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Abstract 

Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented 
insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, 
staggering sequence complexity has also challenged the development of a more comprehensive understanding 
of human genome biology. In this context, interspecific genomic studies between humans and other animals have 
played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge 
of genome sequencing of both model and non-model organisms now provides a broader comparative framework 
poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essen-
tial for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene 
expression. We show how homology can provide insights into the genes and gene families associated with immune 
response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant 
species. We then explain methodological tools that provide critical advances and show the limitations of common 
approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights 
into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional 
excitement and research on the emerging field of comparative genomics, while aiding the placement of the human 
genome into its existentially evolutionary context.
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Introduction
Human genomes contain groups of genes that share com-
mon ancestry and are often functionally related. These 
gene families comprise the largest proportion of the pro-
tein-coding sequences, and in many cases, they are the 
product of gene duplications over time. However, char-
acterizing the sequence and functional diversity of gene 
families among species has been challenging. Organisms 
can show sequence divergence among duplicate genes, as 
well as differences in numbers of genes within each gene 
family; these variations can be observed among closely 

related species or even at the population level (i.e., copy 
number variation). This molecular diversity is the mani-
festation of a complex evolutionary history of gene dupli-
cation over time that can result in two or more paralogs 
on the same chromosome (i.e., cis) that are either clus-
tered or at distant chromosomal locations. Alternatively, 
paralogs can occur on different chromosomes (i.e., trans) 
or reflect a combination of these locations. Because 
many of these duplications date to deep evolutionary 
divergences, efforts to decode human gene families rely 
on interspecific comparative genomic studies between 
humans and other animals [1–4].

Early research comparing the genomes of model species 
(i.e., fruit flies, mice, etc.) to humans has yielded tremen-
dous benefits to our understanding of human genomics. 
This process has been markedly enhanced by the recent 
proliferation of genomic sequence, annotation, and 
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transcriptomic resources for non-model species [5]. This 
renaissance of comparative approaches is rapidly linking 
human gene families and their respective functions, to 
a wide variety of species that previously lacked genomic 
resources. This expansion on the genetic resources avail-
able for non-model species has also revealed gene fami-
lies that are absent in humans, but that have analogous 
functions in the latter. By understanding how these gene 
families evolve, we can reveal the processes, synergies, 
and constraints governing genome evolution across the 
Tree of Life, while providing a better understanding of 
the gene families in the human genome. In conjunction, 
these insights are crucial for informing and empowering 
experimental research in years to come.

In this review, we reflect on the growing body of knowl-
edge associated with gene family evolution. We begin by 
highlighting the parallels between comparative genom-
ics and phylogenomics research. We then review cases in 
which comparative genomic approaches have advanced 
our understanding of how gene families contribute to 
the evolution of gene expression, as well as the roles that 
different gene families play in the interactions of species 
with their biotic and abiotic environments. Next, we sur-
vey recent methodological advances and challenges and 
conclude by highlighting emergent research frontiers 
and the limits that persist for this type of research. Com-
parative genomic studies will continue to grow in num-
ber in parallel with the growth of high-quality genomic 
resources. We argue that we will be able to not only char-
acterize gene family diversity but also decipher mean-
ingful functional implications from variation in gene 
duplication, thereby quantitatively measuring the specific 
processes that underlie gene family evolution.

Placing the human genome into context
The current reference assembly of the human genome, 
GRCh38, constitutes ~ 3100 megabases that are predicted 
to encode up to 20,000 protein-coding genes, over 25,000 
non-protein-coding genes, and an astonishing ~ 15,000 
pseudogenes (i.e., non-functional copies of protein-cod-
ing genes). Around three-quarters of human protein-
coding genes have at least one recognizable paralog, 
i.e., a homologous gene that arose following duplication 
of an ancestral gene. This high frequency of paralogous 
genes indicates that much of the coding human genome 
can be grouped into gene families (i.e., sets of homolo-
gous genes). Because of the deep ancestry of gene dupli-
cation and divergence, many of the gene families found 
in humans are either homologous to, or analogous with, 
the diversity of genes found across the Tree of Life. 
Consequently, the biology of human gene families can 
be illuminated both by their study in humans and by 
their comparison with other organisms. Phylogenetics 

provides the inferential machinery to illuminate evolu-
tion across these macro- and microscales, by informing 
the relation of species trees to the organismal evolution 
of species and the relation of gene trees to the molecular 
evolution of genes. Correspondingly, application of phy-
logenetics to our evolutionary history has shed light on 
the origins of gene families within Homo sapiens.

Phylogenetic approaches can play an important role 
in revealing the processes that underlie the origins and 
function of human gene families. Intuitively, gene fam-
ily evolution is expected to reflect the evolutionary rela-
tionships among species, with divergences arising as a 
result of selective pressures, mutations and drift across 
hundreds of millions of years of evolution [6]. However, 
this gradual and continuous evolutionary change is not 
always manifest. Some gene families are more labile and 
can actively generate novel sequence and functional 
diversity, while others are highly constrained. The latter 
represent crucial components of the genetic architecture 
within the Tree of Life that constitute a historical archive 
of sequence and functional diversity. Though represent-
ing a conceptually useful dichotomy, these two extremes 
are not mutually exclusive. We can expect some gene 
families with tightly conserved functions to also contrib-
ute novel paralog templates that facilitate sequence diver-
sity and innovation. Just as the inference of species trees 
enables us to understand functional parallels and diver-
gences at the organismal level (i.e., macroscale), infer-
ence of gene family trees across multiple species enables 
us to understand functional parallels and divergences at 
the gene level (i.e., microscale). The rapid accumulation 
of genome sequences for lineages across the Tree of Life 
now empowers such inferences.

The evolution of gene expression
Some of the first insights into the evolution of gene 
expression came from the study of gene families. Expres-
sion of gene duplicates has been shown to evolve at as 
much as a tenfold higher rate immediately following 
duplication, thereafter slowing, and to do so asymmetri-
cally and leading to increasing gene network complexity 
[7]. The evolution of gene expression is known to be asso-
ciated with complex gene regulatory networks (GRNs), 
and divergence in the former often produces changes in 
the latter [8]. Overall, changes in GRNs and their accom-
panying differences in expression play an essential role in 
the phenotypic diversity observed throughout the Tree 
of Life, making these studies highly relevant for genetics, 
physiology, morphology, and even ecology. Despite this 
clear relevance for the observed diversity, there are many 
challenges for directly comparing gene expression among 
multiple species. First, differential gene expression is 
expected to change significantly with genetic distance 
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[9, 10]. Even when the relationship is not directly pro-
portional, studies have shown that differential gene 
expression between even distant populations of the same 
species can be elevated even under “Control” experimen-
tal conditions [9]. Second, the expression dosage level 
of a duplicated gene is expected to be twofold; however, 
functional genomics experiments have demonstrated 
that gene duplicates can be expressed at over 2–5 times 
the levels of single-copy genes [11]. Third, there are many 
logistical issues for conducting common-garden experi-
ments with multiple species. In addition to ethical con-
siderations concerning human and non-human research 
subjects, the need to account for tissue homologies (e.g., 
quantitative differences in tissue content of organs of 
divergent species) is another challenge that arises. This 
challenge renders the practice of comparing expres-
sion of related genes within a single species easier than 
comparisons of the expression of related genes among 
divergent species. Newly emergent computational tools 
coupled with phylogenetic approaches are now allowing 
us to overcome such challenges. For example, a phyloge-
netic analysis of expression variance and evolution (EVE) 
is able to provide information on differences in gene 
expression promoted by plasticity relative to those asso-
ciated with genetic divergence [12]. We are now posi-
tioned to test fundamental hypotheses concerning the 
evolution of gene expression [13].

Studies have suggested that gene expression evolves 
mostly through stabilizing selection [14], with an appar-
ent paucity of directional selection. Estimates indicate 
expression divergence is usually below expectations from 
random mutations and genetic drift between even highly 
divergent species such as fruit flies, mice, and primates 
[15], a result often attributed to compensatory effects 
between cis- and trans-regulatory elements of expres-
sion [16]. Correspondingly, investigations have revealed 
lower differences in expression than expected between 
closely related species [17]. In contrast, uncommon cases 
of directional selection caused by mutations in coding 
sequences, changes in gene regulatory regions, and gene 
duplications are responsible for large effects on pheno-
type and function among divergent species [8, 18, 19]. 
Continued comparative investigations on the evolution 
of gene expression represents a fruitful avenue that could 
illuminate mechanisms underlying rapid phenotypic 
diversification.

