

or
m

al
N

or
m

al
N

or
m

al
N

or
m

al

R1
0

TL
E3

M
3.

3
26

23
99

V
15

D
ec

re
as

ed
N

or
m

al
N

or
m

al
C

3‑
5 

in
cr

ea
se

d



Page 9 of 14Chen et al. Human Genomics           (2022) 16:52  

the occurrence of ASD. Moreover, the average num-
ber and rate of de novo SNV/INDEL, and the ratio of 
non-synonymous to synonymous de novo SNVs (NS:S) 
was similar to previous ASD studies [9]. Additionally, 
the quality of whole-exome sequencing is high (Addi-
tional file  1: Figures  S1 and S2). Thus, we believe that 
our findings regarding genetic associations in ASD and 
ID are creditable.

To our knowledge, this is the first time that de novo 
mutations associated with amino acid/protein/energy 
metabolism have been found to play a pivotal role in the 
etiology of ID in ASD. In this study, the nine de novo 
altering genes (CACNA1A, ALG9, PALM2, MGAT4A, 
PCK2, PLEKHA1, PSME3, ADI1, and TLE3) were 
involved in all the above important pathways simultane-
ously. Interestingly, they are all reported related to brain 
development. Among of them, CACNA1A is involved 
in protein synthesis (GO:0,043,231 and GO:0,043,234), 
energy metabolism (GO:0,044,262), and amino acid 
metabolism (ko04010), and is reported to the occurrence 
of ASD [26, 27]. And PALM2, ALG9, and TLE3 also par-
ticipate in the above pathways such as GO:0,043,231, 
GO:0,006,487, ko01100, and ko04010, and all of them 
are reported to be ASD-relative [38, 39, 46]. MGAT4A, 
a schizophrenia-relevant gene [56], is involved in the 
GO:0,006,487, GO:0,043,234, and ko01100 pathways. 
The ADI1 and PLEKHA1 are involved in amino acid and 
derivative metabolism (R-HSA-71291), synthesis of PIPs 
at the plasma membrane (R-HSA-1660499) and energy 
metabolism (R-HSA-1430728), and are related to neuro-
metabolic disease (Leigh syndrome; OMIM256000) and 
neuron developmental disease (congenital hypomyelinat-
ing neuropathy; OMIM605253), respectively. And PCK2 
is reported to be associated with the etiology of ID [64]. 
Meanwhile, its mutations are the cause of an inherited 
metabolic disease (PEPCK deficiency, mitochondrial, 
OMIM: 261,650), and it is also related to GO:0,043,231, 
ko00010, ko00620, and ko00020 pathways. Another gene 
PSME3 (also named as PA28γ or REGγ) is not reported 
relative to ASD or mental diseases in human previ-
ously. However, it is an e-QTR loci for the expression on 
many ASD-relative tissues, such as hippocampus, fron-
tal cortex, and cingulate cortex [56]. And Psme3 gene 
transfer improves motor coordination in mouse model 
of Huntington’s disease [70]. This gene is involved in 
the pathways of amino acid and derivative metabolism 
(R-HSA-71291), ABC-family proteins-mediated trans-
port (R-HSA-382556), APC/C-mediated degradation of 
cell cycle proteins (R-HSA-174143), and is reported to 
regulate energy homeostasis [71]. Our data suggest that 
a novel type of targets involving nodes of the important 
pathways modulating protein synthesis, energy produc-
tion, and neurotransmission (BCAAs) simultaneously, 

might better explain some severe problems in ASD, such 
as comorbidity with ID and language impairment.

Brain dysfunctions related to IQ and language devel-
opment in ASD disrupt the transducing experience-
mediated neural activity into long-term modifications 
of synapses [72]. In many cases, the long-term synaptic 
modifications rely upon new protein synthesis, including 
the following process: protein synthesis activated by the 
stimuli of neuron receptors (NMDA), then regulation of 
the synthesis of synaptic signaling molecules (CaMKIIα), 
ion channels (SK channel), translation factors (eIF4E), 
and glutamate receptor subunits (GluA1, GulA2) [73–
75]. These mechanisms for synaptic modifications and 
plasticity link brain protein synthesis with ID and lan-
guage learning in ASD [76]. Amino acids, especially 
branched chain amino acids (BCAAs) which comprise 
as much as 30% of proteins in the cell, are also related 
to long-term modifications of synapses. By studying the 
mutation of BCKDK (a metabolizing enzyme of BCAAs) 
[77, 78] and SLC7A5 (a neutral amino acid transporter) 
[79], people know that these amino acids are also used 
as neurotransmitters and as metabolic intermediates in 
the etiology of ASD, ID, and other mental diseases [80]. 
Moreover, oxygen consumption, a major index for energy 
metabolism in the brain, accounts for about one-fifth of 
the total consumption of the human body. It has been 
proven that glycolysis and β-oxidation of fatty acid are 
important mechanisms closely related to brain develop-
ment dysfunction in ASD [4]. Therefore, it makes sense 
that energy metabolism-related pathways play a vital role 
in the etiology of ID and language impairment in ASD. 
Taken together, our findings on the genetic association 
between the networks of amino acid/protein/energy-
metabolism and ID in autism are biological feasible.

