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A review on the application of the exposome 
paradigm to unveil the environmental 
determinants of age‑related diseases
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Abstract 

Age-related diseases account for almost half of all diseases among adults worldwide, and their incidence is substan-
tially affected by the exposome, which is the sum of all exogenous and endogenous environmental exposures and 
the human body’s response to these exposures throughout the entire lifespan. Herein, we perform a comprehensive 
review of the epidemiological literature to determine the key elements of the exposome that affect the development 
of age-related diseases and the roles of aging hallmarks in this process. We find that most exposure assessments in 
previous aging studies have used a reductionist approach, whereby the effect of only a single environmental fac-
tor or a specific class of environmental factors on the development of age-related diseases has been examined. As 
such, there is a lack of a holistic and unbiased understanding of the effect of multiple environmental factors on the 
development of age-related diseases. To address this, we propose several research strategies based on an exposomic 
framework that could advance our understanding—in particular, from a mechanistic perspective—of how environ-
mental factors affect the development of age-related diseases. We discuss the statistical methods and other methods 
that have been used in exposome-wide association studies, with a particular focus on multiomics technologies. We 
also address future challenges and opportunities in the realm of multidisciplinary approaches and genome–expo-
some epidemiology. Furthermore, we provide perspectives on precise public health services for vulnerable popula-
tions, public communications, the integration of risk exposure information, and the bench-to-bedside translation of 
research on age-related diseases.
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Background
Due to the continuous advancement of biomedical 
technologies and the substantial improvement in living 
conditions worldwide, human lifespans have increased 
dramatically over the past century [1]. Nevertheless, the 
prevalence of age-related diseases remains considerable: 
92 (31.4%) of the 293 diseases listed in the Global Burden 

of Diseases, Injuries, and Risk Factors Study (GBD) 2017 
were identified as age-related, and these accounted for 
51.3% of the worldwide burden of disease in adults [2]. 
In addition, age-related diseases account for two-thirds 
of human deaths globally and 90% of all deaths in indus-
trialized nations [3]. Moreover, sociodemographic index 
(SDI) analysis revealed that the rates of age-related dis-
eases ranged from 137.8 disability-adjusted life years 
(DALYs) per 1000 adults in high-SDI countries to 265.9 
DALYs per 1,000 adults in low-SDI countries [2]. The 
most common age-related diseases are neurological 
degenerative diseases (e.g., Parkinson’s disease [PD] 
and Alzheimer’s disease [AD] or dementia), chronic 
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obstructive pulmonary disease (COPD), coronary artery 
disease (CAD), stroke, type 2 diabetes mellitus (T2DM), 
and senile deafness [2, 4]. These diseases place an enor-
mous economic and psychological burden on patients, 
their families, and societies worldwide [5].

In 2021, Science published a special issue entitled “125 
Questions: Exploration and Discovery.” One of these 125 
questions was “Can we stop ourselves from aging?” The 
U.S. National Institute on Aging (NIA) at the National 
Institutes of Health (NIH) states that “aging is associ-
ated with changes in dynamic biological, physiological, 
environmental, psychological, behavioral, and social pro-
cesses.” Although geneticists and epidemiologists have 
long debated the relative importance of the role played 
by genotype or the environment in the development of 
age-related diseases, it is apparent that both can play sub-
stantial roles in this process [6, 7]. However, most etio-
logical studies have concentrated on the role of genotype 
and have considered the environment to play a second-
ary role. Nevertheless, an analysis of GBD data showed 
that nearly 50% of deaths worldwide are attributable to 
environmental exposure, primarily exposure to airborne 
particulates (including household air pollution and occu-
pational exposure; 14% of all deaths), smoking and sec-
ondhand smoke (13%), plasma sodium concentrations 
(6%), and alcohol consumption (5%) [8]. In contrast, a 
recent analysis of 28 chronic diseases in identical twins 
showed that the genetic-related risks of developing one of 
five age-related diseases were 33.3%, 10.6%, 36.3%, 19.5%, 
and 33.9% for AD, PD, CAD, COPD, and T2DM, respec-
tively, with a mean of only 26% [9]. The results of over 
400 genome-wide association studies (GWASs) have also 
elucidated that the heritability of degenerative diseases is 
only approximately 10% [10, 11]. Consequently, nonge-
netic drivers, such as environmental factors, are now rec-
ognized as major risk factors for age-related diseases. The 
contributions of environmental factors to the develop-
ment of age-related diseases can be revealed by analyses 
of all of the factors to which individuals are exposed in 
their life and the relationships between these exposures 
and age-related diseases [12, 13].

The concept of the “exposome” was established by C.P. 
Wild in 2005 as an environmental analogy of the genome 
and represents the sum of all exposures of an individual 
throughout the life course [12]. Wild described three 
categories of the exposome that should be evaluated: (a) 
specific external exposures, (b) general external expo-
sures, and (c) internal exposures [14]. In this review, we 
describe the environmental drivers of typical age-related 
chronic diseases, mainly focusing on AD, PD, CAD, 
COPD, T2DM, and senile deafness within an exposomic 
framework. We propose representative strategies for 
exposomic research on age-related diseases and describe 

the measurements and statistical approaches that could 
be used. In addition, we note the challenges of exposomic 
research and recommend guidelines for the implemen-
tation of exposomic concepts in research on age-related 
diseases.