The impact of environmental change on genomic 
evolution
All organisms respond in some measure to changes in 
external abiotic conditions. Due to the fast pace of changes 
promoted by anthropogenic activities, the study of how 
abiotic fluctuations impact gene expression has increased 

dramatically in the past decades. Thus, comparative stud-
ies of gene expression between species have emerged as a 
critical basis for understanding how organisms respond to 
environmental changes. Despite the intrinsic differences 
between metabolic regulators and conformers, studies have 
found overlap in the functions that can be activated in the 
face of environmental stress. In particular, a great deal of 
overlap has been detected in mechanisms associated with 
metabolic compensation, as well as responses to cellu-
lar stress. These insights now position us to better predict 
potential genomic consequences to specific environmental 
changes.

How lineages respond to temperature increase has 
become an area of increased research focus, where there is 
overlap of implications between humans and other species. 
In the particular case of aquatic poikilotherms, increasing 
temperatures lead to an increase in the metabolic activity, 
which in turn leads to an elevated demand for oxygen con-
sumption [20, 21]. This increase in oxygen consumption as 
a function of aerobic demand can lead to enhanced cellular 
stress due to the elevation of reactive oxygen species, which 
can trigger a cascade of detrimental effects for cells. In the 
liver, for example, responses of fishes to elevated tempera-
ture have been associated with the activation of gene cate-
gories related to the mTOR complex, oxidation–reduction, 
cellular apoptosis, mitochondrial electron transport chain, 
permeability of the endoplasmic reticulum, etc., which 
are also extensively reported to be activated in humans 
and mice exposed to intense exercise [22–24]. Similar 
observations have been reported in fish brains exposed to 
elevated temperatures, where activation of compensatory 
mechanisms can be similar to those observed in humans 
with cerebrovascular strokes or other neuro-motor ail-
ments. For example, Drosophila flies and fish exposed to 
warm environments for multiple generations can exhibit 
compensation by improving neuro-motor connections by 
the activation of the gene plastin 3, which in humans and 
mice is a protective modifier for spinal muscular atrophy 
[25, 26]. Similarly, warm water conditions can lead to the 
activation of genes associated with low oxygen conditions 
in the nervous system of aquatic animals, as a result of the 
increased oxygen demand, and similar pathways are known 
to be activated in humans with strokes and circulatory defi-
ciencies (e.g., neuroglobins) [26]. Given climate forecasts 
for the next century, further investigation of how gene fam-
ilies evolve under changing abiotic conditions will be vital 
for identifying potential future risks to public health.

Immune gene families martial a clustered frontline 
of defense against disease
Many innate immune receptors involved in differentiat-
ing between self and non-self are encoded by gene fami-
lies that are organized as clusters throughout the genome 
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and encode both activating and inhibitory forms. For 
such families of clustered genes, high sequence diver-
sity and even diversity in the presence or absence of 
gene orthologs between humans and more distantly 
related vertebrates should be expected. Such a fast pace 
of molecular evolution is necessary to compete in the 
evolutionary arms race with rapidly evolving pathogenic 
threats [27]. However, there is also significant diversity in 
sequences and even genes between individual humans. 
For instance, the leukocyte receptor complex (LRC) 
is likely one of the best studied examples of intraspe-
cific gene content variation, in which different people 
encode different numbers and combinations of killer cell 
immunoglobulin-like receptor (KIR) genes which play 
important roles in natural killer (NK) cell function [28] 
(Fig. 1A). A large-scale study that defined the KIR haplo-
types for 800 families of European origin resolved more 
than 3000 haplotypes and identified over 70 unique hap-
lotypes based solely on gene content [29]. Different KIR 
gene content haplotypes have been linked to differences 
in susceptibility to infectious diseases such as HIV and 
malaria [30–32] as well as autoimmune disorders [33] 
and are important factors for the success of hematopoi-
etic stem cell transplantation for leukemia patients [34].

Clustered families of innate immune receptors are not 
unique to humans. However, expansions and contrac-
tions of these gene families vary substantially across the 
Tree of Life. For example, mice do not have an expanded 
cluster of KIRs. Instead, gene family variation similar 
to human KIRs is evident in the natural killer complex 
(NKC) of mice, in which different inbred mouse strains 
encode different numbers and combinations of Ly49 
genes, also known as killer cell lectin-like receptors or 
Klras. In rodents, these genes play similar roles in NK 
cells as KIRs do in humans [35] (Fig.  2A). The diversity 
of Ly49/Klra gene cluster content in mice stands in con-
trast to the single KLRA1P pseudogene in the human 
genome and is linked to differences in susceptibility to 
murine cytomegalovirus (MCMV) infection [36]. Given 
the intraspecific gene content variation that is observed 
for numerous gene families in humans (KIRs) and mice 
(Ly49/Klra), this discrepancy challenges us to consider 
which vertebrate lineages possess gene family expansions 
convergent with, or functionally analogous to human 
expansions. Moreover, a comparative perspective enables 
us to derive general rules that underlie the diversification 
of clustered vertebrate immune genes and the mainte-
nance of specific levels of intraspecific variation.

In the case of the LRC, KIRs display dramatic con-
vergences in gene content variation between species. 
Humans encode 4–20 KIR genes (including rare haplo-
types [29]) and cows encode up to 18 KIR genes, whereas 
multiple other vertebrates encode one or two KIRs, or, 

like mice, have lost all KIR genes at the LRC (Table 1) [1, 
37–40] (Fig.  1B). However, studies on the intraspecific 
gene content variation of the LRC are limited primarily 
to KIRs in primates and very little is known about this 
level of structural variation in other mammalian line-
ages. Further, the LRC contains multiple gene families 
that encode innate immune receptors structurally similar 
to KIRs, such as the leukocyte Ig-like receptors (LILRs) 
and leukocyte-associated Ig-like receptors (LAIRs) [41, 
42]. These LRC loci have been associated with multiple 
immunological disorders including rheumatoid arthri-
tis, multiple sclerosis, and lupus [43], are expressed on a 
range of immune cell types, and have been classified as 
activating or inhibitory based. Moreover, the LILR genes 
in the LRC also display interspecific gene content varia-
tion. Respectively, reference genomes for humans, cows, 
horses, and elephants encode 11, 26, 3, and 2 orthologs of 
LILR genes [38, 39, 44] with mice also encoding at least 8 
LILR orthologs (also referred to as paired Ig-like recep-
tors or PIRs) [45, 46]. Even among LAIRs—for which 
humans encode only two genes (LAIR1 and LAIR2)—
three LAIR-like sequences have been reported in pig [47] 
and elephant [38], and Ensembl predicts that a number of 
mammalian species encode paralogs of LAIR1 (e.g., black 
snub-nosed monkey, vervet, drill, greater horseshoe bat) 
or have lost LAIR1 (e.g., polar bear, armadillo, shrew, 
dolphin).

Expansions of clustered gene families such as these 
LRC loci are predicted to increase receptor diversity, 
an increase that can enable a better defense against the 
next unknown pathogen. Why these lineage-specific 
expansions are heterogeneously distributed across the 
vertebrate Tree of Life remains less clear. A potential 
explanation may lie in functional overlap. For example, 
KIR and Ly49/Klra proteins are considered functional 
analogs, as both interact with MHC class I proteins, 
mediating the recognition and direct killing of infected 
and cancerous cells. The NKC gene cluster, which 
includes the Ly49/Klra genes, displays dramatic inter-
specific gene-content diversity (Fig. 2B). There is a single 
Ly49/Klra locus in humans and dogs, compared to 6 and 
up to  21 Ly49/Klra genes in horses and mice, respec-
tively (Table 2) [39, 48, 49].