Gene panel sequencing is thought to be helpful for 
screening ID phenotype in ASD patients. For instance, 
Redin et  al. [81] reached a 25% diagnostic yield of ID/
ASD comorbidity in 106 selected patients without con-
genital malformations, fragile X syndrome, or detectable 
CNV mutations, using a panel with 99 X-linked and 118 
autosomal genes. Grozeva et  al. [82] reported an 11% 
diagnostic rate on unselected 986 ASD patients with 
moderate to severe ID, using a larger panel of 565 genes. 
Aspromonte et al. [83] designed a smaller panel including 
74 genes related to both ID and ASD, and reached a 27% 
diagnostic rate (41/150) in a careful selected ASD popu-
lation with ID, who were negative for CNV and deletions/
imprinting defects. By reviewing some references, Chi-
urazzi et al. suggested a panel of 174 genes (64 X-linked 
and 110 autosomal) to screen ID/ASD patients [10]. In 
this study, we suggested a panel of 9 genes to identify 
ASD patients with ID and non-verbal language with a 
10% diagnostic yield, and it reached a similar diagnostic 
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rate in early diagnostic ASD patients with ID. Our find-
ings are helpful for future disease diagnosis.

Additionally, NOTCH1 was found to have mutated 
recurrently in this study (c.G2995A:p.V999M and 
c.C3080T:p.S1027L). Human NOTCH1 gene (Gene 
ID:4851) encodes a member of the NOTCH protein fam-
ily (belonging to Type I transmembrane protein family), 
which shares a characteristic structure: multiple extra-
cellular epidermal growth factor-like (EGF) repeats. As 
a receptor, extracellular EGF repeats of NOTCH1 are 
pivotal for binding to its ligands, such as JAG1/2 and 
DLL1 ~ 3 (Fig.  1A) [24, 25]. After activation of these 
ligands, NOTCH1 receptor is hydrolyzed by ADAM10 
metalloprotease and γ-secretase complex, then releases 
an intracellular fragment to nuclear, and participates in 
transcriptional regulation of many developmental genes, 
thus playing important roles in neurogenesis, vasculari-
zation, inflammation, and other processes (Fig.  1B) [17, 
18, 25]. In this study, both V999M and S1027L de novo 
mutations were located in the EGF repeats, influencing 
the binding of NOTCH1 receptor with its ligands, dis-
connecting the networks of neuron-neuron and/or neu-
ron/stroma cell, and hindering brain development, thus 
leading to the occurrence of ASD. Therefore, we postu-
late that the recurrent mutations in EGF_CA domain of 
NOTCH1 are related to and may be a risk factor of ASD. 
We believe these findings would be valuable for future 
etiological study.

This study have some limitations: Our results must be 
interpreted with caution given the small sample sizes 
of both studies and challenges inherent in combining 
datasets.

Conclusion
Our data suggest that the connection nodes of the path-
ways such as amino acid/protein/energy-metabolism 
should be a novel type of target for ASD, which may 
play a vital role in the etiology of ID in ASD. Our find-
ings suggest a panel of 9 genes to screen ASD patients 
with ID and language delay in this study. Moreover, the 
recurrent mutations in EGF_CA domain (EGF repeats) of 
NOTCH1 are associated with ASD, which implies a new 
disease mechanism. However, studies with larger popula-
tion in different ethnic groups and functional studies are 
warranted to validate our findings.

Methods
Study population
From Oct 2015 to Jan 2017, we collected 79 children with 
ASD from a National Women and Children’s Medical 
Center for the south central region in China. All these 
79 patients (77 trios and 2 quarters) (male/female = 72/7; 
3.19 ± 1.24  years) met the following inclusion criteria 

consisting of Diagnosis and statistical Manual of Men-
tal Diseases version-5 (DSM-5), Autism Diagnostic 
Interview-Revised (ADI-R), and Autism Diagnostic 
Observation Schedule (ADOS), and those who were ini-
tially diagnosed at the age of fewer than two years old 
would be followed up to obtain the definitive diagnosis 
when whose age was at least two years old. All included 
subjects had an extensive clinical evaluations includ-
ing relevant demographic data collection, neurological 
assessments, developmental quotient (DQ) assessment 
by Gesell Development Diagnosis Scale (GDDS)/ intel-
ligence quotient (IQ) assessment by Chinese Wechsler 
Intelligence Scale for children- IV Version (CWISC-IV) 
or by Chinese Wechsler Young Children Scale of Intel-
ligence-IV Version (CWYCSI-IV), and the testing of 
plasma levels of amino acids, acylcarnitines (C0-C18) 
via HPLC-GC/MS as well as thyroid function. Meta-
bolic disturbances in plasma hydroxyproline, acylcarni-
tines, and thyroid function were defined as theirs levels 
increased or decreased more than twofold as compared 
to the norm reference. The non-verbal autistic child was 
defined as a child with spontaneous functional words less 
than five clinically. The study was approved by the Clini-
cal Research Ethics Committee of Guangzhou Women’s 
and Children’s Medical Center, and informed consent for 
participation was obtained from either of their parents/
guardians. Blood samples of the probands, parents, and 
other available relatives including siblings were obtained 
from who gave informed consent.