Epidemiologic studies on the environmental 
causes of age‑related diseases
Specific external exposures
Air pollution
Atmospheric air pollution is the leading form of spe-
cific external exposures, and its role in the development 
of age-related diseases has been extensively studied. For 
example, a cohort study in Ontario, Canada, evaluated 
the association between air pollution and incident PD, 
which showed that ambient 2.5-µm particulate matter 
(PM2.5) was significantly associated with a 4% increase 
in incident PD (95% confidence interval [CI] 1.01, 1.08) 
[15]. Similarly, high concentrations of nitrogen oxides 
have been found to be significantly associated with an 
increased risk of AD or dementia in cohort studies in 
Sweden (hazard ratio [HR]: 1.38; 95% CI 0.87, 2.19) and 
Taiwan (HR: 1.54; 95% CI 1.34, 1.77) [16, 17]. In the past 
decade, many studies have explored the relationships 
between air pollutant exposure and COPD and have 
determined that the main airborne pollutants affect-
ing the respiratory system are PM2.5, 10-µm particulate 
matter (PM10), ozone, carbon monoxide (CO), and sul-
fur dioxide (SO2) [18, 19]. Moreover, a systematic review 
and meta-analysis showed that short-term exposure to 
CO (relative risk [RR]: 1.015; 95% CI 1.004, 1.026), SO2 
(RR: 1.019; 95% CI 1.011, 1.027), nitrogen dioxide (NO2) 
(RR: 1.014; 95% CI 1.009, 1.019), PM2.5 (RR: 1.011; 95% CI 
1.011, 1.012), and PM10 (RR: 1.002; 95% CI 1.000, 1.004) 
was significantly associated with hospitalization or death 
due to stroke [20]. Furthermore, multiple cohort studies 
have shown that exposure to high concentrations of NO2 
and PM2.5 was associated with an increased risk of T2DM 
[21–25].

Chemical contaminants
Some toxic chemicals (e.g., pesticides and heavy metals) 
have been confirmed to be significantly associated with 
higher risks of age-related diseases. A meta-analysis of 
10 cohort and case–control studies identified that 5 and 
10 years of pesticide exposure were associated with a 5% 
(95% CI 1.02, 1.09) and 11% (95% CI 1.05–1.18) increase 
in the risk of PD, respectively [26]. A cohort study of 1500 
older adult participants aged 65 years or older in south-
west France found that occupational exposure to pesti-
cides (e.g., fungicides) was significantly associated with 
AD in men (RR: 2.29; 95% CI 1.02, 5.63) [27]. Numerous 
other studies—such as the Agricultural Health Study, the 
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Consortium for the Health Assessment of Great Lakes 
Sport Fish Consumption, and the Prospective Investiga-
tion of the Vasculature in Uppsala Seniors Study—have 
confirmed that there are associations between exposure 
to pesticides (especially organochlorine and organo-
phosphate pesticides) and a high risk of T2DM [28–30]. 
Although it remains unclear whether exposure to heavy 
metals increases the risk of PD, the data on lead (Pb) 
exposure suggest that this heavy metal has such an effect. 
That is, two case–control studies have found a higher risk 
of PD in the highest Pb exposure quartile than in the low-
est Pb exposure quartile (odds ratio [OR]: 2.27 [95% CI 
1.13, 4.55] and 3.21 [95% CI 1.17, 8.83]) [31, 32]. Rela-
tively little evidence has been found for an association 
between heavy metal exposure and AD risk, although 
there is some evidence that exposure to aluminum (Al) 
increases the risk of AD. The Personnes Agées QUID 
(PAQUID) study, a prospective cohort study of almost 
4,000 older adults aged 65  years or over in southwest 
France, found that consumption of Al in drinking water 
in excess of 0.1 mg per day was associated with a three-
fold increase in the risk of AD (RR: 3.35; 95% CI 1.49, 
7.52) [33]. However, there have been fewer studies of 
associations of age-related diseases with internal expo-
sures to emerging organic contaminants, such as per-
fluoroalkyl substances and brominated flame retardants. 
In one example, the Nurses’ Health Study II determined 
that higher plasma concentrations of perfluorooctanesul-
fonic acid (PFOS) or perfluorooctanoic acid (PFOA) were 
associated with an increased risk of T2DM in women, 
corresponding to ORs of 1.62 (95% CI 1.09, 2.41) and 
1.54 (95% CI 1.04, 2.28), respectively [34]. Similarly, the 
French  E3N prospective cohort study of French women 
found a possible association between dietary exposure 
to hexabromocyclododecane (HBCD, HR: 1.47; 95% CI 
1.29, 1.67) and polybromodiphenyl ethers (PBDEs, HR: 
1.20; 95% CI 1.08, 1.34) and the risk of T2DM [35].

Physical factors
Electromagnetic fields and noise are the most common 
risk factors for age-related diseases, such as neurode-
generative, cardiovascular, and cerebrovascular diseases. 
A follow-up of 931 participants aged 75 years and older 
without dementia in Sweden found that long-term occu-
pational exposure to a high electromagnetic field might 
increase the risk of AD in men (RR: 2.30; 95% CI 1.00, 
5.30) [36]. Moreover, short-term exposure to traffic 
noise was found to be associated with hospitalization 
due to dementia (RR: 1.15; 95% CI 1.11, 1.20), indicat-
ing that noise aggravates the symptoms of dementia [37]. 
Similarly, a recent meta-analysis and a large Scandina-
vian population study concluded that road traffic noise 
increased the incidence of coronary heart disease and 

stroke by 8% (95% CI 1.01, 1.15) and 6% (95% CI 1.03, 
1.08) per 10 A-weighted decibels [dB(A)], respectively 
[38, 39].

Lifestyle and diet
The lifestyle factors most significantly associated with the 
risk of age-related diseases are smoking, passive smoking, 
and drinking alcohol. The European Prospective Inves-
tigation into Cancer and Nutrition for Parkinson’s Dis-
ease, a prospective European population-based cohort 
study of 220,494 people aged 37 to 70 from 13 centers in 
8 countries, found a causal relationship between smok-
ing and PD (HR: 0.70; 95% CI 0.49, 0.99) [40]. A review 
summarized the existing evidence and confirmed smok-
ing as the main risk factor for COPD [41]. Other envi-
ronmental exposures, such as dietary exposures and 
secondhand smoke exposure during pregnancy or early 
childhood, may also be important risk factors for COPD. 
A recent cross-sectional analysis of 164,770 adults aged 
40 to 69 from the U.K. Biobank found that smoking and 
passive smoking were associated with a risk of senile 
deafness (ORs: 1.15 [95% CI 1.09, 1.21] and 1.28 [95% 
CI 1.21, 1.35], respectively) [42]. Analogously, a recent 
study of 1,787 mid-to-late-aged adult participants con-
cluded that added salt in the diet might increase at-risk 
individuals’ risk of AD, while consuming cheese and red 
wine on a daily basis and lamb on a weekly basis might 
improve long-term cognitive outcomes [43]. Patel et  al. 
conducted the first exposome-wide association study 
(EWAS) on T2DM using data from National Health and 
Nutrition Examination Survey (NHANES) cohorts from 
1999 to 2006 [44]. Logistic regression models with mul-
tiple comparisons were used, and significant associations 
for vitamin γ-tocopherol (OR: 1.5; 95% CI 1.3, 1.7) and 
β-carotenes (OR: 0.6; 95% CI 0.5, 0.7) were associated 
with T2DM.