As divergences between humans and other verte-
brates span deeper timescales, finding functional analogs 
becomes increasingly challenging. Initial studies looking 
to identify mouse KIRs led to conflicting results [50, 51]. 
We now know that KIRs and Ly49/Klras are structurally 
different proteins and do not share a common genetic 
origin, but play comparable roles in NK cells’ surveillance 
for transformed and infected cells. As mentioned above, 
humans encode a single Ly49/Klra pseudogene (KLRA1P) 
and mice have lost the KIR genes from the LRC. This 
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B. Interspecies KIR Gene Content Variation
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Fig. 1  Killer cell Ig-like receptor gene clusters display dramatic gene content variation. A Eleven gene content haplotypes for the human killer cell 
Ig-like receptor cluster within the leukocyte receptor complex adapted from Middleton and Gonzelez [28]. Framework killer cell Ig-like receptor 
genes are conserved across haplotypes (gray circles), whereas other genes (color-coded circles) are variably present across haplotypes. Additional 
haplotypic variation is achieved through a recombination hotspot between KIR3DP1 and KIR2DL4 [29] (small black circle). B Variation in the number 
and combination of killer cell Ig-like receptor genes within the leukocyte receptor complex in mammalian genomes [37–40]. Framework killer cell 
Ig-like receptor genes are conserved in primates (gray circles) and bounded by conserved flanking genes (black circles). The numbers of killer cell 
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figure is not to drawn scale; it is designed to highlight common sequences (ψ: pseudogene)
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extreme case of convergent evolution highlights what can 
be missed when only two species are compared. Initial 
hypotheses, prior to the completion of the sequencing of 
the human genome, was that primates used an expanded 
set of KIR genes and rodents used an expanded set of 
Ly49/Klra genes for the same NK function and that an 
expansion of the KIR or Ly49/Klra genes was required for 
a functionally competent immune system. As genomic 
sequencing became more affordable and the LRC and 
NKC were sequenced from a wider range of mammals, it 
became obvious that certain lineages expanded the KIR 
cluster (e.g., primates and cattle), while others expanded 
the Ly49/Klra cluster (rodents and equidae), and yet oth-
ers encode a single KIR and a single Ly49/Klra gene (e.g., 
pinnipeds) [49]. This observation in seals and sea lions 
made it clear that the long-term survival of placental 
mammals does not require an expanded system of either 
Ly49/Klra or KIR receptors.

Natural killer (NK) cells have been described as one of 
the oldest immune cell types that differentiates between 
self and non-self. Although NK cells have been function-
ally described from bony fish [52, 53], numerous efforts 
to identify genes encoding KIRs or Ly49/Klra in fish 
have been unsuccessful [1]. Nevertheless, in the same 
way that humans use KIRs and mice use Ly49/Klras to 
mediate NK function, a candidate gene family that may 
facilitate mammalian-like NK cell function in fishes is 
the novel immune-type receptors (NITRs) gene family 
[54–57]. Similar to mammalian KIRs, NITRs are encoded 
in gene clusters, include inhibitory and activating forms, 

and display gene content variation [1, 55, 58]. NITRs 
have recently been found to have ancient evolution-
ary origins within the earliest divergences of ray-finned 
fishes, an evolutionary persistence that lends support 
to the hypothesis that this receptor family offers some 
core immune response functionality [59–62]. Unfortu-
nately, it is not known if NITR evolution is analogous to 
that of KIRs and Ly49/Klras. This lack of understanding 
imposes limits on our ability to link NK cell function in 
teleost model organisms (e.g., zebrafish, stickleback, and 
medaka) to the mammalian immune system. Because 
there are numerous immune receptor families that dis-
play both inter- and intraspecific gene-content variation 
across ray-finned fishes and are not identifiable in mam-
malian (or other tetrapod) genomes [59, 60, 63–65], com-
parative genomic investigations of the molecular basis of 
self-recognition pathways in “the other half” of all living 
vertebrates are an exceptionally rich research frontier 
that can aid us in understanding the evolution of our own 
genomes.

Molecular biology and its translation to action 
against cancer
Genomic analyses of human cancers have revealed sev-
eral phenotypes that are shared across a vast majority 
of types and have been dubbed “cancer hallmarks” [66, 
67]. These hallmarks include immune evasion, resisting 
cell death, and evasion of growth suppressors to name 
but a few. In many cases, the genetic basis of these and 
other cancer hallmarks can be linked to gene families 
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that are broadly distributed among mammals or other 
vertebrates. For example, the TP53 (p53) gene fam-
ily arguably represents the most well-studied family of 
human oncogenes [68]. This gene family has evolutionary 
origins dating back to the most recent common ances-
tor of choanoflagellates and metazoans, where a single 
gene involved in germline DNA repair has been main-
tained [69]. This gene duplicated multiple times during 
the evolution of jawed vertebrates, giving rise to TP53, 
TP63, and TP73. While decades of comparative research 
have defined general features of this gene family’s evo-
lution and biology [68], recent comparative studies 
have illuminated the role of this gene family in mitigat-
ing the risk of cancer development in the largest land 
mammals—elephants.

Across vertebrates, there is a positive relationship 
between the risk of developing cancers and increases in 
body size [70]. This relationship is a consequence of a 
larger cell count increasing the chance of malignant cell 
transformations [71]. Additionally, the risk of developing 
cancer is positively correlated with longevity [72]. As a 
consequence of their large-body size and long life spans, 
elephants should be expected to have some of the highest 
rates of cancer among terrestrial mammals. However, this 
expectation is contradicted by empirical data. Elephants 
achieve a seemingly paradoxical low rate of cancer inci-
dence in part through a duplication of TP53 genes that 
provide a greater sensitivity to DNA damage [68]. Recent 
studies have shed light on genes interacting with elephant 
TP53, revealing that the LIF (leukemia inhibitory factor) 
gene has undergone segmental duplication in selected 
species including the African elephant. Across analyzed 
genomes, most copies of this gene are pseudogenized. 
Elephants stand out as an exception, with investigators 
finding one gene (LIF6) that had refunctionalized with 
apoptotic function [73]. These studies and others like 
them have created an exciting opportunity to investigate 
the genetic basis of DNA damage repair mechanisms.

Beyond the genetics of DNA repair mechanisms, it is 
also clear that studies of other oncogenes between spe-
cies can inform the development of new therapies. To 
effectively guide research in cancer biology, it is impor-
tant to place these oncogenes into a phylogenetic con-
text. For example, the ALK receptor tyrosine kinase 
gene (previously “anaplastic lymphoma kinase”) (ALK), 
a prominent receptor tyrosine kinase (RTK) proto-onco-
gene, is present across a range of metazoans that spans 
humans to fruit flies with a high degree of structural con-
servation [74, 75]. ALK has been associated with tumo-
rigenesis in neuroblastoma, non-small cell lung cancer, 
anaplastic large-cell lymphoma, breast and renal cell 
carcinomas and identified as a potential target for thera-
peutic development [76–78]. Although studies of model 

organisms have revealed fundamental insights into the 
biology of oncogenic alterations, linking these hetero-
geneous insights to human cancers was challenged by 
a lack of a comparative framework. It has recently been 
demonstrated that in the early history of jawed verte-
brates, an ancestral ALK duplicated to give rise to the 
leukocyte receptor tyrosine kinase (LTK) gene, and that 
subsequently ALK and LTK have traded functional roles 
between ray-finned fishes and sarcopterygians (e.g., tet-
rapods, lungfish, and coelacanth). Additionally, even as 
the homology among ALK-like genes becomes increas-
ingly clear, the ligands for ALK in non-vertebrates {Jelly 
belly (Jeb) in Drosophila melanogaster [79], hesitation 
behavior-1 (hen-1) in Caenorhabditis elegans [80], and 
ALKALI/2 (augmentor/FAM150) in humans [81, 82]} are 
not similarly homologous [74]. This example highlights 
the critical need for an evolutionary perspective in model 
organism-based oncogene research to effectively trans-
late findings regarding homologous genes and their inter-
acting partners.

Studies of oncogenes have been crucial in revealing 
how cancer co-opts existing gene families to enable its 
persistence. For instance, studies of the genetic mecha-
nisms of tumor growth or DNA repair remain invalu-
able. However, an additional frontier in cancer biology 
leverages comparative immunogenetics to investigate the 
evolution of receptors that modulate the adaptive and 
immune system response, to better understand how can-
cers evade detection or elimination. An example of how 
cancer co-opts the genetic machinery of the mammalian 
immune system has been revealed by studies of signal 
regulatory proteins (SIRPs), a family of transmembrane 
glycoproteins with extracellular immunoglobulin-like 
domains, involved in the regulation of tyrosine kinase-
coupled signaling processes [83, 84]. SIRPs have been 
identified broadly among mammals including humans, 
primates, rodents, dogs, cows, horses, and opossum [85, 
86]. In humans, the SIRP family contains the inhibitory 
SIRPα, activating SIRPβ, non-signaling SIRPγ, and solu-
ble SIRPδ encoded in a gene cluster on chromosome 20 
[83, 86, 87]. Putative clusters with different numbers of 
SIRP homologs have been observed in other mammals, 
birds (Gallus), and lizards (Anolis) [85, 86, 88]. The evo-
lutionary origins of SIRPs remain unknown, as does the 
scope of predicted functional conservation.