Exome capture and sequencing
Genomic DNA of the studied families (proband, both 
parents, and other available siblings) was extracted from 
the peripheral blood using the QIAamp DNA Blood Mini 
kit (QIAGEN GmbH, Hilden, Germany). We quantified 
initial DNA using a Qubit High Sensitivity Assay and 
checked sample purity using the Nanodrop OD260/280 
ratio. Purified DNA was fragmented into an average size 
of 250  bp and hybridized by the Agilent V5 sequence 
capture array to capture the exonic DNA. We performed 
whole-exome sequencing with 100 bp pair-end reads on 
Illumina HiSeq 4000 platform following Illumina’s rec-
ommended protocol. The raw image files were processed 
using the standard Illumina Pipeline (version 1.3.4) for 
base calling with the default parameters.

Alignment and variant calling
After removing reads caught adapter sequence and 
low-quality sequences (rate of base with quality < 5), 
the sequencing quality of all processed FASTQ files was 
measured by Fastqc (version 0.11.4). Pruned reads in 
the FASTQ format were aligned to the human reference 
genome (hg 19 version) by BWA (version 0.5.9-r16), and 
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the duplicated sequence generated in the processing of 
PCR was marked by Picard (http:// broad insti tute. github. 
io/ picard). We utilized the Genome Analysis Toolkit 
(GATK; version 3.5) to perform the local realignment and 
base quality recalibration in the sequencing target region 
and its extension (500  bp) region and thereby obtained 
an ‘Analysis-Ready’ BAM file for each individual. The 
single nucleotide variants (SNV) and insertions and dele-
tions (INDELs) were jointly called by HaplotypeCaller 
in GATK for every three or four members per family, 
and FamSeq was used to adjust variants based on fam-
ily information. We further removed the mutations with 
a Variant Quality Score logs odds ratio (VQSLOD) with 
a tranche sensitivity of less than 99.9% to alleviate other 
confounders’ effects. All output files, which generated in 
the universal variant call format (VCF), were annotated 
by ANNOVAR with various databases.

Sample quality control
Two methods were adopted for quality control checks in 
all samples: (1) Genotypes of 24 common mutations (fre-
quency > 0.4 in Eastern Asian of 1000 Genome Project) 
were tested by Mass Spectrum, and the concordance of 
initial DNA’s genotype and sequencing data should be no 
less than 0.95; (2) Mendelian rate of each family should 
be no larger than 0.5%.

Splicing site prediction
We used three tools (including NetGene2, SplicePort, 
and Human Splicing Finder) to predict whether a silent 
or missense de novo mutation can lead to candidate tran-
script splicing. Mutations judged as candidate splicing 
sites by at least two of above-mentioned programs would 
be marked as silent-splicing or missense-splicing and 
would be regarded as splicing mutation in this study.

Inherited mutations
In addition to de novo mutations, three types of inher-
ited mutations that may lead to ASD were also extracted: 
(1) rare (minor allele frequency < 1% in East Asian of 1000 
Genome Project and ExAC) homozygous coding muta-
tions that transmitted from heterozygous parents; (2) rare 
compound heterozygous coding mutations that transmit-
ted from heterozygous parents; (3) rare heterozygous 
coding mutations of male proband, which transmitted 
from maternal X chromosome. We also picked up the 
private inherited mutations (rare heterozygous mutations 
that inherited from father or mother, and only observed 
in single family) to compare with the de novo mutations. 
All above-inherited SNVs and INDELs have a good gen-
otype quality (phred values greater than 20, sequencing 
depth larger than 10 ×).

Pathways, protein–protein interaction, and co-expression 
networks
All de novo altering genes were annotated by GO (http:// 
www. geneo tology. org) and KEGG pathway database 
(http:// www. genome. jp/ kegg/ pathw ay. html). The pro-
tein–protein interaction networks of these altering 
genes were constructed for all potential harmful genes 
based on DAPPLE (Disease Association Protein–Pro-
tein Link Evaluator) and STRING (http:// string- db. org), 
and the co-expression network was built with the Brain-
Span Atlas resource. Expression data of samples before 
early childhood (age < 6  years) in multiple brain regions 
(including CBC, CB, HIP, AMY, and STR) were used. We 
used person test to estimate the co-expression based on 
periods and brain regions, respectively.

Statistical analysis
Chi-square test and logistic analysis were used to ana-
lyze the data in standard R packages. A two-sided P value 
of < 0.05 defined statistical significance.
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