Internal exposures
Medication
The use of antipsychotics, hormones, and anticholiner-
gics has been found to significantly increase the risks of 
PD and AD. For example, it has been found that among 
older adults, the use of antipsychotics, such as pheno-
thiazine (RR: 3.65; 95% CI 1.41, 9.45) or benzamide (RR: 
2.59; 95% CI 1.23, 5.43), and particularly trichloroeth-
ylene (OR: 6.1, 95% CI 1.2, 33), may increase the risk of 
PD [45, 46]. Moreover, a prospective population-based 
cohort study in Seattle, Washington (USA), found that 
higher cumulative anticholinergic use was significantly 
associated with an increased risk of dementia (HR: 1.54; 
95% CI 1.21, 1.96) [47].
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Gut microbiota
Gut microbial dysbiosis has been found to be associated 
with many age-related diseases. For example, the fecal 
samples of PD patients were found to have a substantially 
lower abundance of Prevotellaceae than those of healthy 
individuals. Additionally, a direct correlation was found 
between the fecal abundance of Enterobacteriaceae and 
the severity of postural instabilities and gait difficulties 
[48]. Moreover, the fecal samples of 64 Italian patients 
with PD exhibited low abundances of gut microbiota 
(e.g., Lachnospiraceae) linked to anti-inflammatory/neu-
roprotective effects and abnormal concentrations of sev-
eral classes of fecal metabolites (lipids, vitamins, amino 
acids, and other organic compounds) [49]. Vogt et  al. 
characterized the bacterial taxonomic composition of 
fecal samples from participants with and without a diag-
nosis of dementia due to AD and revealed that the gut 
microbiome of AD participants had less microbial diver-
sity and was compositionally distinct from that of control 
individuals. They also identified phylum- to genus-wide 
differences in bacterial abundance in the microbiome of 
AD participants, such as a decreased abundance of Fir-
micutes, an increased abundance of Bacteroidetes, and a 
decreased abundance of Bifidobacterium [50].

Inflammation and oxidative stress
Inflammation is the basis of aging and many age-related 
chronic diseases, which in turn increase the rate of 
aging. Walker et  al. examined the association between 
systemic inflammation measured during midlife and 
20-year cognitive decline within the Atherosclerosis Risk 
in Communities cohort study. An increase in the midlife 
inflammation composite score was associated with 
an additional 20-year decline of −  0.035 SDs (95% CI 
− 0.062, − 0.007) in the cognitive composite score [51]. 
Gong et al. followed three cohort studies in the USA and 
explored whether proinflammatory diets were associ-
ated with increased CVD risks. During 5,291,518 person-
years of follow-up, higher dietary inflammatory pattern 
scores were predefined based on levels of 3 systemic 
inflammatory biomarkers, which were associated with an 
increased risk of CVD (HR: 1.38; 95% CI 1.31, 1.46) [52]. 
Accordingly, age-related diseases can be partly conceptu-
alized as manifestations of accelerated inflammation or 
aging [53].

Hormones
Hormone exposure has been associated with the risk of 
many age-related diseases, especially among postmeno-
pausal women. Savolainen-Peltonen et  al. investigated 
hormone exposure and AD among Finnish postmeno-
pausal women using Finnish national population and 
drug register data (1999–2013). The results indicated 

that long-term use of hormone therapy might be associ-
ated with an increased risk of AD (OR: 1.17, 95% CI 1.13, 
1.21) [54]. In addition, the pooled results of a systematic 
review and a time–response meta-analysis showed that 
there was a significant association between hormone 
therapy and the risk of AD (OR: 1.08; 95% CI 1.03, 1.14) 
in menopausal women. However, no comparable associa-
tion was uncovered for PD [55].

General external exposures
Green space and urbanization
Less adequate evidence has been found for an association 
between green spaces and cognitive function. In the Cog-
nitive Function and Ageing Studies in England, a higher 
risk of dementia was found among people who were in 
the highest quartile of neighborhood natural environ-
ment availability than among those in lower quartiles of 
neighborhood natural environment availability [56]. In 
contrast, a longitudinal study in the UK demonstrated 
that a higher level of surrounding greenness in residen-
tial areas was associated with a slower cognitive decline 
among residents over a 10-year follow-up (0.020; 95% CI 
0.003–0.037 per interquartile increment) and that this 
was independent of air pollution exposure [57]. Similarly, 
a comparison of the effects of the indicators of the built 
environment on the risk of disease found that urbaniza-
tion was associated with a higher incidence of COPD 
(1.05; 95% CI 1.01–1.08 per interquartile increment), 
while residential green space was associated with a lower 
incidence of COPD (0.89; 95% CI 0.84–0.93 per inter-
quartile increment) [58].

Socioeconomic status and educational level
In a prospective cohort study, social integration was 
found to contribute to a lower risk of cardiovascular 
disease (HR: 0.67; 95% CI 0.53, 0.86). In addition, peo-
ple with the highest social integration level had reduced 
mortality risks of 30%, 47%, and 53% for AD, COPD, and 
T2DM, respectively, compared with those with the low-
est social integration level [59]. A systematic review and 
meta-analysis of long-term studies determined that a 
low social participation index was related to the risk of 
dementia in terms of social support (RR: 1.28; 95% CI 
1.01, 1.62) and social networking (RR: 1.59; 95% CI 1.31, 
1.96), while a high social participation index had a mod-
erately protective effect (RR: 0.88; 95% CI 0.80, 0.96) 
[60]. A cross-sectional study of adults aged 60 or older in 
China indicated that fewer years of education (OR: 1.55; 
95% CI 1.38, 1.73) and being widowed, divorced, or liv-
ing alone (OR: 2.66; 95% CI 2.29, 3.10) were risk factors 
for dementia [61]. Another cross-sectional study of older 
adults with a mean age of 75 years in Denmark showed 
that compared with individuals with lower household 
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incomes, those with a higher household income were 
less likely to receive a dementia diagnosis after referral 
(OR: 0.65; 95% CI 0.55, 0.78) [62]. The search strategies 
and main results of epidemiologic studies reporting the 
association between environmental risk factors and age-
related diseases (Table S1) in this review are shown in the 
Additional file 1.