Multiple cancer cells utilize the relationship between 
SIRPα and its ligand CD47 to prevent tumor cell phago-
cytosis [89, 90]. CD47 is commonly overexpressed on the 
cell surface of many cancers, providing a “Don’t eat me” 
signal that engages SIRPα on macrophages and prevents 
phagocytosis [91, 92]. SIRPα recognizes the elevated lev-
els of CD47 on tumor cells and negatively controls effec-
tor function which prevents destruction of the cancer 
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cells [93, 94]. However, experimental administration of 
monoclonal antibodies or soluble SIRPα (Fc-fusion) that 
bind CD47 and block the CD47-SIRPα signaling pathway 
promotes tumor cell phagocytosis, inhibits tumor growth 
in mice, and increases survival [92, 95]. A large-scale 
comparative perspective of immune gene families such as 
SIRPs and their interacting partners is therefore of high 
value for the design of new therapies and for revealing 
natural systems with high translational relevance.

Comparative genomics illuminates the ancestry 
and diversity of vision
Light sensing is one of the most ancient characteristics 
of life [96], and proteins associated with human vision 
have been studied for over a century in various model 
organisms [97, 98]. These loci have been used in studies 
that span investigations of molecular evolutionary rates 
[99], the reconstruction of ancestral proteins in extinct 
species [100], dim-light vision [101, 102], and extensive 
applications for molecular systematics [103–105]. How-
ever, it has only been in the last few decades that large 
comparative studies have begun placing gene families 
in the human genome into evolutionary context. The 
results of these studies have revealed numerous associa-
tions between gene family evolution and the ecology of a 
lineage, as well as a remarkable scope of genotypic diver-
sity across the Tree of Life associated with light sensing 
phenotypes.

Families of photoreceptors are widely distributed 
across multiple phyla—including plants and fungi—
that rely on those sensory pathways to regulate their 
responses to environmental changes [106, 107]. Although 
these lineages do not possess any structures analogous 
to human eyes, their diversity of light sensor molecules 
is extraordinary. Comparatively, fungi have a greater 
diversity of light sensor molecules than humans, each 
providing sensation of different ranges of ambient light. 
In addition to retinal binding rhodopsin (like humans) 
for sensing green light, fungi also feature phytochrome- 
and flavin-based photoreceptor gene families, providing 
red- and blue-light sensation [108]. Gene duplications of 
fungal photoreceptors are present across many species 
[108], and their expansion has been clearly linked to fun-
gal ecology [106, 109, 110]. For example, duplication and 
divergence in fungal rhodopsins and opsin-like proteins 
have been characteristic of clades of pathogenic and non-
pathogenic fungal species [111], whereas extreme expan-
sion of the phytochrome gene family has been found in 
aquatic fungi with multiple paralogous copies [112].

Among gene families associated with human vision, 
crystallins represent perhaps one of the most iconic 
examples of an evolutionary bloom with hypothesized 
lineage-specific gains and losses that are associated 

with the ecology of the vertebrate lens [113–115]. 
Numerous reviews and in-depth studies of human crys-
tallin gene families have been conducted due to their 
essential role in the maintenance of lens clarity, and 
variation in human crystallin genes has been linked to 
cataracts and to vision loss [113, 116–118]. However, 
the evolutionary history of γ-crystallin genes has only 
recently come to light and this gene family represents 
an intriguing empirical example of a gene family con-
sidered “on its way to extinction” in humans [119]. A 
diverse suite of γ-crystallins associated with the gen-
eration of a high refractive index are found in species 
that possess a hard lens with low water content such as 
fishes [113, 119]. In contrast, convergent losses or loss 
of function of γ-crystallins have been reported in line-
ages such as primates or birds that are characterized by 
soft lenses with high water content [113, 119]. Humans 
are estimated to have lost function in two-thirds of the 
γ-crystallins found in some rodents [120]. Therefore, 
crystallin gene families are particularly well positioned 
for future studies investigating the evolution of gene 
loss.

In addition to crystallins, opsins represent another 
spectacular example of an evolutionary bloom. Since the 
sequencing of the first opsin gene nearly 40  years ago 
in bovids [121, 122], over 1000 opsins have been identi-
fied  in many species including human, fly, mouse, and 
zebrafish [123]. Detailed examination of these genes 
has revealed the basis of color vision across the Tree of 
Life, often demonstrating striking cases of functional 
convergences [124, 125]. For example, there are correla-
tions between the opsin repertoire and ecological fac-
tors [126, 127], gene losses or loss of function associated 
with trade-offs between sensory systems [128], amino 
acid convergence among distantly related taxa (i.e., fish; 
[129–131]), and convergences in the genetic basis of 
many human retinal degenerative diseases and vision dis-
orders [132, 133]. The diversity of opsin genes is perhaps 
not surprising when considering the scale of evolutionary 
divergences that span lineages such as dragonflies, ray-
finned fishes, and humans [134, 135]. However, that this 
diversity of opsin genes across metazoans is expressed 
not only in the eye but also in the skin and peripheral 
tissues has only recently become appreciated [136, 137]. 
Research in the past decade has revealed a diversity of 
opsin genes expressed in the skin and other organs of 
animals including humans [136, 138] and made clear 
that opsin genes carry out functions that expand beyond 
light reception. An increased focus on the comparative 
genomics of opsin gene families already has implications 
for wound healing, hair growth, optogenetics, and meta-
bolic physiology to name but a few [136, 139]. Future 
comparative genomic investigations are clearly poised 
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to inform functional experiments that can illuminate the 
full diversity of these gene families.

Sniffing out the genomic basis of diverse 
chemosensation receptors
Chemosensation is ubiquitous throughout the animal 
Tree of Life. However, the molecular basis of chemosen-
sation has only recently been elucidated. Discovery of 
chemosensation receptor genes occurred within the last 
two to three decades, and its discoverers were awarded 
a Nobel Prize in 2004 [140, 141]. The mechanism of 
chemosensation involves the conversion of environ-
mental chemical information into neurophysiological 
information in the brain and is relatively similar across 
vertebrates and invertebrates [142, 143]. Volatile and 
nonvolatile chemicals interact with proteins encoded by 
genes of large multi-copy gene families expressed in sen-
sory neurons and supporting cells of the olfactory and 
gustatory systems (cf [143] for review). Molecular inves-
tigations of odorant receptors have revealed that these 
account for the largest gene families in animals, encod-
ing for up to 5% of the protein-coding genome in mam-
mals alone [144–146]. As these gene families are among 
the fastest evolving in the genome [147], this makes them 
ideal models for understanding complex patterns of gene 
family evolution.

Chemosensory gene families are characterized by rapid 
evolutionary rates through high gene turnover and rapid 
diversification of homologous genes [146, 148–151]. The 
convergently evolved odorant receptor gene families in 
vertebrates and insects [146, 152, 153], for example, dem-
onstrate some of the most extraordinary patterns of gene 
duplication and pseudogenization in animals, constantly 
expanding and contracting as species evolve through 
time [148]. We have made tremendous strides in our 
annotation and delimitation of human odorant receptors. 
However, placing these into the context of the vertebrate 
Tree of Life is challenged by their complex evolutionary 
history.

The expansion and contraction of the odorant receptor 
gene family have been linked to changes in the sensory 
ability of some animal lineages, including the adaptation 
to novel food resources [148, 154–157] or specializations 
in the social–chemical communication system [158, 159]. 
Accordingly, the hundreds/thousands of copies of distinct 
olfactory receptors likely reflect the diversity of odorant 
ligands that can be detected by the organism (Fig. 3, [144, 
145]). Functional assays of olfactory receptor repertoires 
in a few model organisms suggest that odorant receptors 
act as labeled lines or in a combinatorial fashion, thereby 
enabling the specific detection and discrimination of 
chemicals and chemical mixtures vastly exceeding the 
number of receptor genes encoded in the genome, while 

also being highly specific [160–167]. These observations 
have translational implications for understanding chem-
operception at the population level, and future studies of 
the functional consequences of odorant receptor varia-
tion between individuals offer a particularly exciting ave-
nue of future research.

The sheer enormity of these receptor gene repertoires 
(Fig. 3) calls into question the functional purpose of the 
extensive redundancy of these genes. Studies have repeat-
edly shown the elevated rates of evolution of chemore-
ceptor genes across animals, insects, and vertebrates alike 
[147, 155, 168]. Adaptive scenarios predict elevated rates 
of nonsynonymous substitutions over short lengths of 
evolutionary time (i.e., relative to rates of neutral synony-
mous substitutions) and would likely correspond to an 
environmental chemical signal or signals relevant to fit-
ness. Evidence for adaptation is prevalent in Drosophila, 
where behavioral and biochemical assays have repeatedly 
demonstrated specialization of odorant genes in Dros-
ophila species to ligands of host fruits (e.g., Drosophila 
sechellia and the host shift to morinda fruit) [169–173]. 
However, outside of model organisms, interpretations of 
correlative patterns have emerged but are still inconclu-
sive. For example, orchid bee (Apidae: Euglossini) males 
collect specific organic chemical compounds from floral 
and non-floral sources available in their environment 
to create a perfume [174–176] released during a stereo-
typical display behavior at perching sites, and it is only 
in combination with perfume display that mating occurs 
[177–182]. Perfumes are most likely involved in sexual 
selection, presumably by enabling species-specific rec-
ognition or as an indicator of male fitness (Fig. 4A, [183, 
184]). Homologous chemosensory receptor genes are 
highly differentiated and evolve under strong divergent 
selective pressures between even recently diverged (~ 150 
kya) orchid bee lineages (Fig.  4B, C), suggesting adap-
tive differentiation of chemosensory genes [185, 186]. 
Although there is some evidence that divergence in per-
fume signals might be correlated with divergence in che-
mosensory genes [185], the link between genotypic and 
phenotypic evolution is still missing.

The scarcity of evidence of strong selection for direct 
receptor-odorant ligand binding suggests that the rela-
tionship between chemoreceptor genes and the environ-
ment is more complex than initially hypothesized. Rates 
of nonsynonymous substitutions for dozens of genes are 
consistent with diversifying selection across tetrapods 
[147, 168]. Substitution rates in the mouse lemur (Micro-
cebus) pheromone receptors (vomeronasal type 1) are so 
high, and they occur at such exceptional copy numbers, 
that they have been described as genes on the verge of 
a “functional breakdown” [187]. Is it really possible that 
these dozens of chemoreceptor genes are solely under 
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extensive positive selection? Neotropical bats illustrate 
an instance where differences in molecular rates are not 
directly explained by dietary ecology (e.g., plant-visiting 
versus animal feeding), but rather are associated with the 
chromosomal location of the genes [188]. Even within 
Drosophila, chemosensory genes have an elevated back-
ground of standing variation that may facilitate rapid 
adaptation in the event of shifts in ecological niches 
[189].

What is the evolutionary explanation of maintaining 
extensive copy numbers of highly variable but seem-
ingly redundant genes in the genome? The answer may 
lie in navigating a complex world incorporating a highly 
dynamic chemical space [151, 190], as illustrated by 
mouse lemurs (Microcebus). In contrast to other primates 
(including humans) that typically possess few copies of 
pheromone receptor genes, these largely solitary pri-
mates possess orders of magnitude higher copy numbers 
of pheromone receptors (Fig. 5, [191]), and the primary 
form of conspecific communication in these arboreal and 
nocturnal primates occurs via pheromonal cues of scent-
marking and anogenital dragging [192–194]. Females in 
estrous induce sexual behavior in males through pro-
teins in their urine, and, in response, males establish 
their territories via urine scent-marking to signal domi-
nance (Fig.  5A, [192, 195]). The high rates of molecular 

evolution of chemoreceptors [187, 196] and rapid turno-
ver of genes may facilitate sexual selection and species-
specific adaptation [151] in this species. However, this 
adaptation does not come in the form of selection for a 
single variant binding to a specific ligand [187]. Rather, 
evolution of new receptors via gene duplication provides 
a genomic substrate to detect novel chemical cues sig-
naled by competing males. Pseudogenization of receptors 
no longer relevant to the present environment leads to 
very low levels of orthology among closely related spe-
cies (Fig.  5B, [197–199]). Mouse lemurs have speciated 
rapidly [200, 201]. Because receptors have continued 
to diversify among closely related species (Fig. 5C), it is 
a plausible hypothesis that increased redundancy and 
sequence variation among duplicates facilitate species 
diversification. This pattern is in sharp contrast to what 
is observed in bat vomeronasal receptors, in which there 
are very few copy number variants and a high retention 
of orthologs since bats diverged from ungulates and car-
nivores [202]. When these large gene families show low 
rates of gene retention at deep time scales, this may hint 
at conserved innate function.

Extrapolating function and adaptation across species, 
in particular for  receptors, remains challenging. Iden-
tifying orthologous receptors among a pool of species- 
and individual-specific paralogs is not straightforward. 

Fig. 3  Number of intact chemoreceptors in available tetrapod genomes harvested using methods described in Yohe et al. [147]. Chemoreceptors 
include olfactory receptor genes (Class I and Class II), vomeronasal receptor (type 1 and type 2) genes, γ-c receptor genes, and trace 
amine-associated receptors. These counts include genes with > 650-bp open reading frames and do not include any pseudogenes. Silhouettes are 
from PhyloPic
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Orthologs are usually assumed to have similar func-
tions across species. However, orthologous olfactory 
receptors do not consistently share function [203]. In 
some cases, the same olfactory receptor in two species 
will respond to the same odorant ligand. In other cases, 
orthologs may differ in their responses to the same 
stimuli. Nevertheless, detecting adaptation in olfactory 
receptors is tractable with well-parameterized models 

of molecular evolution and appropriate consideration 
of protein structure and function [204]. These receptors 
directly interact with environmental cues, with essen-
tial roles in the identification of stimuli that histori-
cally were directly related to fitness (e.g., finding food, 
mates, and predator avoidance). Comparative phylo-
genetic approaches will be critical for understanding 
this nexus of complex sensory-signaling and perception 
[190]. Given the immense representation of chemore-
ceptor genes in the human genome, understanding the 

Fig. 4  Molecular evolution of orchid bee chemosensory receptors. A Males of sibling Euglossa species [335] manufacture perfumes to attract 
females and differ by a single compound per species (noted as + HNBD/+ L97) in this system [180, 336–338]. B Rates of nonsynonymous 
substitutions (dN) in Euglossa chemosensory genes are significantly higher (denoted with asterisk) than in non-chemosensory genes. C dN versus 
rates of synonymous substitutions (dS). Selection analyses reveal candidate chemosensory receptors (e.g., Or41) under divergent selection in 
the two sister species, potentially related to perfume differences. Figure adapted from Brand et al. [185] under a Creative Commons Attribution 
4.0 International License (http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/). If an adaptive hypothesis is maintained, it is expected that the species 
divergent in OR41 might bind to + L97 in E. viridissima and + HNBD in E. dilemma, but this binding has yet to be experimentally demonstrated

Fig. 5  Vomerolfactory-mediated courtship and territoriality in mouse lemurs and the phylogenetic history of vomeronasal receptor type 1 (V1R) 
genes in primates. A The urine of the dominant male gray mouse lemur (Microcebus murinus) often contains a distinct steroid-like compound that 
suppresses reproductive behavior of other males, but it must stand out among competitors to attract females. Dotted-lined arrows indicate a weaker 
signal among the dominant male urine signal. B Gene tree of V1Rs in primates [187, 191], including the gray mouse lemur. Black branches indicate 
genes belonging to the mouse lemur, while gray branches belong to other primate groups. C V1R gene tree of lemurs [187], including several 
species of mouse and dwarf lemurs (Cheirogaleidae). Black branches are Cheirogaleidae and gray branches are other strepsirrhine primates. Sexual 
selection coupled with extensive gene duplication of vomeronasal receptors may have facilitated rapid speciation in Cheirogaleidae. Silhouettes 
were obtained from PhyloPic

(See figure on next page.)

http://creativecommons.org/licenses/by/4.0/
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Fig. 5  (See legend on previous page.)
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complex evolutionary dynamics of these genes is cru-
cial to understanding ourselves.