Potential hallmarks linking the exposome 
to age‑related diseases
Age-related diseases are thought to arise from common 
underlying processes that precipitate molecular changes 
over time [63]. These shared mechanisms are grouped 
into the following hallmarks of aging: genomic instabil-
ity, epigenetic alterations, telomeric attrition, loss of pro-
teostasis, deregulated nutrient sensing, mitochondrial 
dysfunction, oxidative stress/damage, inflammation, 
cellular senescence, stem cell exhaustion, and altered 
intercellular communication [64, 65]. Some studies have 
reported the effects of environmental exposures on vari-
ous hallmarks of aging. For example, exposure to heavy 
metals and organic pollutants has been associated with 
mitochondrial dysfunction and DNA methylation altera-
tion in AD [66, 67], and early embryonic exposure to 
2,3,7,8-tetrachlorodibenzo-p-dioxin may alter global 
DNA methylation patterns, increasing the risk of T2DM 
[68]. Bisphenol A concentrations were also found to be 
associated with increased senescence, inflammation, and 
decreased telomere lengths in patients with T2DM [69]. 
However, there have been few other consistent findings 
confirming that aging hallmarks link the exposome to 
risks of age-related diseases.

In particular, the alteration of gene expression through 
DNA methylation, histone modification, and noncod-
ing RNA-associated gene silencing are primary targets 
of environmental insults considered to induce and sus-
tain epigenetic changes that might result in age-related 
diseases [70]. In that regard, advances in technology 
have made it feasible to assay methylation status across 
the genome in a robust, high-throughput manner, 
allowing us to address this issue in a data-driven man-
ner. To date, numerous studies have detailed the pat-
tern by which global or site-specific DNA methylation 
is affected by environmental triggers [67]. For instance, 
Prado-Bert et  al. analyzed the association between the 
early-life exposome and epigenetic age acceleration 
based on the Human Early-Life Exposome (HELIX) pro-
ject. Indoor particulate matter absorbance (PMabs) and 
parental smoking were found to be positively associ-
ated with age acceleration, which was calculated based 
on Horvath’s skin and blood clock for 1173 children 
[71]. However, relatively few researchers are looking to 
understand the functional consequences of methylation 

marks by assessing gene, protein, and metabolite expres-
sion. Recently, Everson et  al. identified 443 CpGs that 
were associated with maternal smoking exposure during 
pregnancy in seven American, Australian, and European 
studies. Subsequent expression quantitative trait methyl-
ation analyses testing the associations between maternal 
smoking exposure-associated CpGs and the expression 
of nearby mRNA showed that exposure-associated CpGs 
were enriched for environmental response, growth factor 
signaling, and inflammation [72].

Limitations of studies examining 
whether environmental factors contribute 
to the development of age‑related diseases
Although the link between environmental exposure and 
age-related diseases has been extensively investigated, 
there are three limitations to previous studies in this area. 
(1) Most exposure assessments have examined only one 
chemical or class of chemicals via a traditional targeted 
measurement approach. However, real-world exposures 
do not occur in such a manner, and thus, “broad-spec-
trum” exposure assessments are needed, together with 
systematic screening of key exposomic elements as well 
as optimized consideration of the components of expo-
some domains that affect age-related diseases [73]. (2) 
Exposure–health association studies have not fully con-
sidered the dynamic changes in exposure or the effects 
of (mixed) exposures in early life stages or in other sen-
sitive time windows on the risks of age-related diseases. 
(3) Studies have rarely considered chemical absorp-
tion, distribution, metabolism, and excretion processes 
or endogenous biomolecular responses, such as those 
involving hormones, metabolites, infections, inflam-
matory reactions, fat peroxidation, oxidative stress, and 
aging hallmarks.

Therefore, the link between environmental exposure 
and age-related diseases needs to be explored within an 
exposomic framework. Such an approach would sys-
tematically and substantially increase our understand-
ing of the environmental drivers of age-related diseases, 
reveal how environmental exposure interacts with 
genetic susceptibility to age-related diseases, and eluci-
date the potential biological mechanisms of how these 
factors affect disease susceptibility, development, and 
progression.

Strategies for exposomic research of age‑related 
diseases
Given the limitations of recent research and the evolu-
tion of the exposome concept, we propose the following 
three major strategies for exposomic research of age-
related diseases.
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(1)	 Comprehensive determination of the chemical 
compositions of biological fluids and standardized 
assessment. Pioneers in exposomic research, such 
as Rappaport, Smith, and Miller, have emphasized 
the need to fully characterize the chemical compo-
sition of biological fluids (e.g., blood and urine) for 
precisely assessing individuals’ immediate environ-
ments and thus their risk of age-related diseases [74, 
75]. In addition, standardization of the exposure/
outcome assessment methods using conventional 
tools along with innovative technologies as well as 
standardized quality assessment tools may contrib-
ute to the utility of the exposome concept [73].

(2)	 Consideration of the roles of biological responses 
and endogenous processes, especially aging bio-
markers, at various omics levels (i.e., at the level 
of the epigenome (e.g., DNA methylation clock), 
the transcriptome, the proteome, the metabolome, 
and the microbiome) and with respect to extracel-
lular RNA (including microRNA and long non-
coding RNA) abundance and telomere length [76]. 
Alterations in biomarkers compromise cell and 
tissue functions and contribute to the incidence of 
age-related diseases, leading to loss of function and 
death [77]. In addition, the concentrations of aging 
biomarkers can reflect the physiological state of 
individuals and the underlying molecular mecha-
nisms (e.g., genomic instability, epigenetic per-
turbation, telomeric attrition, loss of proteostasis, 
altered nutrient sensing, mitochondrial dysfunc-
tion, cellular senescence, and disrupted intercellular 
communications) related to the exposome through-
out individuals’ lifespans [64, 78].

(3)	 Performance of exposure and outcome measure-
ments in critical time windows during the aging 
process. The exposome includes a time dimension, 
as it emphasizes the importance of assessing expo-
sure throughout life, beginning at the moment of 
conception. However, a lifelong study of all envi-
ronmental factors would be highly challenging to 
perform in real life [79]. Moreover, people age at 
dissimilar rates, even in terms of tissues and organs, 
which have a tissue-specific aging signature [80]. In 
addition, environmental exposure to harmful fac-
tors in different critical life windows of susceptibil-
ity may lead to distinct disease phenotypes [81, 82]. 
However, a recent study indicated that there appear 
to be distinct “waves” of aging over the course of a 
lifetime at the population level at three ages: 34, 60, 
and 78 years old [83]. This suggests that exposomic 
measurements in critical time windows may be use-
ful for the study of the risk of age-related diseases.

In summary, systematic approaches are needed to inte-
grate diverse information in exposome research (Fig. 1). 
The comprehensive evaluation of the relationships 
between exposures and associated biological responses, 
such as epigenetic modifications and metabolites, 
would yield valuable insights into the key elements of 
the exposome and how environmental factors and their 
interactions contribute to the risk and development of 
age-related diseases.

Exposomic measurement tools for use 
in age‑related disease studies
Exposures can be measured at the population level using 
geographic information systems (GISs) and remote sens-
ing technologies (such as satellites) or at the individual 
level using records and surveys, personal sensors, and 
biological samples. The exposomic information of envi-
ronmental and biological samples can be measured using 
advanced analytical techniques, such as high-resolution 
mass spectrometry (HRMS) and omics platforms.

Population‑level exposures
GISs
The use of GISs has changed environmental health 
research, as GISs integrate databases that connect vari-
ous attribute data based on geographic location (e.g., res-
idential address). Therefore, GISs can quantify the buffer 
distance between exposure sources and human receptors 
and can be used to describe the proximity of roads, facto-
ries, green spaces, water bodies, and other features that 
may result in exposures that negatively (e.g., farms, which 
may result in exposure to pesticides) [84] or positively 
(e.g., health food stores or entertainment venues) affect 
human health [85].

Remote sensing
Remote sensing is the science of obtaining information 
about objects or regions from a distance (usually from 
airplanes or satellites). Remote sensing technology has 
been used to estimate the levels of various environmen-
tal exposures, such as PM2.5 [86], NO2 [87], green space 
[88], temperature [89], building environment [90], out-
door light at night [91], and pesticides [92]. For exam-
ple, global PM2.5 concentrations were estimated from 
information from three satellites in conjunction with a 
chemical transport model and ground-based sun pho-
tometer observations [93]. Remote sensing estimates 
have also been used to assess the relationships between 
PM2.5 exposure and cardiovascular diseases [25, 94, 95]. 
Moreover, recent studies have used a 1-km valuation of 
U.S. PM2.5 concentrations, thereby increasing the utility 
of such measurements in exposomic studies [96, 97].
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Individual‑level exposures
Portable/personal sampling and sensing devices
An increasing number of personal sensors are being 
developed to monitor heart rate, blood sugar concen-
trations, blood pressure, muscle activity, temperature, 
and sweat production [98]. Remarkable advances in 
novel algorithms in wearable technologies are allowing 
for accurate acquisition of personal temperature expo-
sures, chemical and biological exposures, and clinical 
laboratory measurements to explore individual-level 
24-h exposures in various microenvironments in expo-
some studies [99–102]. Koelmel et  al. captured the 
changes in gas- and particulate-phase airborne chemi-
cals to which individuals were exposed and determined 
which exposures posed the greatest risk to health. They 
used wearable exposure monitors, i.e., passive air-sam-
pling wristbands, which were provided to 84 healthy 
participants (aged 60–69) as part of the Biomarkers for 
Air Pollution Exposure (China BAPE) study [103, 104]. 
Jiang et  al. developed a sensitive method to monitor 
personal airborne biological and chemical exposures, 
which enabled them to follow the personal exposomes 
of 15 individuals for up to 890  days over 66 distinct 
geographical locations. They found that humans are 
exposed to thousands of microbial species with great 

intraspecies diversity and demonstrated that the human 
exposome is highly dynamic and influenced by spatial/
lifestyle and seasonal variables [105, 106].

Records and surveys
Data from health records and surveys can be used to 
describe the exposure characteristics of individuals at a 
relatively low cost. For example, electronic health records 
provide an efficient way to estimate individual-level 
exposure to, for example, pharmaceutical drugs, alcohol, 
or cigarette smoke. Similarly, surveys performed as part 
of epidemiological studies can provide valuable informa-
tion on peoples’ diet, socioeconomic status, education 
level, and psychosocial stress level.

Biological samples
The analysis of biological samples (e.g., blood, urine, 
saliva, feces, and hair) enables quantification of the bur-
den of chemical exposures for an individual. In particular, 
abundant information on the biological response to an 
exposure can be obtained by quantifying small molecules 
in biological samples, such as inflammatory factors and 
metabolites.

Fig. 1  Exposomic analytical framework linking exposures to age-related diseases. The exposome attempts to measure, integrate, and interpret the 
complex exposures (specific external exposure, general external exposure, and internal exposure) associated with the risk of age-related diseases. 
The use of multi-omics tools to investigate the adverse effects of these exposures on biological processes can reveal the biological responses to 
sets of exposures, thereby improving understanding of the development of age-related diseases. Statistical methods can then be applied to identify 
key elements of the exposome linked to age-related diseases and to determine how these complex exposures affect our biological systems. (AD, 
Alzheimer’s disease; CAD, cardia-cerebrovascular diseases; COPD, chronic obstructive pulmonary disease; PD, Parkinson’s disease; T2DM, type 2 
diabetes mellitus; EWAS, exposome-wide association study)
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Analytical platforms
HRMS
Advancements in HRMS have provided new tools to 
identify and quantify multiple chemical substances in 
a wide range of media and have extended the analytical 
window beyond the targeted profiling of known metabo-
lites and priority pollutants [107]. In particular, HRMS 
enables the simultaneous analysis of many exogenous 
and endogenous compounds and the characterization of 
the state of a biological system and its response to envi-
ronmental factors [13, 108].