Breaking down the basis of enzymic metabolism
Enzymic metabolism genes have been speculated to 
evolve upon exposure to specific novel environmen-
tal pressures, including the ingestion of plants, fungi, 
lower eukaryotes, and bacteria. The importance of 
cytochrome P450 (CYP) genes in “animal–plant warfare” 

was emphasized long ago [205], and the CYP2, CYP3, 
and CYP4 families encode enzymes that participate 
not only in metabolism of important endogenous sub-
strates, but also in the metabolism of plant–fungal–bac-
terial–viral metabolites, drugs and other environmental 
pollutants, pigments, and biosynthesis of pheromones. 
Therefore, evolution and expansions of these gene fami-
lies are extremely sensitive to changes in the environment 
of the organism, resulting in rapid up- and downregula-
tion of gene expression. “Evolutionary blooms” would be 
expected in these three human P450 families and, indeed, 
they have been found [206]. Evidence of these (evolution-
arily recent) blooms is presented by the high dissimilarity 
evident when comparing human and mouse CYP genes 
(Table 3).

The expansion of CYP genes reflects a larger phenom-
enon in which signals from the microbiome—which is 
commonly described as bacteria, fungi, viruses, and other 
microbes living synergistically in the digestive tract of the 
host [207, 208]—have had a profound effect on the evolu-
tion of host genomes. However, “digestive tract” signifies 
more than just “animals with stomachs”; guts have deep 
evolutionary origins. For example, the ambulacral groove 
of animals in the phylum Echinodermata or class Aster-
oidea and Edrioasteroidea extends from the mouth to the 
end of each ray or arm; each groove of each arm, in turn, 
has four rows of hollow tube feet that can be extended 
or withdrawn [209]. Even the cavitation of animals in the 
phylum Cnidaria (e.g., sponge, jellyfish, sea anemones 
and corals, etc.) functions in digestion of food and, thus, 
is likely to have a microbiome. Accordingly, it is likely 
that microbiome metabolites (as well as phytoplankton 
and other ancient simple plants) were among the first 
environmental signals to have been received by animal 
hosts and that their presence in turn generated selective 
pressure in the host to metabolize microbial metabolites.

Selective pressures on receptors of microbial metabo-
lites—and the corresponding evolution of enzymatic 
genes that interact with these receptors—likely shaped 
major trends in genome evolution [210, 211]. Hence, 
what we see today are multiple transcription factors 
(e.g., AHR, AHRR, ARNT, NR1I3 (CAR), PPARA, 
PPARD (PPAR-beta), PPARG (PPAR-gamma), NFKB1/2, 
HNF4A/G, HNF1, NFE2L2 (Nrf2), NR1I2 (PXR), NR1H4 
(FXR), ESR1/2, PGR, GHR, NPAS1, etc. [207, 212]), up- 
and down-regulating dozens or hundreds of genes that 
are members of enzymic metabolism gene families. As 
far as the CYP gene families (Table 3), transcription fac-
tors for the CYP1, 2, 3, and 4 families involved in plant 
metabolite and pheromone metabolism are distinctly 
different from the remaining fourteen P450 gene fami-
lies (CYP5, 7, 8, 11, 17, 19, 20, 21, 24, 25, 26, 27, 39, and 
46) that participate almost exclusively in endogenous 

Table 1  Interspecific gene content variation of the KIR gene 
family

Species # KIR genes in LRC References

Homo sapiens 4–20 [29]

Chimpanzee 5–11 [281]

Orangutan 5–10 [282]

Gibbon 2–5 [283]

Baboon > 6 [284]

Macaque 4–17 [285]

Owl monkey 8 [286]

Gray mouse lemur 1 [287]

Mouse 0 [288]

Rat 1 [288]

Pig 1 [289]

Cow 18 [40]

Horse 1 [39]

Elephant 4 [38]

Dog 0 [49]

Cat 1 pseudogene [49]

Sea lion and seal 1 [49]

Table 2  Interspecific gene content variation of the KLRA (Ly49) 
gene family

Species # Ly49 genes in NKC References

Homo sapiens 1 pseudogene [290]

Chimpanzee 1 pseudogene [284]

Orangutan 1 [291]

Gibbon 1 [284]

Baboon 1 [284]

African green monkey 1 [284]

Gray mouse lemur 1 [287]

Mouse 8–21 [35]

Rat 33–36 [35]

Pig 1 [292]

Cow 1 [293]

Horse 6 [294]

Dog 1 [49]

Cat 1 [292]

Sea lion and seal 1 [49]
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critical life function pathways, instead of exogenous 
chemical metabolism [213]. This difference in function 
has opened new research opportunities. For example, 
mice having the ablation of all Cyp2c genes in a cluster 

are completely viable, except for changes in metabo-
lism for specific drugs or chemicals. As such, there is 
now a plan to create a methodically “humanized” mouse 
model for pharmacological and toxicological studies by 

Table 3  Many of the heavily studied major classes of human enzymic metabolism genes

*Virtually all these enzyme classes, and members of each gene group with their chromosomal locations, can be found in genenames.org (HGNC)

†The “number of UGT genes” is debatable, because of the complex structures of the UGT1 and UGT2 loci

Details of the CYP gene family are perhaps the most studied on this list. The mammalian CYP2, CYP3, and CYP4 families each have many genes encoding plant-
metabolizing enzymes, and the number of genes in each family varies widely among mammals [206]. The CYP1 family is involved in some plant-metabolizing 
enzymes but also arachidonic acid pathway-associated lipid mediator substrates [333], steroids, pigments, polycyclic aromatic hydrocarbons, polyhalogenated 
biphenyls, etc. The remaining 14 CYP families encode evolutionarily highly conserved enzymes with much more highly specific endogenous substrates (ablation of 
many or most of these is lethal), and the number of genes in each family is virtually identical among all mammalian genomes [213, 334]

Mechanism Encoded enzymes (gene root symbols, where 
applicable)

Families, classes, groups* Representative 
reference(s)

Oxidation

Hydroxylases Dozens of classes; > 1000 genes in genome [295, 296]

CYP monooxygenases (CYP; P450s) Total of 18 families; 57 genes in human genome 
versus 102 in mouse

[206, 213, 297]

CYP1 (3 in Homo; 3 in Mus) [206]

CYP2 (16 in Homo; 50 in Mus) [206]

CYP3 (4 in Homo; 9 in Mus) [206]

CYP4 (12 in Homo; 20 in Mus) [206]

CYP5, 7, 8, 11, 17, 19, 20, 21, 24, 26, 27, 39, 46, 51 [213]

Flavin-dependent monooxygenases (FMO) 6 genes [298, 299]

Alcohol dehydrogenases (ADH) 8 genes [300, 301]

Aldehyde dehydrogenases (ALDH) 11 families, 4 subfamilies, 19 genes [302, 303]

Lysine (histone) demethylases (KDM) 8 groups; 24 genes [304, 305]

Monoamine oxidases (MAO) Two genes [306]

Other amine oxidases  > 50 genes [307]

Peroxidases (PEX)  > 30 genes [308, 309]

Catalase Three main groups; one gene in human [310, 311]

Oxidoreductases  < 40 genes, subunits [312, 313]

Reduction

CYP reductive reactions (CYP) CYP1, 2, 3, and 4 families [314]

NADPH-quinone oxidoreductases (NQO) Two genes [315]

Aldo-keto reductases (AKR) Two families, 7 subfamilies, 19 genes [316]

Carbonyl reductases (CBR) Three genes [316, 317]

Short-chain dehydrogenases/reductases (SDR) Up to 77 protein-coding genes [318]

Oxidoreductases  > 50 [318, 319]

Hydrolysis

Epoxide hydrolases (EPHX) Up to 7 genes [320, 321]

Amidases Three genes [322]

Esterases At least 8 genes [323, 324]

Lipases (LIP) 22 genes [325]

Conjugation

UDP glucuronosyltransferases (UGT) 4 families; 5 subfamilies; 23 genes† [326, 327]

Glutathione S-transferases (GST) 8 families; 21 genes [328]

Soluble sulfotransferases (SULT) 4 families; 9 subfamilies; 14 genes [329]

Membrane-bound sulfotransferases 37 genes [330]

N-acetyltransferases (NAT) 26 genes; two groups; GCN5-related (24 genes) and 
arylamine-related (2 genes)

[331, 332]

Other transferases Up to 41 groups; 265 protein-coding genes HGNC
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replacing all mouse Cyp2, Cyp3, and Cyp4 genes with all 
human CYP2, CYP3, and CYP4 genes [214]. Future work 
in other models and non-models that similarly target 
enzyme-metabolism-associated gene families could be of 
high translational relevance for human health.