Nontargeted HRMS-based analysis can collect data on 
thousands of chemical features in a single analytical run 
and is thus suitable for mass screening, although most 
of these features remain unannotated [109]. However, 
targeted HRMS-based analysis involves performing mul-
tiple analyses of known and specific chemicals, includ-
ing absolute qualitative and quantitative analyses of the 
substances to be measured using certified standards, and 
is therefore suitable for validation in exposomic studies. 
For example, as part of the China BAPE study [104], Guo 
et al. performed targeted HRMS-based analysis of 70 air-
borne compound exposures of 84 elderly people in Jinan, 
China, and thereby described their personal exposure to 
air pollutants in terms of concentration and distribution 
[110].

Multiomics technology
The broad diversity of omics biomarkers that have been 
used to assess biological responses provides new oppor-
tunities to understand the impact of the environment on 
the risk of age-related diseases. For example, the multi-
omics analysis and integration method produces a pri-
ority list of multiple sets of biomarkers, which together 
reflect the molecular responses of the exposome. Each of 
these data warrants integration into a biomarker panel to 
aid physicians in developing age-related disease diagno-
ses and prognoses [78].

By integrating the response measures of genomics, 
epigenomics, transcriptomics, proteomics, and metabo-
lomics, it is possible to develop a systems biology-level 
understanding of how exposure affects key biochemical 
processes. Similarly, the aggregated biological response 
model, which combines toxicology and pharmacology 
with molecular and environmental epidemiology, repre-
sents a new paradigm for delineating the mechanisms of 
chemical toxicology [13]. The further development of sta-
tistical methods to determine the interactions between 
biological response networks [111, 112] and the appli-
cation of multiomics methods in cohort studies to elu-
cidate the characteristics of human exposure [113, 114] 
will facilitate exposomic discoveries in the years ahead. 
For instance, the EXPOsOMICS project, an integration 

of 14 different studies, applied multiomics technolo-
gies such as metabolomics and adductomics to quantify 
exposure levels and to measure downstream effects of 
environmental exposures by the epigenome, transcrip-
tome, and proteome [114]. The PISCINA-II study (part of 
the EXPOsOMICS project) included 60 volunteers who 
swam for 40 min in a chlorinated pool, and metabolome-
wide association showed that disinfectant byproducts 
were associated with 333 metabolic features, of which 13 
metabolites were identified and enriched in the trypto-
phan metabolism pathway [115].

Recently, more research has incorporated multiomics 
technologies and personal sampling and sensing devices 
to reveal the dynamic molecular effects of precise per-
sonal exposure. For example, Jiang et  al. developed a 
personal wearable device that monitored airborne bio-
logical and chemical exposures and followed the per-
sonal exposomes of 15 individuals for nearly 3  years 
[105]. Next-generation sequencing and liquid chroma-
tography‒mass spectrometry (LC‒MS) technologies 
were then used to detect the biotic/chemical exposome 
and found that the human exposome was dynamic and 
influenced by various environmental and spatial/lifestyle 
variables. Gao et al. examined the effects of environmen-
tal exposures on well-dissected personal internal health 
changes based on longitudinal individual exposomes 
and internal multiomics (gut microbiome, proteome and 
metabolome) [101]. By investigating the correlations of 
exposomics and the exposome and clinical data, it was 
found that changes in external exposures could be associ-
ated with thousands of biomolecular changes in the body 
involved in immune, kidney, and liver functions.

Evolving statistical methods in exposome–health 
association studies of age‑related diseases
Exposome‑wide association study (EWAS)
An EWAS is a statistical method similar to a GWAS that 
is used to continuously and independently detect the 
association of many exposures with a set of results (with 
adjustment for potential confounding factors). Although 
nonideal, for practical purposes—because exposure 
studies examine many exposures—the same set of con-
founding factors is typically used for all exposures. Fur-
thermore, multiple comparison corrections should be 
applied to minimize the number of false-positive results 
obtained. Bonferroni–Holm correction method (fam-
ily-wise error rate [FWER] method) or the Benjamini–
Hochberg correction method (false discovery rate [FDR] 
method) are among the most commonly used multi-
ple comparison correction methods in epidemiological 
research. However, a limitation is that these methods 
assume that tests are independent, and if this assump-
tion is violated, these methods may generate highly 
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conservative results [116]. The Bonferroni correction 
method has been devised and involves dividing the sig-
nificance level α by the test number M (αcorrected = α/M); 
this changes the value of M according to the number of 
valid checks, as determined by the relevant structure of 
the data [116, 117]. Methods such as stepwise multiple 
testing have been developed to capture the joint depend-
ency structure of the test statistic, thereby improving the 
ability to detect false hypotheses [118]. However, there 
has been no development of multiple-detection correc-
tion methods to simultaneously deal with the diversity of 
exposure and the results of exposure environments. In a 
study that simulated the true correlation structure of the 
Infancia y Medio Ambiente (INMA, Spain) birth cohort 
exposure variables, EWAS exhibited a higher FDR than 
other methods but showed the greatest sensitivity [119].

Variable selection tools
The most popular variable selection techniques in asso-
ciation research include the deletion/substitution/addi-
tion (DSA) algorithm, the elastic net (ENET) algorithm, 
and the graphical unit evolutionary stochastic search 
(GUESS) algorithm. For example, the DSA algorithm 
was used in the recent HELIX project to explore the rela-
tionship between early-life exposure to environmental 
hazards and childhood lung function and the relation-
ship between urban pregnancy exposure to environmen-
tal hazards and birth weight [120, 121]. In simulation 
research, the DSA method has shown higher sensitivity 
and a lower FDR than other methods and good perfor-
mance in capturing interactive items [119, 122]. However, 
the DSA method has routinely been criticized because its 
estimations are inconsistent if the ratio of the sample size 
to the number of candidate predictions is small, and its 
confidence intervals are low if there is a large correlation 
between predictions [123].

The ENET algorithm has been used to study the rela-
tionship between various environmental pollutants and 
birth weight in three cohorts, one each in Greenland, 
Poland, and Ukraine, and to examine the relationship 
between concentrations of several persistent organic 
pollutants in breast milk samples and infant behavio-
ral problems [124, 125]. In addition, the ENET method 
showed high sensitivity and a moderate FDR in a simula-
tion scenario [119].