Obtaining and maintaining universal gene family 
nomenclatures
The human gene mapping community began publish-
ing proposals on standardized gene nomenclature in the 
1970s “pre-genomics” era, e.g., [215, 216], and the HUGO 
Gene Nomenclature Committee (HGNC) has been nam-
ing human genes now for over 40 years [217]. However, 
these efforts had already been ongoing for mouse genet-
ics since the 1940s [218]. Subsequent collaboration 
between the human and mouse gene nomenclature com-
mittee has enabled logical naming—and renaming—of 
many gene families to reflect evolutionary relationships. 
For example, the human CD300 gene family includes 
sequentially named genes that modulate a diverse array 
of immune responses, named CD300A–CD300H [219–
221]. The original nomenclature for mouse models pre-
viously spanned a variety of root symbols including 
dendritic-cell-derived Ig-like receptor (DIgR), CRMF-
35-like molecules (CLM), leukocyte mono-Ig-like recep-
tors (LMIR), and myeloid-associated Ig-like receptors 
(MAIR) [219], but these mouse genes have since been 
renamed in line with the human genes using the Cd300 
root. In more subtle cases, mismatches in nomenclature 
between closely related genes can be revealed through 
phylogenetic analyses; for instance, leukocyte recep-
tor tyrosine kinase (LTK) in ray-finned fishes is a closer 
homolog of ALK receptor tyrosine kinase (ALK; previ-
ously anaplastic lymphoma kinase) in mammals than it is 
to LTK in mammals [74]. As sequencing efforts in models 
and non-models continue to accelerate, there is an urgent 
need to continue to standardize gene nomenclature not 
only within species, but also between species using phy-
logenetic criteria.

With regard to the standardization of nomenclature 
of gene families based on evolutionary divergence, the 
enzymic metabolism gene families offer one of the ear-
liest examples, originating with the cytochrome P450 
monooxygenase superfamily. From 1975 to 1985, lead-
ing scientists researching cytochrome P450 genes would 
convene at least once yearly, during the “Microsomes 
and Drug Oxidations” (MDO) or “P450 Biochemistry 
and Biophysics” symposia, to discuss what the best name 
might be for their (personal favorite) enzyme isolated in 
their respective laboratories. These enzymes (in human, 
rat, mouse, rabbit, pig, cow, chicken, fish, yeast, and Pseu-
domonas putida) are all membrane-bound (microsomal 

or mitochondrial) proteins, except for the bacterial cyto-
solic enzyme which is soluble.

With the advent of isolating mRNA from ribosomes 
treated with antibodies to these detergent-solubilized 
enzymes, followed by reverse transcriptase to isolate the 
cDNA, the deduced amino acid sequence of these mem-
brane-bound proteins could be determined. Once it was 
discovered that these P450 genes encoded a consensus 
sequence of eight amino acids in the enzyme active site—
a consensus found in at least ten organisms as diverse as 
human and a bacterium [222]—the logical solution to 
standardized nomenclature was to base P450 gene names 
on evolutionary divergence.

At first, Roman numerals were included [222, 223], 
but this clumsy approach was quickly discarded. A root 
symbol “CYP” (standing for cytochrome P450) was 
then agreed upon, with Arabic numerals for gene fami-
lies, capital letters for subfamilies, and Arabic numerals 
again for individual members; no subscripts or super-
scripts are allowed in standardized gene nomenclature, 
and hyphens are only used in specific exceptions and 
usually to separate two unrelated consecutive numerals. 
Two CYP genes encoding proteins (from the same spe-
cies) that showed < 40% amino acid sequence similarity 
were relegated to different gene families. Two CYP genes 
having ~ 40 to ~ 65% amino acid sequence similarity were 
assigned to the same family, whereas two genes encod-
ing proteins that displayed ≥ 65% amino acid sequence 
similarity were listed as members of the same subfamily 
[224]. Gene symbols are in all capital letters for human 
and most vertebrate genomes, i.e. CYP1A2, CYP1B1, 
CYP17A1, CYP51A1, etc. Mice deviate from this model 
due to historical contingency of an earlier nomencla-
ture, capitalizing only the first letter; hence, the mouse 
orthologous genes are named Cyp1a2, Cyp1b1, Cyp17a1, 
Cyp51a1, etc.

In the process of naming the CYP gene families, they 
were originally somewhat arbitrarily divided into differ-
ent classes of organisms (Table 4), based on an assump-
tion that the number of P450 genes thought likely to 
exist in all animals on the planet would not exceed 50. 
However, this assumption has proven to be a striking 
underestimate. As of July 13, 2022, a total of 125,326 CYP 
genes in 8455 gene families among vertebrates, protozoa, 
plants, fungi, eubacteria, archaebacteria, and viruses have 
been named [D R Nelson, personal communication]—
with an anticipation that over one million will be reached. 
In general, plant genomes have far more P450 genes than 
animal genomes, because plant P450-mediated pathways 
are critical for virtually all life processes: growth, differ-
entiation, defense (phytoalexin formation), fruit produc-
tion, flower color, and formation of the attractive and 
repulsive scents of flowers [225].
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Gene family numbers for other P450 genes were 
assigned in chronological sequence as they were iden-
tified (hence, CYP6, 9, 12 are insect gene families; 
CYP10A1 is a pond snail gene; and cyp-13A1 is a nem-
atode gene, etc.). As a consequence, human CYP gene 
families are not named with sequential numbers, but 
rather CYP1, 2, 3, 4, 5, 7, 8, 11, 17, 19, 20, 21, 24, 25, 26, 
27, 39, and 46 [213]. Although these authoritative efforts 
have yielded a stable nomenclature for this gene family, 
they also reflect a problem of sustainability. The hercu-
lean task of continually updating and maintaining a sta-
ble nomenclature of CYP genes—and specifically P450 
genes—has been undertaken by a single curator, David 
R Nelson. As new genomes are published, the extrac-
tion and naming of all present P450 genes using BLAST 
searches (by DR Nelson) remains the predominant source 
of nomenclature updates for non-models. Dependency 
of nomenclature on single individuals augurs gene iden-
tification crises like the taxonomic identification crises 
lamented by current-day systematics [226]. Sustainable 
solutions to gene nomenclature are achievable through 
sustained funding and collaboration between gene 
nomenclature committees across multiple organisms and 
represent an exciting challenge and research opportu-
nity that can integrate the expertise of gene taxonomists 
and computational biologists, aspirationally generating a 
well-defined and extensible nomenclature for compara-
tive genomics.

As the CYP gene superfamily was developed during 
the late 1980s and early 1990s, dozens of other enzy-
matic metabolism gene families (e.g., Table 3) also began 
to establish standardized nomenclature systems based 

on evolutionary divergence. Work on these and many 
other gene families such as the olfactory receptors [227] 
by the HGNC and more recently also by the Vertebrate 
Gene Nomenclature Committee (VGNC, vertebrate.
genenames.org), a sister project of the HGNC [228], has 
enabled the implementation of a systematic approach 
to standardized nomenclature based on naming par-
alogous genes originating from a common ancestor. 
However, the proliferation of genomes from non-model 
species now provides an opportunity to stabilize a con-
sistent gene nomenclature at deeper taxonomic scales, as 
has already been instigated for cytochrome P450 genes, 
through collaboration between established nomenclature 
committees [229]. Other efforts have ensured that the 
immunoglobulin (Ig) genes that encode antibodies across 
ray-finned fishes were recently standardized, because IgT 
and IgZ were found to be evolutionary forms of the same 
antibody that was independently discovered and named 
in different species [230]. This standardization across half 
of all living vertebrates demonstrates the utility of phy-
logenetic comparative genomics to gene nomenclature at 
such large taxonomic scales. As genome sequences con-
tinue to accrue, gene taxonomists are now poised to work 
with nomenclature committees to harness the power of 
this comparative framework and decode the history of 
paralog diversification in complex gene families, thereby 
stabilizing nomenclature across the Tree of Life.