The GUESS algorithm is a Bayesian variable selection 
technique and is a search algorithm based on a multi-
chain genetic algorithm. It was developed to explore 
complex genetic association models and maximize the 
detection of genetic variation [126]. Similar to the DSA 
algorithm, the GUESS algorithm showed high sensitiv-
ity and a low FDR in simulation research [119]. However, 
to explain confounding factors, the results must first 

be fitted to these confounding factors, and the GUESS 
model then fitted to the residuals.

Dimension reduction techniques
Dimensional reduction techniques such as factor analysis 
or principal component analysis (PCA) have been used to 
analyze the impact of multiple pollutants on the risk of 
age-related diseases [127–129]. PCA uses the eigenval-
ues and eigenvectors of the exposure correlation matrix, 
makes full use of data variability, and derives orthogo-
nal components from the set of exposure variables. The 
resulting “feature exposure” can be used for subsequent 
analysis. However, the relationship PCA determines 
between exposure and response variables does not take 
into account the generation of principal components. An 
improved version of PCA, supervised principal compo-
nent analysis, can solve this problem [130], as it elimi-
nates the prescreening results of pollutants that are not 
related to the result and thereby generates an estimated 
effect with a smaller deviation than the correspond-
ing PCA estimate. The PISCINA-II study (part of the 
EXPOsOMICS project) aimed to apply the partial least 
squares (PLS) regression method to investigate the effect 
of disinfectant product exposure on inflammation [115, 
131]. Sparse PLS (sPLS) regression has previously been 
used in research, such as to identify multiple pollutant 
exposure profiles related to male reproductive function 
biomarkers [132]. This method constructs latent vari-
ables (linear combinations of predictors) in a supervised 
manner, that is, uses the results and then regresses the 
results on the latent variables. The sPLS component not 
only captures as much predictor variance as possible but 
also focuses on the variance associated with the results of 
interest. In a simulation setting, this method showed high 
sensitivity and a moderate FDR [119].

Interaction detection models
In a recent paper, Barrera-Gómez considered scenarios 
with statistical interactions and systematically compared 
methods recommended for search interactions [119]. 
The simulation used contained 237 exposures with real 
structures, and several statistical regression methods 
were used. These methods were the two-step full envi-
ronment association study, the DSA algorithm, the least 
absolute shrinkage and selection operator (LASSO), and 
the group-LASSO interaction network (GLINTERNET), 
which is a three-step method based on a regression tree 
and an enhanced regression tree. The GLINTERNET 
and DSA methods performed equally well in terms of the 
ability to capture interactive items but exhibited an iden-
tical trade-off between sensitivity and FDR.

The Bayesian model average (BMA) method is another 
statistical method used for the construction of a health 
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risk model that considers multiple pollutants and their 
interactions. The BMA method is effective for dealing 
with model uncertainty, as it provides robust estimates of 
parameters through model averaging. That is, compared 
with traditional modeling methods that ignore model 
uncertainties, the BMA method is attractive because it 
does not choose a single “best” model but instead makes 
average inferences within a range of possible models 
[133, 134]. In a simulation study by Sun et al., the BMA 
method proved useful for the selection of variables with 
moderately strong exposure–response associations [135].

Mixture approaches
Notably, most of the current chemical exposure–health 
effect analyses are based on the risk assessment of indi-
vidual compounds rather than chemical mixtures. How-
ever, even exposure to a single pollutant or dose might 
not cause detrimental health effects, the simultane-
ous and cumulative exposure to a variety of pollutants 
may induce the adverse health outcomes. For mixture 
effect analysis, numerous statistical approaches, such as 
weighted quantile sum (WQS) regression, Bayesian ker-
nel machine regression (BKMR), and quantile G-compu-
tation, have been developed to interpret the overall effect 
of chemical coexposure on health outcomes and the rela-
tive importance of each exposure [136–138]. Recently, 
Caporale et al. used data from the Swedish Environmen-
tal Longitudinal, Mother and child, Asthma and allergy 
(SELMA) pregnancy cohort and developed a mixture-
centric risk assessment strategy integrating epidemio-
logical and experimental data [139]. By applying WQS 
regression to establish associations between endocrine-
disrupting chemical (EDC) mixture exposure and lan-
guage delay in children, they found that exposure to EDC 
mixtures in early pregnancy was associated with lan-
guage delay in offspring. This study highlights the need 
to consider mixtures in chemical testing and risk assess-
ment processes and provides a comprehensive frame-
work to guide risk assessment strategies.

Overall, the above studies have shown that systems 
approaches are needed to integrate diverse information 
in exposomic research (Fig. 1). The systematic evaluation 
of the relationship between exposures and associated 
biological responses, such as epigenetic modifications 
and metabolites, provides valuable insights into key ele-
ments of the exposome and delineates how environmen-
tal factors and their interactions contribute to the risk of 
age-related diseases. The statistical strategy in this frame-
work usually contains (I) an EWAS model to explore the 
associations of exposure–health outcomes; (II) variable 
selection tools as well as dimension reduction techniques 
for exposure screening and feature dimension reduc-
tion; (III) interaction detection models as well as mixture 

approaches for assessing the mixture effect, relative con-
tribution, and interactions of chemical coexposure; and 
(IV) a multiomics network linking exposure to disease 
phenotype by elucidating their underlying biological 
mechanisms.

Challenges and opportunities
Multidisciplinary approaches
Each of the subdisciplines of environmental health sci-
ence can aid in the elucidation of the connection between 
the exposome and age-related diseases. Information and 
findings from geriatric populations (via geriatric epidemi-
ology), accurate measurements of chemical species in the 
environment (via exposure science), exposome–health 
outcome association analysis (via biostatistics), and data 
on biological mechanisms and target pathways (via toxi-
cology, molecular biology, and bioinformatics) will all be 
needed for exposomic research. The findings from these 
major subdisciplines will need to be integrated via com-
putational methods, together with data from analytical 
chemistry, genomics, behavioral science, nutritional sci-
ences, and many other fields.

Environmental health science is most powerful when it 
capitalizes on the transfer of knowledge between its three 
major subdisciplines: toxicology, geriatric epidemiol-
ogy, and exposure science. Toxicologists rely on geriatric 
epidemiological studies and the analysis of exposures to 
determine which compounds linked to age-related dis-
eases should be studied. In turn, geriatric epidemiolo-
gists rely on toxicologists to determine if their observed 
associations are in line with what is known about the bio-
logical and toxicological pathways involved in the aging 
process or age-related diseases. Toxicologists also rely on 
exposure scientists to determine what levels of exposure 
are relevant. If data from all three subdisciplines agree 
that a particular environmental exposure has an impact 
on the risk of age-related diseases, this is very strong 
scientific evidence that such an impact is real. A similar 
level of convergence among all components of environ-
mental health sciences will be necessary for data from 
the exposome to have an impact on studies of the risks of 
age-related diseases.

Genome–exposome epidemiology
The gene–environment (G × E) interaction is a key driver 
of human health and age-related diseases. The genetic 
coding system that has evolved to allow individuals to 
adapt to the environment is supported by a memory 
system to improve survival and reproduction [140, 141]. 
Ultimately, genetic epidemiology and exposure epidemi-
ology must fully incorporate this interaction to account 
for the complex accumulation of G × E interactions over 
an individual’s lifetime. Given that the exposome is the 
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accumulation of environmental impacts and related bio-
logical responses throughout the entire lifespan [76], 
predictive models of health outcomes and age-related 
diseases must comprehensively understand the genetic 
memory system, as it enables individual genomes to learn 
from their exposure history and thereby improve their 
response to subsequent exposures.

Exposure epidemiology is a necessary condition to 
solve the G × E (∫G × E) integral, which is a function of 
E and is thus constantly changing throughout an indi-
vidual’s life. However, when the number of interacting 
elements exceeds 1018 (20,000 genes × 20,000 splicing 
variant transcripts × 100,000 or more proteins × 20 or 
more posttranslational modifications × 10,000 or more 
metabolites), it is impractical to conduct a systematic 
investigation of all assumptions [142]. One solution 
would be to obtain an informative longitudinal analysis of 
personal genetic and exposure information, as although 
the initial power would be limited, this would provide a 
platform to achieve long-term goals and clarify the level 
of the population whose exposure affects the results 
[143].

When discussing the analytical complexity inherent to 
determining an underlying G × E interaction, it should 
be noted that a statistical interaction does not represent 
a biological interaction [144]. However, by using emerg-
ing and abundant biological data sources, other potential 
signals can be identified from the large space of potential 
interactions [145]. Recently, sophisticated methods have 
been developed for exploring large-scale G × E interac-
tions, and these methods could help solve the problem of 
dealing with many variables [9, 146].

At present, a few studies have examined interactions 
between sequence variations in the whole genome and 
environmental exposure to identify novel genetic modu-
lators for certain environmental factors in age-related 
diseases. For instance, Biernacka et al. performed the first 
genome-wide gene‒environment interaction analysis of 
pesticide exposure and risk of PD using data on > 700,000 
single nucleotide polymorphisms (SNPs) in 364 discord-
ant sibling pairs [147]. They applied a PCA and logistic 
regression model to detect SNP–pesticide interactions 
and found that the effect of pesticide exposure on PD risk 
may be modified by SNPs of the ERCC6L2 gene. Patel 
et  al. used the NHANES and screened 18 SNPs and 5 
serum-based environmental factors (results from previ-
ous GWASs and EWASs) for interactions in association 
with T2DM [148]. The results showed that the interaction 
between rs13266634 (SLC30A8) and trans-β-carotene 
withstood Bonferroni correction (P = 0.006), and the 
per risk allele effect sizes among subjects with low lev-
els of trans-β-carotene were 40% greater than the mar-
ginal effect size (OR: 1.8; 95% CI 1.3–2.6). Nonetheless, 

understanding the complex interplay between genes 
and the environment based on whole genome-wide and 
whole exposome-wide designs and more sophisticated 
models that incorporate the complexity of exposure mix-
tures, multiple variants, and multiple types of genomic 
data (epigenetic, genetic, transcriptomic, etc.) will likely 
shed new insights on this issue.

Perspectives and conclusions
The development of the exposome concept and related 
technologies will have several impacts on precise public 
health research and delivery.

(1)	 The first impact will concern vulnerable popula-
tions, as the exposome offers an overall view and 
integrates the source of such populations’ vulner-
ability with the other exposures that an individual 
may have and which can aggravate or cause a path-
ological condition. These vulnerabilities can relate 
to life stage (e.g., affect children or older adults), 
sex, genetic factors, dietary origin, pathologies, or 
particular socioeconomic conditions [149, 150]. 
For example, older adults are generally considered 
a susceptible population because of the gradual 
decline in physiological processes over time. In 
addition, dosimetric studies showed that there was 
reduced clearance of PM in all regions of the respir-
atory tract with increasing age beyond young adult-
hood [151].

(2)	 The second impact will concern the communication 
and dissemination of public health messages. Such 
messages regarding age-related diseases can be 
contradictory, e.g., “eat more vegetables” but “avoid 
exposure to pesticides.” Thus, a more integrated 
approach would give more credibility to these mes-
sages.

(3)	 The third impact will concern perspective data 
reflecting exposures, which can be incorporated 
into precision medicine to complement genetic 
information. At a large scale, a systems biology 
approach can integrate various levels of heteroge-
neous information. This could include both genetic 
data and exposomic data, including multiomics 
data, thereby facilitating a more comprehensive 
analysis of disease etiologies and specific vulner-
abilities than has been provided by previous studies. 
The subsequent challenge will be to more broadly 
integrate various risk exposures to obtain a global 
and more realistic overview of exposure–genetic 
interactions [152–154].

(4)	 The last impact will involve the bench-to-bedside 
translation of research. The increasing combination 
of exposomic data with multiomics data will enable 
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researchers to readily identify interim biomarkers 
of exposure and response that will reveal subtle bio-
logical changes. These will facilitate early diagnosis 
and the identification of potential intervention tar-
gets for the prevention and treatment of age-related 
diseases. In addition, primary prevention to reduce 
key exposures would reduce the contribution of 
environmental stressors to the development of age-
related diseases and minimize the adverse effects of 
chemical stressors on individuals as they age.

Conclusions
The explosion in exposome research related to aging and 
the risk of age-related diseases may provide an answer—
from an environmental perspective—to the question 
“Can we stop ourselves from aging?”, as recently posed by 
Science magazine.
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