Veils of deep ancestry that limit our perception 
of gene family evolution
In general, investigations of gene families are rooted in 
comparative approaches. As genes of interest become 
identified, approaches based on sequence similarity or 
homology are used to detect similar genes within a tar-
get genome (intragenomically or intergenomically). 
Some of the most commonly used sequence similarity 
tools include BLAST [231, 232], PSI-BLAST [233, 234], 
diamond [235], and HMMER3 [236, 237] that collec-
tively represent routine aspects of bioinformatic pipe-
lines. Heuristic searches such as BLAST perform global 
and local alignments using dynamic programming algo-
rithms (e.g., Needleman–Wunsch and Smith–Waterman 
algorithms) that require a database such as those hosted 
by NCBI, EMBL, or Ensembl for searching. The results 
are obtained based on a predetermined e value thresh-
old, and the most similar matches are selected. How-
ever, e value-based metrics are not infallible, because 
they can give different results based on the complete-
ness of the reference database. Similarity methods that 
apply e values are also vulnerable to inflating relatedness, 
as it is possible that only a small fraction of the query 
sequences is being considered in the analysis, rather than 
the whole sequence. This problem arises frequently in 

Table 4  Historical format for the assignment of CYP gene 
families (https://​drnel​son.​uthsc.​edu/)

*No genes yet included in these ranges

Gene family numbering Class of organisms

CYP1–CYP49 Animals

CYP51–69 Yeast, Fungi

CYP71–99 Plants

CYP101–299 Bacteria, Viruses

CYP301–499 Animals

CYP501–699 Lower eukaryotes

CYP701–999 Plants

CYP1001–2999 Bacteria, Viruses

CYP3001–4999 Animals

CYP5001–6999 Lower eukaryotes

CYP7001–9999 Plants

CYP10001–29,999 Bacteria, Viruses*

CYP30001–49,999 (Animals)*

CYP50001–69,999 Lower eukaryotes

https://drnelson.uthsc.edu/
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the annotation of non-model species when using highly 
curated databases as a reference (e.g., UniProtKB [238]). 
To complement e value-based identification, the identity 
of gene family members is often validated through phy-
logenetic analyses such as those conducted in IQTREE 
[239] or RevBayes [240].

Phylogenetic analyses allow candidate genes to be 
placed among known reference sequences to verify 
identification, assess the evolutionary history of gene 
gains and losses, and delimit unique gene expansions 
within lineages [59, 74]. However, it is well known that 
some genes are more amenable to phylogenetic infer-
ence than others [241–245], and the utility of each locus 
for evolutionary inference is dependent on the phyloge-
netic hypotheses being addressed [246–248]. Much of 
the heterogeneous utility of loci for phylogenetics can 
be attributed to variance in the rate of molecular evolu-
tion between sites, wherein fast-evolving sites can erode 
phylogenetic information [249, 250]. Just as phylogenetic 
information can be eroded by evolution, so can identifi-
cation of homology [251]. In the presence of high rates of 
sequence evolution, “phylogenetic noise” in the data can 
mask or even mislead interpretation of the relationship of 
the queried gene family with the newly detected candi-
date genes in the database [251]. This problem arises as 
a natural consequence of numerous substitutions occur-
ring in a gene over time and has the potential to promote 
erroneous inference [249, 252–254]. In cases with lit-
tle true signal of evolutionary history, this phylogenetic 
noise can accumulate, leading to the estimation of phy-
logenetic tree topologies that appear to have strong sta-
tistical support [255–257]. These problems are not new 
to phylogenetics, and solutions and approaches to their 
mitigation should be adopted for studies of gene family 
evolution.

The point at which noise (molecular changes reflecting 
chance convergence or parallelism) erodes signal (dif-
ferences in nucleotides or amino acids since common 
ancestry) is not commonly accounted for—as an issue 
of statistical power—when defining the origins of genes. 
High rates of evolution at sites—especially genome-
wide—will increase genetic distances between loci at 
deeper timescales [250, 258]. Consequently, an inability 
to determine which sites are evolving at rates predicted 
to contribute signal versus noise poses a major impedi-
ment in the selection of orthologs (Fig. 6). Common prac-
tices, such as using e value thresholds, do not address this 
problem [251]. Rates of evolution can vary between genes 
and lineages, and therefore cutoffs for accurate identifica-
tion of orthologs differ between organismal groups and 
time scales [259].

Once genes become highly divergent, it becomes chal-
lenging—and then impossible—to assign homology of 

molecular sequence characters. However, quantifications 
of phylogenetic information loss are rarely incorporated 
into studies of homology. Quantification of evolution-
ary information loss through time requires consideration 
of the information gained by adding genetically dis-
tant taxa [250, 260, 261], characteristics of the sequence 
data (e.g., biases in nucleotide compositions [262, 263], 
amino acid versus nucleotide data [264], etc.), as well as 
molecular rate heterogeneity between taxa or loci [250, 
255, 265, 266]. Such an integration facilitates calculation 
of the accumulation of signal versus loss of information 
due to chance convergences or parallelisms that provide 

Fig. 6  Concepts of the phylogenetic informativeness of gene 
families and the limits of ortholog detection. As lineages diversify 
(top), the rate of evolution of each lineage impacts the phylogenetic 
informativeness (PI) of each gene (bottom). In the case of gene 
families that exhibit relatively slower rates of sequence evolution, 
phylogenetic information content may continue to accrue over time, 
thereby increasing the amount of information available for inquiry 
(blue). In contrast, rapidly evolving loci can exhibit serial substitutions 
at the same site that erode phylogenetic information (red). The ability 
to resolve the evolutionary history of such “saturated” loci can be 
limited
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an expectation of where power is highest for phyloge-
netic inference [246, 250, 267]. What is now needed is a 
mathematical framework that builds on such theory from 
phylogenetics, to predict when the inability to detect an 
ortholog would stem from a lack of phylogenetic infor-
mation versus a likely true absence of an ortholog. This 
kind of framework will illuminate the predicted limits of 
ortholog detection that are critical to establishing where 
we are, and are not, confident in identifying the origins of 
genes in the human genome.

The future of human genomics is comparative
Central to the diversification of the human genome are 
duplications of genes or entire genomic regions. Over 
short evolutionary timescales, gene birth events (i.e., 
gene duplications that create paralogs) may provide 
redundancy for essential genes or increased levels of a 
gene product [268]. Over longer stretches of evolutionary 
time, these gene birth events provide the molecular basis 
for sequence evolution through neofunctionalization 
(i.e., the acquisition of new functions), subfunctionaliza-
tion (all functions of the original gene are maintained, 
but divided between the gene copies), or non-functional-
ization (accumulation of deleterious mutations resulting 
in gene death) [269, 270]. The function of specific gene 
duplications and clusters has been well studied in select 
species [55, 271]. However, the potential role of rapid 
paralog evolution in gene families as the substrate for 
further genomic novelty is only beginning to be explored. 
Testing for shifts in selection that have promoted the 
generation of new phenotypes in response to ecological 
opportunity is a fundamental aspect of macroevolution 
[272–274]. There is little doubt that the rapid expansion 
of a gene family can provide the necessary genomic foun-
dation for pulses of phenotypic evolution. What remains 
unclear are the relationships between ecological oppor-
tunity, changes in selection, gene birth–death dynam-
ics, and the timing of phenotypic diversification in the 
history of a lineage. Recent work has highlighted that 
large-scale genomic changes are temporally decoupled 
from the onset of phenotypic diversification within both 
the iconic adaptive radiations of African rift lake cichlids 
and Antarctic notothenioids [275, 276]. These findings 
highlight the critical, but often neglected, role of his-
torical contingency in understanding adaptive evolution 
[277]. Therefore, as the taxonomic diversity of available 
genomes continues to increase, comparative studies with 
a wider taxonomic scope will be critical to determine the 
relationship between the tempo of gene family evolution 
and present-day phenotypes.

Successive tandem gene duplication events are of 
particular interest in clustered gene families. Relative 

to surrounding regions, clustered gene families often 
display disproportionately high levels of sequence 
and gene copy diversity. As such, clustered gene fami-
lies may be hotspots for additional gene birth events, 
higher rates of gene death (loss), nucleotide substitu-
tion, sharing of regulatory sequences among multiple 
genes in tandem, exon swapping, and interlocus gene 
conversion. However, the diversification dynamics of 
gene clusters across vertebrate macroevolutionary his-
tory remains largely unexplored. What is needed is 
the continued development of theory [278] and novel 
tools [279, 280] that can be used to generate a unified 
paradigm for understanding the dynamics of clustered 
gene diversification both within and between species. 
As diversity within gene clusters contributes to a range 
of genetic disorders, such a paradigm is central to link-
ing hyper-diverse clusters between model organisms 
and humans and might drive both diagnostic advances 
and the development of novel therapeutics.
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